Smart Driving of a Vehicle Using Model Predictive Control for Improving Traffic Flow

Traffic management on road networks is an emerging research field in control engineering due to the strong demand to alleviate traffic congestion in urban areas. Interaction among vehicles frequently causes congestion as well as bottlenecks in road capacity. In dense traffic, waves of traffic densit...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on intelligent transportation systems Vol. 15; no. 2; pp. 878 - 888
Main Authors: Samad Kamal, Md Abdus, Imura, Jun-ichi, Hayakawa, Tomohisa, Ohata, Akira, Aihara, Kazuyuki
Format: Journal Article
Language:English
Published: New York IEEE 01-04-2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Traffic management on road networks is an emerging research field in control engineering due to the strong demand to alleviate traffic congestion in urban areas. Interaction among vehicles frequently causes congestion as well as bottlenecks in road capacity. In dense traffic, waves of traffic density propagate backward as drivers try to keep safe distances through frequent acceleration and deceleration. This paper presents a vehicle driving system in a model predictive control framework that effectively improves traffic flow. The vehicle driving system regulates safe intervehicle distance under the bounded driving torque condition by predicting the preceding traffic. It also focuses on alleviating the effect of braking on the vehicles that follow, which helps jamming waves attenuate to in the traffic. The proposed vehicle driving system has been evaluated through numerical simulation in dense traffic.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1524-9050
1558-0016
DOI:10.1109/TITS.2013.2292500