Effect of cadmium on photosynthetic pigments, lipid peroxidation, antioxidants, and artemisinin in hydroponically grown Artemisia annua

The effects of different cadmium (Cd) concentrations (0, 20, 60, and 100 μmol/L) on hydroponically grown Artemisia annua L. were investigated. Cd treatments applied for 0, 4, 12, 24, 72, 144, 216, and 336 hr were assessed by measuring the changes in photosynthetic pigments, electrolyte leakage, malo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of environmental sciences (China) Vol. 24; no. 8; pp. 1511 - 1518
Main Authors: Li, Xuan, Zhao, Manxi, Guo, Lanping, Huang, Luqi
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 01-08-2012
School of Life Science and Engineering,Southwest Jiaotong University,Chengdu 610031,China
Institute of Chinese Materia Medica,China Academy of Chinese Medical Sciences,Beijing 100700,China%Institute of Chinese Materia Medica,China Academy of Chinese Medical Sciences,Beijing 100700,China
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The effects of different cadmium (Cd) concentrations (0, 20, 60, and 100 μmol/L) on hydroponically grown Artemisia annua L. were investigated. Cd treatments applied for 0, 4, 12, 24, 72, 144, 216, and 336 hr were assessed by measuring the changes in photosynthetic pigments, electrolyte leakage, malondialdehyde (MDA) and antioxidants (ascorbic acid and glutathione), while the artemisinin content was tested after 0, 12, 144, 216, and 336 hr. A significant decrease was observed in photosynthetic pigment levels over time with increasing Cd concentration. Chlorophyll b levels were more affected by Cd than were chlorophyll α or carotenoid levels. The cell membrane was sensitive to Cd stress, as MDA content in all treatment groups showed insignificant differences from the control group, except at 12 hr treatment time. Ascorbic acid (AsA) content changed slightly over time, while glutathione (GSH) content took less time to reach a maximum as Cd concentration increased. Cd was found to promote synthesis and accumulation of artemisinin, especially at concentrations of 20 and 100 μmol/L. In conclusion, Cd stress can damage to photosynthetic pigments, and vigorously growing A. annua showed a strong tolerance for Cd stress. Appropriate amounts of added Cd aided synthesis and accumulation of artemisinin.
Bibliography:The effects of different cadmium (Cd) concentrations (0, 20, 60, and 100 μmol/L) on hydroponically grown Artemisia annua L. were investigated. Cd treatments applied for 0, 4, 12, 24, 72, 144, 216, and 336 hr were assessed by measuring the changes in photosynthetic pigments, electrolyte leakage, malondialdehyde (MDA) and antioxidants (ascorbic acid and glutathione), while the artemisinin content was tested after 0, 12, 144, 216, and 336 hr. A significant decrease was observed in photosynthetic pigment levels over time with increasing Cd concentration. Chlorophyll b levels were more affected by Cd than were chlorophyll a or carotenoid levels. The cell membrane was sensitive to Cd stress, as MDA content in all treatment groups showed insignificant differences from the control group, except at 12 hr treatment time. Ascorbic acid (AsA) content changed slightly over time, while glutathione (GSH) content took less time to reach a maximum as Cd concentration increased. Cd was found to promote synthesis and accumulation of artemisinin, especially at concentrations of 20 and 100 ~tmol/L. In conclusion, Cd stress can damage to photosynthetic pigments, and vigorously growing A. annua showed a strong tolerance for Cd stress. Appropriate amounts of added Cd aided synthesis and accumulation of artemisinin.
cadmium; photosynthetic pigments; oxidative stress; artemisinin; Artemisia annua
11-2629/X
http://dx.doi.org/10.1016/S1001-0742(11)60920-0
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1001-0742
1878-7320
DOI:10.1016/S1001-0742(11)60920-0