Strained and strain-balanced quantum well devices for high-efficiency tandem solar cells

The state of GaAs/InGaAs quantum well solar cell research is reviewed. The effect of strain upon the GaAs/InGaAs cells is discussed and the limits to a strained GaAs/InGaAs cell established. The strain-balance approach is suggested as a means of overcoming the limits inherent to the strained approac...

Full description

Saved in:
Bibliographic Details
Published in:Solar energy materials and solar cells Vol. 68; no. 1; pp. 71 - 87
Main Authors: Ekins-Daukes, N.J., Barnes, J.M., Barnham, K.W.J., Connolly, J.P., Mazzer, M., Clark, J.C., Grey, R., Hill, G., Pate, M.A., Roberts, J.S.
Format: Journal Article
Language:English
Published: Elsevier B.V 2001
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The state of GaAs/InGaAs quantum well solar cell research is reviewed. The effect of strain upon the GaAs/InGaAs cells is discussed and the limits to a strained GaAs/InGaAs cell established. The strain-balance approach is suggested as a means of overcoming the limits inherent to the strained approach and the principle is demonstrated in two differing device configurations. The strain-balance devices show enhanced efficiencies over their strained counterparts and in one case, comparable efficiency to a good GaAs control cell. The application of these cells to tandem structures is discussed, indicating the potential for a substantial efficiency enhancement.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0927-0248
1879-3398
DOI:10.1016/S0927-0248(00)00346-9