Robust hyperspectral image coding with channel-optimized trellis-coded quantization

This paper presents a wavelet-based hyperspectral image coder that is optimized for transmission over the binary symmetric channel (BSC). The proposed coder uses a robust channel-optimized trellis-coded quantization (COTCQ) stage that is designed to optimize the image coding based on the channel cha...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing Vol. 40; no. 4; pp. 820 - 830
Main Authors: Abousleman, G.P., Tuyet-Trang Lam, Karam, L.J.
Format: Journal Article
Language:English
Published: New York, NY IEEE 01-04-2002
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a wavelet-based hyperspectral image coder that is optimized for transmission over the binary symmetric channel (BSC). The proposed coder uses a robust channel-optimized trellis-coded quantization (COTCQ) stage that is designed to optimize the image coding based on the channel characteristics. This optimization is performed only at the level of the source encoder and does not include any channel coding for error protection. The robust nature of the coder increases the security level of the encoded bit stream, and provides a much higher quality decoded image. In the absence of channel noise, the proposed coder is shown to achieve a compression ratio greater than 70:1, with an average peak SNR of the coded hyperspectral sequence exceeding 40 dB. Additionally, the coder is shown to exhibit graceful degradation with increasing channel errors.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2002.1006360