Trust prediction based on extreme learning machine and asymmetric tri-training
Currently, more and more people communicate and trade through online social networks, so it is necessary to predict the trust between users. In order to predict the trust between users through a social network requires some other factors, such as user similarity, topic relevance, and the number of c...
Saved in:
Published in: | IEEE access Vol. 9; p. 1 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Piscataway
IEEE
01-01-2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Currently, more and more people communicate and trade through online social networks, so it is necessary to predict the trust between users. In order to predict the trust between users through a social network requires some other factors, such as user similarity, topic relevance, and the number of common neighbors should be considered. Some scholars use BP neural network based on the asymmetric tri-training model to train one social network and use transfer learning to predict the social relationship of another social network. However, this method has high computational complexity and slow operation speed. To solve the problem, the three classifiers are expanded into four classifiers on the basis of asymmetric tri-training, and the extreme learning machine classifier is used to replace the BP neural network classifier. The specific steps are: we first obtain the common features between different networks, use source data samples to train the first three classifiers, save the model, and train target samples to generate pseudo labels; then we use standard pseudo label samples to train the fourth classifier and use it to predict the social relations of the target network. Finally, compare with the existing evaluation methods,we proposed an algorithm on six online social networks. The experimental results show that the model in this paper is superior to other evaluation methods in recall and stability. |
---|---|
AbstractList | Currently, more and more people communicate and trade through online social networks, so it is necessary to predict the trust between users. In order to predict the trust between users through a social network requires some other factors, such as user similarity, topic relevance, and the number of common neighbors should be considered. Some scholars use BP neural network based on the asymmetric tri-training model to train one social network and use transfer learning to predict the social relationship of another social network. However, this method has high computational complexity and slow operation speed. To solve the problem, the three classifiers are expanded into four classifiers on the basis of asymmetric tri-training, and the extreme learning machine classifier is used to replace the BP neural network classifier. The specific steps are: we first obtain the common features between different networks, use source data samples to train the first three classifiers, save the model, and train target samples to generate pseudo labels; then we use standard pseudo label samples to train the fourth classifier and use it to predict the social relations of the target network. Finally, compare with the existing evaluation methods, we proposed an algorithm on six online social networks. The experimental results show that the model in this paper is superior to other evaluation methods in recall and stability. |
Author | Tong, Xiangrong Wang, Yan |
Author_xml | – sequence: 1 givenname: Yan surname: Wang fullname: Wang, Yan organization: School of Computer and Control Engineering, Yantai University, Yantai 264005, China. (e-mail: yixinwon@163.com) – sequence: 2 givenname: Xiangrong surname: Tong fullname: Tong, Xiangrong organization: School of Computer and Control Engineering, Yantai University, Yantai 264005, China |
BookMark | eNpNUU1PAjEQbYwmIvILuGziebEf2257JASVhOgBPDelO8USdhfbJZF_b3EJcQ4zk8l7bybzHtBt0zaA0JjgCSFYPU9ns_lqNaGYkgnDJVec3qABJULljDNx-6-_R6MYdziFTCNeDtD7Ohxjlx0CVN52vm2yjYlQZamBny5ADdkeTGh8s81qY798A5lpqszEU11DF7zNUsq7YPwZ84junNlHGF3qEH2-zNezt3z58bqYTZe5LUrZ5cJyEIIBcyUnWEiJhSDcWpCKCEowrnBlWeGcqqDA1HFaGgaOK4thAyDYEC163ao1O30IvjbhpFvj9d-gDVttQuftHnRhZSF42setKyQzhnJDsOTYWEtl0h2ip17rENrvI8RO79pjaNL5mnKilCjTlxOK9Sgb2hgDuOtWgvXZB937oM8-6IsPiTXuWR4ArgxVEJFU2S-1H4Ue |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1016_j_dcan_2022_12_010 |
Cites_doi | 10.1145/2145204.2145360 10.1145/2746230 10.1016/j.knosys.2013.11.006 10.1145/1273496.1273521 10.1145/2501654.2501661 10.1155/2016/5403105 10.1007/s13042-011-0019-y 10.1016/j.comnet.2012.05.002 10.1109/TKDE.2005.186 10.1016/j.knosys.2012.09.002 10.1145/2898361 10.1016/j.knosys.2010.10.007 10.1016/j.eswa.2019.112880 10.1016/j.neucom.2020.02.057 10.1016/j.joep.2011.09.005 10.1145/2124295.2124382 10.1145/2623330.2623664 10.17705/1jais.00411 10.1093/sf/63.2.482 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2021.3075952 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library Online CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: ESBDL name: IEEE Xplore Open Access Journals url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 1 |
ExternalDocumentID | oai_doaj_org_article_4c84655e65cf483aa25a10850acc287a 10_1109_ACCESS_2021_3075952 9416671 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61972360; 62072392 funderid: 10.13039/501100001809 – fundername: Major scientific and technological innovation projects of Shandong Province grantid: 2019522Y020131 |
GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RIG RNS 4.4 AAYXX CITATION EJD 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c478t-6c5e663e3f751068806615cce89162100d0dc34ff9de402f527a3ef59c0ebee63 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Tue Oct 22 15:11:59 EDT 2024 Mon Nov 18 16:18:43 EST 2024 Fri Aug 23 02:46:26 EDT 2024 Wed Jun 26 19:26:55 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c478t-6c5e663e3f751068806615cce89162100d0dc34ff9de402f527a3ef59c0ebee63 |
ORCID | 0000-0003-4855-3723 0000-0002-8201-6289 |
OpenAccessLink | https://ieeexplore.ieee.org/document/9416671 |
PQID | 2519967109 |
PQPubID | 4845423 |
PageCount | 1 |
ParticipantIDs | ieee_primary_9416671 proquest_journals_2519967109 doaj_primary_oai_doaj_org_article_4c84655e65cf483aa25a10850acc287a crossref_primary_10_1109_ACCESS_2021_3075952 |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref24 ref12 ref23 saito (ref13) 2017 ref15 ref20 ref11 ref22 ref10 kahanda (ref14) 2009; 3 ref2 ref1 ref17 chen (ref19) 2011; 24 lee (ref21) 2013; 3 ref16 ref18 ref8 xiangrong (ref7) 2017; 1 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref15 doi: 10.1145/2145204.2145360 – ident: ref17 doi: 10.1145/2746230 – ident: ref10 doi: 10.1016/j.knosys.2013.11.006 – volume: 3 start-page: 1 year: 2013 ident: ref21 article-title: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks publication-title: Proc Workshop challenges Represent Learn contributor: fullname: lee – ident: ref18 doi: 10.1145/1273496.1273521 – ident: ref6 doi: 10.1145/2501654.2501661 – ident: ref12 doi: 10.1155/2016/5403105 – ident: ref2 doi: 10.1007/s13042-011-0019-y – volume: 1 start-page: 92 year: 2017 ident: ref7 article-title: Research on the formation of trust network and its applications in intelligent recommender systems publication-title: J Chin Comput Syst contributor: fullname: xiangrong – ident: ref9 doi: 10.1016/j.comnet.2012.05.002 – ident: ref20 doi: 10.1109/TKDE.2005.186 – ident: ref8 doi: 10.1016/j.knosys.2012.09.002 – ident: ref24 doi: 10.1145/2898361 – start-page: 2988 year: 2017 ident: ref13 article-title: Asymmetric tri-training for unsupervised domain adaptation publication-title: Proc Int Conf Mach Learn contributor: fullname: saito – ident: ref4 doi: 10.1016/j.knosys.2010.10.007 – ident: ref11 doi: 10.1016/j.eswa.2019.112880 – volume: 3 year: 2009 ident: ref14 article-title: Using transactional information to predict link strength in online social networks publication-title: Proc Int AAAI Conf Web Social Media contributor: fullname: kahanda – ident: ref1 doi: 10.1016/j.neucom.2020.02.057 – ident: ref5 doi: 10.1016/j.joep.2011.09.005 – ident: ref16 doi: 10.1145/2124295.2124382 – ident: ref23 doi: 10.1145/2623330.2623664 – volume: 24 start-page: 2456 year: 2011 ident: ref19 article-title: Co-training for domain adaptation publication-title: Proc NIPS contributor: fullname: chen – ident: ref3 doi: 10.17705/1jais.00411 – ident: ref22 doi: 10.1093/sf/63.2.482 |
SSID | ssj0000816957 |
Score | 2.2510695 |
Snippet | Currently, more and more people communicate and trade through online social networks, so it is necessary to predict the trust between users. In order to... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Artificial neural networks Asymmetric tri-training Asymmetry Classifiers Evaluation extreme learning machine Extreme learning machines Machine learning Neural networks Prediction algorithms Predictive models pseudo label Social networking (online) Social networks Stability analysis Training Transfer learning trust prediction Trustworthiness |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELaACQbEU5SXPDASmoft2GMpRSwgJIrEZiVnGzEQUB8S_HvuErcCMbCwRVGUxN9n--7s83eMnVWlR2Izl0jhdSLqIBLjKEcsBxPQ_RemTZC9eSjvnvTViGRylqW-KCeskwfugOsL0CTx5ZWEIHRRVbmsKGM-rQDQ2-9co1R_C6baOVhnysgyygxlqekPhkNsEQaEeXaB_Voamf8wRa1ifyyx8mtebo3N9RbbjF4iH3R_t81WfLPDNr5pB-6yuzGdluD3E9ppIXT5JRokx_Fi9DGjVT8etVOf-W2bMel51Tg-mH6-vlIZLeDjyUsyjiUi9tjj9Wg8vElicYQERKlniQLERBW-CCUOK4XDEC2tBPAaHT5EJHWpg0KEYJzHGDHIvKwKH6SBFHnzqthna81b4w8YV5CJGoqaxM4EKFNn2psiBKcByrpKe-x8gZN97zQwbBs7pMZ2sFqC1UZYe-ySsFw-SgLW7Q2k1UZa7V-09tguMbF8iUHHUZVZjx0vmLFxsE0tHb41ipJKD__j00dsnZrTrbMcs7XZZO5P2OrUzU_bTvYFlTHRng priority: 102 providerName: Directory of Open Access Journals |
Title | Trust prediction based on extreme learning machine and asymmetric tri-training |
URI | https://ieeexplore.ieee.org/document/9416671 https://www.proquest.com/docview/2519967109 https://doaj.org/article/4c84655e65cf483aa25a10850acc287a |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYKXOiBd8UCXfnQI4E87MQ-wrKIA-IClXqznPGY0y6IZQ_9951xvKtWcOklsqIkcubzeB6ehxA_fIcEbBUKrdAUqo-qsIFjxGqwkdR_ZVOA7N1j9_DL3Ey5TM75OhcGEVPwGV7wMJ3lhxdYsqvs0pL20HLC-EZnzZCrtfancAMJq7tcWKgq7eXVZEL_QCZgXV3QStZW1_8In1SjPzdV-bATJ_Fyu_t_E9sTO1mNlFcD7vviC84PxNe_igseiocnTqeQr298FMPklyyxgqQBbcjsFpS5ZcSznKWQSpR-HqRf_J7NuM8WSLoUqx4SR-Ln7fRpclfk7gkFqM68Fy1oJHUCm9gR37XEpySKNQAa0gjJ0CtDGaBRMdqAZERGXXe-wagtlAQsts03sTl_meOxkC1Uqoem52poClrbVwZtE2MwAF3vy5E4X5HVvQ5FMlwyLkrrBhQco-AyCiNxzaRfP8oVrtMNoqnLDOMUGC7thq2GqEzjfa09Z0qUHoCsPD8Sh4zD-iMZgpE4WwHpMjcuHGfn2pajTk8-f-tUbPMEB9fKmdh8f1vid7GxCMtxMtLHYmv6eH1zP05r7g-6O9KZ |
link.rule.ids | 315,782,786,798,866,2108,27644,27935,27936,54770,54945 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NbxMxEB1BegAOFCiI0BZ84Nht98PeXR_bNFUQIZcGiZvlHY85Ja2a5tB_35mNE1HBhcvKWu2uvH4ee2Y88wbgq2-IgS1CZjS1me6izmyQGLESbWT1X9s-QHZy3cx-tZdjock52eXCEFEffEan0uzP8sMNrsVVdmZZe6glYXyPrRptBrA3vr64nO58KlJEwpomkQsVuT07H434P9gMLItTns3GmvLJBtTz9KfCKn-txv0Wc7X_f517A6-TKqnON9i_hWe0fAev_iAYPIDZXFIq1O2dHMcIBEp2raC4wYuyuAZVKhvxWy36sEpSfhmUXz0sFlJrCxVfsm0diffw82o8H02yVEEhQ92091mNhliloCo2LHs1yypvxwaRWtYK2djLQx6w0jHaQGxIRlM2vqJoLOYMLtXVBxgsb5b0EVSNhe6w6oQRTWNtu6IlW8UYWsSm8_kQTrbD6m43RBmuNzBy6zYoOEHBJRSGcCFDv3tUWK77GzymLgmN09gKvRvVBqNuK-9L4yVbIveIbOn5IRwIDruPJAiGcLQF0iWJXDnJ0LW1RJ5--vdbX-DFZP5j6qbfZt8P4aV0duNqOYLB_d2ajuH5Kqw_pzn3CJd01H4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trust+prediction+based+on+extreme+learning+machine+and+asymmetric+tri-training&rft.jtitle=IEEE+access&rft.au=Wang%2C+Yan&rft.au=Tong%2C+Xiangrong&rft.date=2021-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FACCESS.2021.3075952&rft.externalDocID=9416671 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |