Trust prediction based on extreme learning machine and asymmetric tri-training

Currently, more and more people communicate and trade through online social networks, so it is necessary to predict the trust between users. In order to predict the trust between users through a social network requires some other factors, such as user similarity, topic relevance, and the number of c...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 9; p. 1
Main Authors: Wang, Yan, Tong, Xiangrong
Format: Journal Article
Language:English
Published: Piscataway IEEE 01-01-2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Currently, more and more people communicate and trade through online social networks, so it is necessary to predict the trust between users. In order to predict the trust between users through a social network requires some other factors, such as user similarity, topic relevance, and the number of common neighbors should be considered. Some scholars use BP neural network based on the asymmetric tri-training model to train one social network and use transfer learning to predict the social relationship of another social network. However, this method has high computational complexity and slow operation speed. To solve the problem, the three classifiers are expanded into four classifiers on the basis of asymmetric tri-training, and the extreme learning machine classifier is used to replace the BP neural network classifier. The specific steps are: we first obtain the common features between different networks, use source data samples to train the first three classifiers, save the model, and train target samples to generate pseudo labels; then we use standard pseudo label samples to train the fourth classifier and use it to predict the social relations of the target network. Finally, compare with the existing evaluation methods,we proposed an algorithm on six online social networks. The experimental results show that the model in this paper is superior to other evaluation methods in recall and stability.
AbstractList Currently, more and more people communicate and trade through online social networks, so it is necessary to predict the trust between users. In order to predict the trust between users through a social network requires some other factors, such as user similarity, topic relevance, and the number of common neighbors should be considered. Some scholars use BP neural network based on the asymmetric tri-training model to train one social network and use transfer learning to predict the social relationship of another social network. However, this method has high computational complexity and slow operation speed. To solve the problem, the three classifiers are expanded into four classifiers on the basis of asymmetric tri-training, and the extreme learning machine classifier is used to replace the BP neural network classifier. The specific steps are: we first obtain the common features between different networks, use source data samples to train the first three classifiers, save the model, and train target samples to generate pseudo labels; then we use standard pseudo label samples to train the fourth classifier and use it to predict the social relations of the target network. Finally, compare with the existing evaluation methods, we proposed an algorithm on six online social networks. The experimental results show that the model in this paper is superior to other evaluation methods in recall and stability.
Author Tong, Xiangrong
Wang, Yan
Author_xml – sequence: 1
  givenname: Yan
  surname: Wang
  fullname: Wang, Yan
  organization: School of Computer and Control Engineering, Yantai University, Yantai 264005, China. (e-mail: yixinwon@163.com)
– sequence: 2
  givenname: Xiangrong
  surname: Tong
  fullname: Tong, Xiangrong
  organization: School of Computer and Control Engineering, Yantai University, Yantai 264005, China
BookMark eNpNUU1PAjEQbYwmIvILuGziebEf2257JASVhOgBPDelO8USdhfbJZF_b3EJcQ4zk8l7bybzHtBt0zaA0JjgCSFYPU9ns_lqNaGYkgnDJVec3qABJULljDNx-6-_R6MYdziFTCNeDtD7Ohxjlx0CVN52vm2yjYlQZamBny5ADdkeTGh8s81qY798A5lpqszEU11DF7zNUsq7YPwZ84junNlHGF3qEH2-zNezt3z58bqYTZe5LUrZ5cJyEIIBcyUnWEiJhSDcWpCKCEowrnBlWeGcqqDA1HFaGgaOK4thAyDYEC163ao1O30IvjbhpFvj9d-gDVttQuftHnRhZSF42setKyQzhnJDsOTYWEtl0h2ip17rENrvI8RO79pjaNL5mnKilCjTlxOK9Sgb2hgDuOtWgvXZB937oM8-6IsPiTXuWR4ArgxVEJFU2S-1H4Ue
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_dcan_2022_12_010
Cites_doi 10.1145/2145204.2145360
10.1145/2746230
10.1016/j.knosys.2013.11.006
10.1145/1273496.1273521
10.1145/2501654.2501661
10.1155/2016/5403105
10.1007/s13042-011-0019-y
10.1016/j.comnet.2012.05.002
10.1109/TKDE.2005.186
10.1016/j.knosys.2012.09.002
10.1145/2898361
10.1016/j.knosys.2010.10.007
10.1016/j.eswa.2019.112880
10.1016/j.neucom.2020.02.057
10.1016/j.joep.2011.09.005
10.1145/2124295.2124382
10.1145/2623330.2623664
10.17705/1jais.00411
10.1093/sf/63.2.482
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2021.3075952
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: ESBDL
  name: IEEE Xplore Open Access Journals
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_4c84655e65cf483aa25a10850acc287a
10_1109_ACCESS_2021_3075952
9416671
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61972360; 62072392
  funderid: 10.13039/501100001809
– fundername: Major scientific and technological innovation projects of Shandong Province
  grantid: 2019522Y020131
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RIG
RNS
4.4
AAYXX
CITATION
EJD
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c478t-6c5e663e3f751068806615cce89162100d0dc34ff9de402f527a3ef59c0ebee63
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Tue Oct 22 15:11:59 EDT 2024
Mon Nov 18 16:18:43 EST 2024
Fri Aug 23 02:46:26 EDT 2024
Wed Jun 26 19:26:55 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-6c5e663e3f751068806615cce89162100d0dc34ff9de402f527a3ef59c0ebee63
ORCID 0000-0003-4855-3723
0000-0002-8201-6289
OpenAccessLink https://ieeexplore.ieee.org/document/9416671
PQID 2519967109
PQPubID 4845423
PageCount 1
ParticipantIDs ieee_primary_9416671
proquest_journals_2519967109
doaj_primary_oai_doaj_org_article_4c84655e65cf483aa25a10850acc287a
crossref_primary_10_1109_ACCESS_2021_3075952
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref24
ref12
ref23
saito (ref13) 2017
ref15
ref20
ref11
ref22
ref10
kahanda (ref14) 2009; 3
ref2
ref1
ref17
chen (ref19) 2011; 24
lee (ref21) 2013; 3
ref16
ref18
ref8
xiangrong (ref7) 2017; 1
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref15
  doi: 10.1145/2145204.2145360
– ident: ref17
  doi: 10.1145/2746230
– ident: ref10
  doi: 10.1016/j.knosys.2013.11.006
– volume: 3
  start-page: 1
  year: 2013
  ident: ref21
  article-title: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks
  publication-title: Proc Workshop challenges Represent Learn
  contributor:
    fullname: lee
– ident: ref18
  doi: 10.1145/1273496.1273521
– ident: ref6
  doi: 10.1145/2501654.2501661
– ident: ref12
  doi: 10.1155/2016/5403105
– ident: ref2
  doi: 10.1007/s13042-011-0019-y
– volume: 1
  start-page: 92
  year: 2017
  ident: ref7
  article-title: Research on the formation of trust network and its applications in intelligent recommender systems
  publication-title: J Chin Comput Syst
  contributor:
    fullname: xiangrong
– ident: ref9
  doi: 10.1016/j.comnet.2012.05.002
– ident: ref20
  doi: 10.1109/TKDE.2005.186
– ident: ref8
  doi: 10.1016/j.knosys.2012.09.002
– ident: ref24
  doi: 10.1145/2898361
– start-page: 2988
  year: 2017
  ident: ref13
  article-title: Asymmetric tri-training for unsupervised domain adaptation
  publication-title: Proc Int Conf Mach Learn
  contributor:
    fullname: saito
– ident: ref4
  doi: 10.1016/j.knosys.2010.10.007
– ident: ref11
  doi: 10.1016/j.eswa.2019.112880
– volume: 3
  year: 2009
  ident: ref14
  article-title: Using transactional information to predict link strength in online social networks
  publication-title: Proc Int AAAI Conf Web Social Media
  contributor:
    fullname: kahanda
– ident: ref1
  doi: 10.1016/j.neucom.2020.02.057
– ident: ref5
  doi: 10.1016/j.joep.2011.09.005
– ident: ref16
  doi: 10.1145/2124295.2124382
– ident: ref23
  doi: 10.1145/2623330.2623664
– volume: 24
  start-page: 2456
  year: 2011
  ident: ref19
  article-title: Co-training for domain adaptation
  publication-title: Proc NIPS
  contributor:
    fullname: chen
– ident: ref3
  doi: 10.17705/1jais.00411
– ident: ref22
  doi: 10.1093/sf/63.2.482
SSID ssj0000816957
Score 2.2510695
Snippet Currently, more and more people communicate and trade through online social networks, so it is necessary to predict the trust between users. In order to...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Publisher
StartPage 1
SubjectTerms Algorithms
Artificial neural networks
Asymmetric tri-training
Asymmetry
Classifiers
Evaluation
extreme learning machine
Extreme learning machines
Machine learning
Neural networks
Prediction algorithms
Predictive models
pseudo label
Social networking (online)
Social networks
Stability analysis
Training
Transfer learning
trust prediction
Trustworthiness
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELaACQbEU5SXPDASmoft2GMpRSwgJIrEZiVnGzEQUB8S_HvuErcCMbCwRVGUxN9n--7s83eMnVWlR2Izl0jhdSLqIBLjKEcsBxPQ_RemTZC9eSjvnvTViGRylqW-KCeskwfugOsL0CTx5ZWEIHRRVbmsKGM-rQDQ2-9co1R_C6baOVhnysgyygxlqekPhkNsEQaEeXaB_Voamf8wRa1ifyyx8mtebo3N9RbbjF4iH3R_t81WfLPDNr5pB-6yuzGdluD3E9ppIXT5JRokx_Fi9DGjVT8etVOf-W2bMel51Tg-mH6-vlIZLeDjyUsyjiUi9tjj9Wg8vElicYQERKlniQLERBW-CCUOK4XDEC2tBPAaHT5EJHWpg0KEYJzHGDHIvKwKH6SBFHnzqthna81b4w8YV5CJGoqaxM4EKFNn2psiBKcByrpKe-x8gZN97zQwbBs7pMZ2sFqC1UZYe-ySsFw-SgLW7Q2k1UZa7V-09tguMbF8iUHHUZVZjx0vmLFxsE0tHb41ipJKD__j00dsnZrTrbMcs7XZZO5P2OrUzU_bTvYFlTHRng
  priority: 102
  providerName: Directory of Open Access Journals
Title Trust prediction based on extreme learning machine and asymmetric tri-training
URI https://ieeexplore.ieee.org/document/9416671
https://www.proquest.com/docview/2519967109
https://doaj.org/article/4c84655e65cf483aa25a10850acc287a
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYKXOiBd8UCXfnQI4E87MQ-wrKIA-IClXqznPGY0y6IZQ_9951xvKtWcOklsqIkcubzeB6ehxA_fIcEbBUKrdAUqo-qsIFjxGqwkdR_ZVOA7N1j9_DL3Ey5TM75OhcGEVPwGV7wMJ3lhxdYsqvs0pL20HLC-EZnzZCrtfancAMJq7tcWKgq7eXVZEL_QCZgXV3QStZW1_8In1SjPzdV-bATJ_Fyu_t_E9sTO1mNlFcD7vviC84PxNe_igseiocnTqeQr298FMPklyyxgqQBbcjsFpS5ZcSznKWQSpR-HqRf_J7NuM8WSLoUqx4SR-Ln7fRpclfk7gkFqM68Fy1oJHUCm9gR37XEpySKNQAa0gjJ0CtDGaBRMdqAZERGXXe-wagtlAQsts03sTl_meOxkC1Uqoem52poClrbVwZtE2MwAF3vy5E4X5HVvQ5FMlwyLkrrBhQco-AyCiNxzaRfP8oVrtMNoqnLDOMUGC7thq2GqEzjfa09Z0qUHoCsPD8Sh4zD-iMZgpE4WwHpMjcuHGfn2pajTk8-f-tUbPMEB9fKmdh8f1vid7GxCMtxMtLHYmv6eH1zP05r7g-6O9KZ
link.rule.ids 315,782,786,798,866,2108,27644,27935,27936,54770,54945
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NbxMxEB1BegAOFCiI0BZ84Nht98PeXR_bNFUQIZcGiZvlHY85Ja2a5tB_35mNE1HBhcvKWu2uvH4ee2Y88wbgq2-IgS1CZjS1me6izmyQGLESbWT1X9s-QHZy3cx-tZdjock52eXCEFEffEan0uzP8sMNrsVVdmZZe6glYXyPrRptBrA3vr64nO58KlJEwpomkQsVuT07H434P9gMLItTns3GmvLJBtTz9KfCKn-txv0Wc7X_f517A6-TKqnON9i_hWe0fAev_iAYPIDZXFIq1O2dHMcIBEp2raC4wYuyuAZVKhvxWy36sEpSfhmUXz0sFlJrCxVfsm0diffw82o8H02yVEEhQ92091mNhliloCo2LHs1yypvxwaRWtYK2djLQx6w0jHaQGxIRlM2vqJoLOYMLtXVBxgsb5b0EVSNhe6w6oQRTWNtu6IlW8UYWsSm8_kQTrbD6m43RBmuNzBy6zYoOEHBJRSGcCFDv3tUWK77GzymLgmN09gKvRvVBqNuK-9L4yVbIveIbOn5IRwIDruPJAiGcLQF0iWJXDnJ0LW1RJ5--vdbX-DFZP5j6qbfZt8P4aV0duNqOYLB_d2ajuH5Kqw_pzn3CJd01H4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trust+prediction+based+on+extreme+learning+machine+and+asymmetric+tri-training&rft.jtitle=IEEE+access&rft.au=Wang%2C+Yan&rft.au=Tong%2C+Xiangrong&rft.date=2021-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FACCESS.2021.3075952&rft.externalDocID=9416671
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon