PLGA Based Nanospheres as a Potent Macrophage-Specific Drug Delivery System
Macrophages possess an innate ability to scavenge heterogenous objects from the systemic circulation and to regulate inflammatory diseases in various organs via cytokine production. That makes them attractive targets for nanomedicine-based therapeutic approaches to inflammatory diseases. In the pres...
Saved in:
Published in: | Nanomaterials (Basel, Switzerland) Vol. 11; no. 3; p. 749 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
MDPI AG
16-03-2021
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Macrophages possess an innate ability to scavenge heterogenous objects from the systemic circulation and to regulate inflammatory diseases in various organs via cytokine production. That makes them attractive targets for nanomedicine-based therapeutic approaches to inflammatory diseases. In the present study, we have prepared several different poly(lactic-co-glycolic acid) (PLGA) polymer nanospheres for macrophage-targeted drug delivery using both nanoprecipitation and emulsification solvent evaporation methods. Two experimental linear PLGA polymers with relatively low molar weight, one experimental branched PLGA with unique star-like molecular architecture, and a commercially available PLGA, were used for nanosphere formulation and compared to their macrophage uptake capacity. The nanosphere formulations labelled with loaded fluorescent dye Rhodamine B were further tested in mouse bone marrow-derived macrophages and in hepatocyte cell lines AML-12, HepG2. We found that nanospheres larger than 100 nm prepared using nanoprecipitation significantly enhanced distribution of fluorescent dye selectively into macrophages. No effects of nanospheres on cellular viability were observed. Additionally, no significant proinflammatory effect after macrophage exposure to nanospheres was detected as assessed by a determination of proinflammatory cytokines
and
mRNA. All experimental PLGA nanoformulations surpassed the nanospheres obtained with the commercially available polymer taken as a control in their capacity as macrophage-specific carriers. |
---|---|
AbstractList | Macrophages possess an innate ability to scavenge heterogenous objects from the systemic circulation and to regulate inflammatory diseases in various organs via cytokine production. That makes them attractive targets for nanomedicine-based therapeutic approaches to inflammatory diseases. In the present study, we have prepared several different poly(lactic-co-glycolic acid) (PLGA) polymer nanospheres for macrophage-targeted drug delivery using both nanoprecipitation and emulsification solvent evaporation methods. Two experimental linear PLGA polymers with relatively low molar weight, one experimental branched PLGA with unique star-like molecular architecture, and a commercially available PLGA, were used for nanosphere formulation and compared to their macrophage uptake capacity. The nanosphere formulations labelled with loaded fluorescent dye Rhodamine B were further tested in mouse bone marrow-derived macrophages and in hepatocyte cell lines AML-12, HepG2. We found that nanospheres larger than 100 nm prepared using nanoprecipitation significantly enhanced distribution of fluorescent dye selectively into macrophages. No effects of nanospheres on cellular viability were observed. Additionally, no significant proinflammatory effect after macrophage exposure to nanospheres was detected as assessed by a determination of proinflammatory cytokines
Il-1β
and
Tnfα
mRNA. All experimental PLGA nanoformulations surpassed the nanospheres obtained with the commercially available polymer taken as a control in their capacity as macrophage-specific carriers. Macrophages possess an innate ability to scavenge heterogenous objects from the systemic circulation and to regulate inflammatory diseases in various organs via cytokine production. That makes them attractive targets for nanomedicine-based therapeutic approaches to inflammatory diseases. In the present study, we have prepared several different poly(lactic-co-glycolic acid) (PLGA) polymer nanospheres for macrophage-targeted drug delivery using both nanoprecipitation and emulsification solvent evaporation methods. Two experimental linear PLGA polymers with relatively low molar weight, one experimental branched PLGA with unique star-like molecular architecture, and a commercially available PLGA, were used for nanosphere formulation and compared to their macrophage uptake capacity. The nanosphere formulations labelled with loaded fluorescent dye Rhodamine B were further tested in mouse bone marrow-derived macrophages and in hepatocyte cell lines AML-12, HepG2. We found that nanospheres larger than 100 nm prepared using nanoprecipitation significantly enhanced distribution of fluorescent dye selectively into macrophages. No effects of nanospheres on cellular viability were observed. Additionally, no significant proinflammatory effect after macrophage exposure to nanospheres was detected as assessed by a determination of proinflammatory cytokines Il-1β and Tnfα mRNA. All experimental PLGA nanoformulations surpassed the nanospheres obtained with the commercially available polymer taken as a control in their capacity as macrophage-specific carriers. Macrophages possess an innate ability to scavenge heterogenous objects from the systemic circulation and to regulate inflammatory diseases in various organs via cytokine production. That makes them attractive targets for nanomedicine-based therapeutic approaches to inflammatory diseases. In the present study, we have prepared several different poly(lactic-co-glycolic acid) (PLGA) polymer nanospheres for macrophage-targeted drug delivery using both nanoprecipitation and emulsification solvent evaporation methods. Two experimental linear PLGA polymers with relatively low molar weight, one experimental branched PLGA with unique star-like molecular architecture, and a commercially available PLGA, were used for nanosphere formulation and compared to their macrophage uptake capacity. The nanosphere formulations labelled with loaded fluorescent dye Rhodamine B were further tested in mouse bone marrow-derived macrophages and in hepatocyte cell lines AML-12, HepG2. We found that nanospheres larger than 100 nm prepared using nanoprecipitation significantly enhanced distribution of fluorescent dye selectively into macrophages. No effects of nanospheres on cellular viability were observed. Additionally, no significant proinflammatory effect after macrophage exposure to nanospheres was detected as assessed by a determination of proinflammatory cytokines and mRNA. All experimental PLGA nanoformulations surpassed the nanospheres obtained with the commercially available polymer taken as a control in their capacity as macrophage-specific carriers. |
Author | Zbytovska, Jarmila Stefela, Alzbeta Pavek, Petr Boltnarova, Barbora Pavkova, Ivona Svacinova, Petra Kubackova, Jana Dittrich, Milan Holas, Ondrej Smekalova, Monika Scherman, Daniel Skoda, Josef |
AuthorAffiliation | 4 Centre National de la Recherche Scientifique (CNRS), 3 rue Michel-Ange, 75016 Paris, France; daniel.scherman@parisdescartes.fr 1 Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; boltnarb@faf.cuni.cz (B.B.); kubackja@faf.cuni.cz (J.K.); smekalomo@faf.cuni.cz (M.S.); svacp3aa@faf.cuni.cz (P.S.); dittrich@faf.cuni.cz (M.D.); Jarmila.Zbytovska@vscht.cz (J.Z.) 3 Department of Molecular Pathology and Biology, Faculty of Military Health Science, University of Defence in Brno, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; ivona.pavkova@unob.cz 5 Faculty of Chemical Technology, University of Chemistry and Technology, Technicka 5, 166 28 Prague, Czech Republic 2 Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; skodajo@faf.cuni.cz (J.S.); horvata1@faf.cuni |
AuthorAffiliation_xml | – name: 1 Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; boltnarb@faf.cuni.cz (B.B.); kubackja@faf.cuni.cz (J.K.); smekalomo@faf.cuni.cz (M.S.); svacp3aa@faf.cuni.cz (P.S.); dittrich@faf.cuni.cz (M.D.); Jarmila.Zbytovska@vscht.cz (J.Z.) – name: 3 Department of Molecular Pathology and Biology, Faculty of Military Health Science, University of Defence in Brno, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; ivona.pavkova@unob.cz – name: 4 Centre National de la Recherche Scientifique (CNRS), 3 rue Michel-Ange, 75016 Paris, France; daniel.scherman@parisdescartes.fr – name: 2 Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; skodajo@faf.cuni.cz (J.S.); horvata1@faf.cuni.cz (A.S.); pavek@faf.cuni.cz (P.P.) – name: 5 Faculty of Chemical Technology, University of Chemistry and Technology, Technicka 5, 166 28 Prague, Czech Republic |
Author_xml | – sequence: 1 givenname: Barbora orcidid: 0000-0003-2718-0745 surname: Boltnarova fullname: Boltnarova, Barbora organization: Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic – sequence: 2 givenname: Jana orcidid: 0000-0003-2472-6183 surname: Kubackova fullname: Kubackova, Jana organization: Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic – sequence: 3 givenname: Josef surname: Skoda fullname: Skoda, Josef organization: Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic – sequence: 4 givenname: Alzbeta surname: Stefela fullname: Stefela, Alzbeta organization: Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic – sequence: 5 givenname: Monika orcidid: 0000-0002-1051-4887 surname: Smekalova fullname: Smekalova, Monika organization: Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic – sequence: 6 givenname: Petra surname: Svacinova fullname: Svacinova, Petra organization: Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic – sequence: 7 givenname: Ivona surname: Pavkova fullname: Pavkova, Ivona organization: Department of Molecular Pathology and Biology, Faculty of Military Health Science, University of Defence in Brno, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic – sequence: 8 givenname: Milan surname: Dittrich fullname: Dittrich, Milan organization: Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic – sequence: 9 givenname: Daniel surname: Scherman fullname: Scherman, Daniel organization: Centre National de la Recherche Scientifique (CNRS), 3 rue Michel-Ange, 75016 Paris, France – sequence: 10 givenname: Jarmila surname: Zbytovska fullname: Zbytovska, Jarmila organization: Faculty of Chemical Technology, University of Chemistry and Technology, Technicka 5, 166 28 Prague, Czech Republic – sequence: 11 givenname: Petr orcidid: 0000-0001-8769-4196 surname: Pavek fullname: Pavek, Petr organization: Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic – sequence: 12 givenname: Ondrej surname: Holas fullname: Holas, Ondrej organization: Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33809764$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkc1PGzEQxS0EaijNjTNaiWsXxvZ-2BckGlqISNtIlLM18c4mGyXrxd4g5b-vIYCCZXks--lnv3lf2WHrWmLslMOFlBouW2wd5yChzPQBOxZQ6jTTmh_u7QdsGMIS4tBcqlx-YQMpFeiyyI7Z_XRye538wEBV8ifCQrcgTyHBOJOp66ntk99ovesWOKf0oSPb1I1NbvxmntzQqnkmv00etqGn9Td2VOMq0PCtnrDHXz__je7Syd_b8eh6ktqsVH3KVZHZGmqNNRRC2lwUWpAmhSgFELdSFwJmPJd5bW2mKlSzUguB0YDiIOQJG--4lcOl6XyzRr81DhvzeuD83KDvG7siA5GhLM4UFJAVaLWIqy7y2DOslMLIutqxus1sTZWNfj2uPkE_37TNwszds1EAQnAVAedvAO-eNhR6s3Qb30b_RuQQDWUKZFR936liJ0PwVH-8wMG8JGn2k4zys_1ffYjfc5P_AR69mTI |
CitedBy_id | crossref_primary_10_1002_smll_202401631 crossref_primary_10_1016_j_prp_2024_155295 crossref_primary_10_3390_ma14226915 crossref_primary_10_1016_j_ijbiomac_2022_12_158 crossref_primary_10_1016_j_jconrel_2023_02_023 crossref_primary_10_1007_s11095_023_03540_x crossref_primary_10_1016_j_jddst_2023_104357 crossref_primary_10_1016_j_mtbio_2023_100884 crossref_primary_10_2147_IJN_S358606 crossref_primary_10_30629_0023_2149_2023_101_9_10_454_466 crossref_primary_10_3390_pharmaceutics15061772 crossref_primary_10_1016_j_jddst_2024_105523 crossref_primary_10_1016_j_jlr_2022_100207 crossref_primary_10_3390_polym14061221 crossref_primary_10_1039_D4NR00680A crossref_primary_10_1111_imb_12900 crossref_primary_10_1016_j_ijpharm_2021_121202 crossref_primary_10_3390_pharmaceutics15010051 crossref_primary_10_2174_0929867330666230120163543 crossref_primary_10_3390_pharmaceutics14050930 crossref_primary_10_3390_ijms232214427 crossref_primary_10_3390_molecules27196487 crossref_primary_10_1039_D3TB01008B crossref_primary_10_1155_2022_5058121 crossref_primary_10_22159_ijap_2024v16i3_49242 crossref_primary_10_3389_fbioe_2021_707319 crossref_primary_10_3390_biology12010082 crossref_primary_10_3390_ijms24054333 crossref_primary_10_1016_j_jddst_2022_103435 |
Cites_doi | 10.1080/09205063.2020.1760699 10.1016/j.molimm.2017.02.018 10.1517/17425247.5.9.927 10.1021/nn2000756 10.3389/fimmu.2019.02852 10.1021/acs.molpharmaceut.9b01188 10.1002/dmrr.2486 10.1016/j.jconrel.2015.10.006 10.1002/jcp.26429 10.1016/j.colsurfb.2009.09.001 10.1016/j.ijpharm.2005.10.010 10.1111/bph.13472 10.1242/dmm.037887 10.1016/j.nantod.2015.06.006 10.1007/s00018-015-1995-y 10.1101/pdb.prot5080 10.1016/j.jsps.2013.12.002 10.1016/j.reactfunctpolym.2020.104550 10.1016/S0032-5910(99)00182-5 10.2478/acph-2020-0011 10.1016/j.intimp.2020.106849 10.1021/mp800051m 10.1016/j.ijpharm.2014.11.042 10.1371/journal.ppat.1002061 10.3390/pharmaceutics12121165 10.1166/jbn.2015.2017 10.2147/IJN.S254808 10.1021/acs.jmedchem.5b01891 10.3389/fimmu.2019.01084 10.1084/jem.185.9.1661 10.1038/s41419-020-2590-1 10.3389/fimmu.2019.01893 10.1016/j.ijpharm.2013.06.033 10.1016/j.nano.2016.01.013 10.3390/polym3031377 10.1016/j.nano.2014.02.011 10.1002/smll.201201390 10.1081/DDC-100102197 |
ContentType | Journal Article |
Copyright | 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | NPM AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 GNUQQ H8D H8G HCIFZ JG9 JQ2 KB. KR7 L7M LK8 L~C L~D M7P P64 PDBOC PIMPY PQEST PQQKQ PQUKI 5PM DOA |
DOI | 10.3390/nano11030749 |
DatabaseName | PubMed CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Materials Science Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database Materials Research Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials Materials Science Collection ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Materials Business File ProQuest Central Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering ProQuest Materials Science Collection Civil Engineering Abstracts Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection Ceramic Abstracts Biological Science Database ProQuest SciTech Collection METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic Corrosion Abstracts |
DatabaseTitleList | PubMed CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-4991 |
ExternalDocumentID | oai_doaj_org_article_035f8cab806046ac9246a965110ad88a 10_3390_nano11030749 33809764 |
Genre | Journal Article |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GrantInformation_xml | – fundername: Grantová Agentura, Univerzita Karlova grantid: 1586119 – fundername: European Cooperation in Science and Technology grantid: European Network on Understanding Gastrointestinal Absorption-related Processes (UNGAP) Cost action project (CA16205) – fundername: European Food Safety Authority grantid: CZ.02.1.01/0.0/0.0/16_019/0000841 – fundername: Ministerstvo Školství, Mládeže a Tělovýchovy grantid: SVV 260 401 |
GroupedDBID | 53G 5VS 8FE 8FG 8FH AADQD AAFWJ AAHBH ABJCF ADBBV AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU D1I GROUPED_DOAJ HCIFZ HYE I-F IAO ITC KB. KQ8 LK8 M7P MODMG M~E NPM OK1 PDBOC PGMZT PIMPY PROAC RIG RPM AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC DWQXO F28 FR3 GNUQQ H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PQEST PQQKQ PQUKI 5PM |
ID | FETCH-LOGICAL-c478t-1864cf0f9af0623c52692e9e8aa320e1c39620b1535fcc48da8b7922a00981023 |
IEDL.DBID | RPM |
ISSN | 2079-4991 |
IngestDate | Tue Oct 22 15:15:13 EDT 2024 Tue Sep 17 21:13:36 EDT 2024 Tue Nov 05 13:26:44 EST 2024 Fri Nov 22 03:04:11 EST 2024 Sat Sep 28 08:23:25 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | drug targeting macrophages PLGA nanoparticles inflammation liver nanospheres nanoprecipitation drug delivery hepatic disease |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c478t-1864cf0f9af0623c52692e9e8aa320e1c39620b1535fcc48da8b7922a00981023 |
ORCID | 0000-0003-2472-6183 0000-0002-1051-4887 0000-0003-2718-0745 0000-0001-8769-4196 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8002218/ |
PMID | 33809764 |
PQID | 2503204803 |
PQPubID | 2032354 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_035f8cab806046ac9246a965110ad88a pubmedcentral_primary_oai_pubmedcentral_nih_gov_8002218 proquest_journals_2503204803 crossref_primary_10_3390_nano11030749 pubmed_primary_33809764 |
PublicationCentury | 2000 |
PublicationDate | 20210316 |
PublicationDateYYYYMMDD | 2021-03-16 |
PublicationDate_xml | – month: 3 year: 2021 text: 20210316 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Nanomaterials (Basel, Switzerland) |
PublicationTitleAlternate | Nanomaterials (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Zhou (ref_18) 2020; 17 Hyrsova (ref_37) 2016; 173 Moghimi (ref_32) 2001; 53 Wang (ref_10) 2010; 5 Tammam (ref_27) 2015; 11 Alshamsan (ref_29) 2014; 22 Lunov (ref_33) 2011; 5 Kaplan (ref_16) 2020; 31 Park (ref_39) 2016; 12 Kumari (ref_14) 2010; 75 Hwang (ref_8) 2014; 30 Liu (ref_40) 2020; 11 Farokhzad (ref_13) 2008; 5 ref_15 Alexis (ref_11) 2008; 5 Grabowski (ref_12) 2015; 482 Weischenfeldt (ref_23) 2008; 2008 Smutny (ref_38) 2016; 59 Sica (ref_6) 2015; 72 (ref_28) 2012; 7 Gustafson (ref_30) 2015; 10 Bartneck (ref_36) 2014; 10 Snejdrova (ref_20) 2020; 70 Mohammadian (ref_7) 2018; 233 Park (ref_34) 2020; 15 Barichello (ref_21) 1999; 25 Zhang (ref_41) 2020; 88 Xie (ref_5) 2019; 12 Makadia (ref_19) 2011; 3 Murakami (ref_22) 2000; 107 Hickey (ref_26) 2015; 219 Meng (ref_24) 1997; 185 Li (ref_3) 2017; 85 ref_2 Duan (ref_35) 2013; 9 Li (ref_25) 2013; 453 ref_9 Sevostyanov (ref_17) 2020; 150 Gordon (ref_1) 2019; 10 ref_4 Owens (ref_31) 2006; 307 |
References_xml | – volume: 53 start-page: 283 year: 2001 ident: ref_32 article-title: Long-circulating and target-specific nanoparticles: Theory to practice publication-title: Pharm. Rev contributor: fullname: Moghimi – volume: 31 start-page: 1405 year: 2020 ident: ref_16 article-title: Development of a Biocompatible PLGA Polymers Capable to Release Thrombolytic Enzyme Prourokinase publication-title: J. Biomater. Sci. Polym. Ed. doi: 10.1080/09205063.2020.1760699 contributor: fullname: Kaplan – volume: 85 start-page: 222 year: 2017 ident: ref_3 article-title: The role of Kupffer cells in hepatic diseases publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2017.02.018 contributor: fullname: Li – volume: 5 start-page: 927 year: 2008 ident: ref_13 article-title: Nanotechnology for drug delivery: The perfect partnership publication-title: Expert Opin. Drug Deliv. doi: 10.1517/17425247.5.9.927 contributor: fullname: Farokhzad – volume: 5 start-page: 1657 year: 2011 ident: ref_33 article-title: Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line publication-title: ACS Nano doi: 10.1021/nn2000756 contributor: fullname: Lunov – ident: ref_9 doi: 10.3389/fimmu.2019.02852 – volume: 17 start-page: 1502 year: 2020 ident: ref_18 article-title: Effect of Manufacturing Variables and Raw Materials on the Composition-Equivalent PLGA Microspheres for 1-Month Controlled Release of Leuprolide publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.9b01188 contributor: fullname: Zhou – volume: 30 start-page: 96 year: 2014 ident: ref_8 article-title: Steroid-induced diabetes: A clinical and molecular approach to understanding and treatment publication-title: Diabetes Metab. Res. Rev. doi: 10.1002/dmrr.2486 contributor: fullname: Hwang – volume: 219 start-page: 536 year: 2015 ident: ref_26 article-title: Control of polymeric nanoparticle size to improve therapeutic delivery publication-title: J Control. Release doi: 10.1016/j.jconrel.2015.10.006 contributor: fullname: Hickey – volume: 233 start-page: 6425 year: 2018 ident: ref_7 article-title: Macrophage plasticity, polarization, and function in health and disease publication-title: J. Cell. Physiol. doi: 10.1002/jcp.26429 contributor: fullname: Mohammadian – volume: 75 start-page: 1 year: 2010 ident: ref_14 article-title: Biodegradable polymeric nanoparticles based drug delivery systems publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2009.09.001 contributor: fullname: Kumari – volume: 307 start-page: 93 year: 2006 ident: ref_31 article-title: Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2005.10.010 contributor: fullname: Owens – volume: 5 start-page: 487 year: 2010 ident: ref_10 article-title: In vivo biodistribution, anti-inflammatory, and hepatoprotective effects of liver targeting dexamethasone acetate loaded nanostructured lipid carrier system publication-title: Int. J. Nanomed. contributor: fullname: Wang – volume: 173 start-page: 1703 year: 2016 ident: ref_37 article-title: The pregnane X receptor down-regulates organic cation transporter 1 (SLC22A1) in human hepatocytes by competing for (“squelching”) SRC-1 coactivator publication-title: Br. J. Pharm. doi: 10.1111/bph.13472 contributor: fullname: Hyrsova – volume: 12 start-page: dmm037887 year: 2019 ident: ref_5 article-title: Glucocorticoids inhibit macrophage differentiation towards a pro-inflammatory phenotype upon wounding without affecting their migration publication-title: Dis. Models Mech. doi: 10.1242/dmm.037887 contributor: fullname: Xie – volume: 10 start-page: 487 year: 2015 ident: ref_30 article-title: Nanoparticle uptake: The phagocyte problem publication-title: Nano Today doi: 10.1016/j.nantod.2015.06.006 contributor: fullname: Gustafson – volume: 72 start-page: 4111 year: 2015 ident: ref_6 article-title: Macrophage polarization in pathology publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-015-1995-y contributor: fullname: Sica – volume: 2008 start-page: pdb.prot5080 year: 2008 ident: ref_23 article-title: Bone Marrow-Derived Macrophages (BMM): Isolation and Applications publication-title: Cold Spring Harb. Protoc. doi: 10.1101/pdb.prot5080 contributor: fullname: Weischenfeldt – volume: 22 start-page: 219 year: 2014 ident: ref_29 article-title: Nanoprecipitation is more efficient than emulsion solvent evaporation method to encapsulate cucurbitacin I in PLGA nanoparticles publication-title: Saudi Pharm. J. doi: 10.1016/j.jsps.2013.12.002 contributor: fullname: Alshamsan – volume: 150 start-page: 9 year: 2020 ident: ref_17 article-title: Biodegradable stent coatings on the basis of PLGA polymers of different molecular mass, sustaining a steady release of the thrombolityc enzyme streptokinase publication-title: React. Funct. Polym. doi: 10.1016/j.reactfunctpolym.2020.104550 contributor: fullname: Sevostyanov – volume: 107 start-page: 137 year: 2000 ident: ref_22 article-title: Further application of a modified spontaneous emulsification solvent diffusion method to various types of PLGA and PLA polymers for preparation of nanoparticles publication-title: Powder Technol. doi: 10.1016/S0032-5910(99)00182-5 contributor: fullname: Murakami – volume: 70 start-page: 63 year: 2020 ident: ref_20 article-title: Branched PLGA derivatives with tailored drug delivery properties publication-title: Acta Pharm. doi: 10.2478/acph-2020-0011 contributor: fullname: Snejdrova – volume: 88 start-page: 106849 year: 2020 ident: ref_41 article-title: Cyclic helix B peptide alleviates sepsis-induced acute lung injury by downregulating NLRP3 inflammasome activation in alveolar macrophages publication-title: Int. Immunopharmacol. doi: 10.1016/j.intimp.2020.106849 contributor: fullname: Zhang – volume: 5 start-page: 505 year: 2008 ident: ref_11 article-title: Factors affecting the clearance and biodistribution of polymeric nanoparticles publication-title: Mol. Pharm. doi: 10.1021/mp800051m contributor: fullname: Alexis – volume: 482 start-page: 75 year: 2015 ident: ref_12 article-title: Surface coating mediates the toxicity of polymeric nanoparticles towards human-like macrophages publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2014.11.042 contributor: fullname: Grabowski – ident: ref_2 doi: 10.1371/journal.ppat.1002061 – ident: ref_15 doi: 10.3390/pharmaceutics12121165 – volume: 11 start-page: 555 year: 2015 ident: ref_27 article-title: Biodegradable Particulate Carrier Formulation and Tuning for Targeted Drug Delivery publication-title: J. Biomed. Nanotechnol. doi: 10.1166/jbn.2015.2017 contributor: fullname: Tammam – volume: 15 start-page: 5783 year: 2020 ident: ref_34 article-title: Protein-Nanoparticle Interaction: Corona Formation and Conformational Changes in Proteins on Nanoparticles publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S254808 contributor: fullname: Park – volume: 59 start-page: 4601 year: 2016 ident: ref_38 article-title: 2-(3-Methoxyphenyl)quinazoline Derivatives: A New Class of Direct Constitutive Androstane Receptor (CAR) Agonists publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.5b01891 contributor: fullname: Smutny – volume: 7 start-page: 5577 year: 2012 ident: ref_28 article-title: The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles publication-title: Int. J. Nanomed. – ident: ref_4 doi: 10.3389/fimmu.2019.01084 – volume: 185 start-page: 1661 year: 1997 ident: ref_24 article-title: Lipopolysaccharide (LPS)-induced macrophage activation and signal transduction in the absence of Src-family kinases Hck, Fgr, and Lyn publication-title: J. Exp. Med. doi: 10.1084/jem.185.9.1661 contributor: fullname: Meng – volume: 11 start-page: 374 year: 2020 ident: ref_40 article-title: BIG1 controls macrophage pro-inflammatory responses through ARF3-mediated PI(4,5)P2 synthesis publication-title: Cell Death Dis. doi: 10.1038/s41419-020-2590-1 contributor: fullname: Liu – volume: 10 start-page: 1893 year: 2019 ident: ref_1 article-title: The Mononuclear Phagocytic System. Generation of Diversity publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.01893 contributor: fullname: Gordon – volume: 453 start-page: 506 year: 2013 ident: ref_25 article-title: The internalization of fluorescence-labeled PLA nanoparticles by macrophages publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2013.06.033 contributor: fullname: Li – volume: 12 start-page: 1365 year: 2016 ident: ref_39 article-title: Cellular distribution of injected PLGA-nanoparticles in the liver publication-title: Nanomed. Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2016.01.013 contributor: fullname: Park – volume: 3 start-page: 1377 year: 2011 ident: ref_19 article-title: Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier publication-title: Polymers doi: 10.3390/polym3031377 contributor: fullname: Makadia – volume: 10 start-page: 1209 year: 2014 ident: ref_36 article-title: Liposomal encapsulation of dexamethasone modulates cytotoxicity, inflammatory cytokine response, and migratory properties of primary human macrophages publication-title: Nanomed. Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2014.02.011 contributor: fullname: Bartneck – volume: 9 start-page: 1521 year: 2013 ident: ref_35 article-title: Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking publication-title: Small doi: 10.1002/smll.201201390 contributor: fullname: Duan – volume: 25 start-page: 471 year: 1999 ident: ref_21 article-title: Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method publication-title: Drug Dev. Ind. Pharm. doi: 10.1081/DDC-100102197 contributor: fullname: Barichello |
SSID | ssj0000913853 |
Score | 2.3694093 |
Snippet | Macrophages possess an innate ability to scavenge heterogenous objects from the systemic circulation and to regulate inflammatory diseases in various organs... |
SourceID | doaj pubmedcentral proquest crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 749 |
SubjectTerms | Acids Aqueous solutions Bone marrow Cell lines Cell viability Cytokines Drug delivery Drug delivery systems Dyes Efficiency Emulsification Evaporation Fluorescent dyes Fluorescent indicators Glycolic acid IL-1β Inflammation Inflammatory diseases Lipids Macrophages Molecular structure Molecular weight mRNA Nanoparticles nanoprecipitation Nanospheres Nanotechnology Organs Pathogens PLGA Polylactide-co-glycolide Polymers Rhodamine |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LS8NAEMcH7UkP4ttolT3oMbjZzWNzbK1V8IGggrew3YcVJJU-Dn57Z5JaUhG8CDklgSwzycx_yOxvAE59lPsEpWhopU9CjH46VC62obWRspE2fODoj-71Y3b_onqXhMlZjPqinrAaD1wb7pzLxCujB4ooL6k2WC-kOk9RJ3BtlaqlEc8axVQVg_NIYiKqO90l1vXnpS5HEc3Uygib2chBFar_N335s02ykXf6m7AxF4ysUy90C1ZcuQ3rDYzgDtw83F51WBfzkWUYLUcTQgW4CdN4sIcRquIpu9M0q2uI0SOsRs77N8N649kr67l3as34ZDW7fBee-5dPF9fhfEhCaOJMTcNIpbHx3Ofac5QyhiaGC5c7pbUU3EVG5qngAwxsiTcmVlarQZYLoYkkStyGPWiVo9IdAIt0SjtPfUJIfC1EboxILWo0mRlrvQrg7NtsxUfNwiiwhiDzFk3zBtAlmy7uIYJ1dQL9Wsz9Wvzl1wDa3x4p5p_VpEC9Jok0zGUA-7VzFk_BWpujtooDyJbctrSM5Svl27ACapNoRqlz-B_rPoI1QW0v1PKXtqE1Hc_cMaxO7OykekW_AHfT6WU priority: 102 providerName: Directory of Open Access Journals |
Title | PLGA Based Nanospheres as a Potent Macrophage-Specific Drug Delivery System |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33809764 https://www.proquest.com/docview/2503204803 https://pubmed.ncbi.nlm.nih.gov/PMC8002218 https://doaj.org/article/035f8cab806046ac9246a965110ad88a |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9RADLbYnuCAgPIIlGoO5ZjuZPKaHNtuS6W2aCVA4hY582hXapNqHwf-PfYkqXYRJ6Sc8lBGtmN_Vr75DHDkk8rnBEVjm_o8puyHsXaZja1NtE3QyMbxH93L7-W3X3p2zjI5-bgXJpD2TbM4bu8fjtvFXeBWPj6Y6cgTm85vzhjkUGmaTmBC2HCrRQ_pt0pSqkE9yT2lln7aYtslPE6rzFgklJoySUU426lEQbD_Xyjzb7LkVvW5eAUvB9goTvrlvYZnrn0DL7bEBPfhan799UScUlWygnJmt2LBALcSSIeYd4SN1-IGeWLXHeWQOAye9wsjZsvNrZi5eyZo_Ba9gvlb-Hlx_uPsMh5GJcQmK_U6TnSRGS99hV4SoDE8N1y5ymnEVEmXmLQqlGwoveXemExb1E1ZKYWsJ8rqDe9gr-1a9wFEggXvP_U5C-OjUpUxqrCE1NLSWOt1BF9Gs9WPvSJGTZ0EW7retnQEp2zTp3tYxzqc6Ja39eDNWtJ6tMFGs4ZPgYa6wQKrglCgRKs1RnAweqQePq5VTagtZb1hmUbwvnfO01tG50ZQ7rhtZxm7VyjKgqz2EFUf__vJT_BcMeOF2X7FAeytlxv3GSYruzkMrf5hCNQ_0yHrfw |
link.rule.ids | 230,315,729,782,786,866,887,2107,27934,27935,53802,53804 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTtxAEC0BOQQOIQuLE0j6EI5m2u2tfQQGmIgZNFJAys1q9wIjgY1mOfD3qfKCZhAnJJ_cttzq5656JT-_AvjtgszFSEV9E7rYx-infGkj4xsTSBMozQtLX3QHf9Prf7J_TjY5cfcvTC3a18XkuHx4PC4n97W28ulR9zqdWG88OiOSg6mptw4fcL9ysVSk1wE4C0LMQo3MPcSivleqsgqooVYakU0olmUc03C0kotqy_63eOZrueRS_rnYfufMP8OnlnCyk2b4C6zZ8itsLdkQfoOr8fDyhJ1iPjMMo201I6sBO2MKDzaukFXP2UhRr697jD5-3bLeTTTrTxd3rG8fSNrxzBrv8x24vTi_ORv4bZMFX0epnPuBTCLtuMuU40iFNHUcFzazUqlQcBvoMEsELzAwxk7rSBolizQTQpETKfk-7MJGWZV2H1igEvpz1cVkqa-EyLQWiUGOF6baGCc9OOqWO39qvDRyrEEIoXwZIQ9OCYuXa8gBuz5RTe_ydjVzjvORWhWS3H8SpbGOTFSWIH_kykipPDjokMzbbTnLke-F5FTMQw_2GlBfntK9FB6kK3CvTGN1BFGuDblbVL-_-85f8HFwMxrmwz_XVz9gU5BuhjSDyQFszKcLewjrM7P4Wb_m_wGmaQAY |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RIiE48G4xFNgDHF2v1469PrZNQ1EfigRI3KzxPtJIrR3lceDfM2M7UYI4geSTvZZX-61nvpE_fwPwyceFHxAVDW3iByFFPwy1S21obaxtjEZWjr_oXnzLb37q4Tnb5GxafbWifVNNj-u7--N6ettqK2f3JlrrxKLx9RmTHEpN0cz6aA8e0jsr061CvQ3CRZxQJuqk7gkV9lGNdRNzU608ZatQKs0kpeJ0Jx-1tv1_45p_Sia3ctDo2X_M_jk87YmnOOmGvIAHrn4JT7bsCF_B5fjqy4k4pbxmBUXdZsGWA24hkA4xbohdL8U1cs-vW4pCYdu63k-NGM5XEzF0dyzx-CU6D_TX8GN0_v3sIuybLYQmzfUyjHWWGi99gV4SJTLceVy5wmnEREkXm6TIlKwoQA68Mam2qKu8UArZkZT9Hw5gv25q9wZEjBn_weoHbK2PShXGqMwS10tyY63XAXxeL3k56zw1SqpFGKVyG6UAThmPzRh2wm5PNPNJ2a9oKWk-2mCl2QUoQ0P1ZIZFRjxSotUaAzhao1n2r-eiJN6XsGOxTAI47IDdPGW9MQLIdyDfmcbuFUK6NebukX37z3d-hEfj4ai8-npz-Q4eK5bPsHQwO4L95Xzl3sPewq4-tDv9N89yApg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PLGA+Based+Nanospheres+as+a+Potent+Macrophage-Specific+Drug+Delivery+System&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.date=2021-03-16&rft.pub=MDPI+AG&rft.eissn=2079-4991&rft.volume=11&rft.issue=3&rft.spage=749&rft_id=info:doi/10.3390%2Fnano11030749&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon |