Deformation properties of subfreezing glacier ice: Role of crystal size, chemical impurities, and rock particles inferred from in situ measurements

To improve understanding of the deformation properties of subfreezing polycrystalline glacier ice and, in particular the role of crystal size, chemical impurities, and rock particle impurities, we analyze in situ strain rates of the basal layers of Meserve Glacier, Antarctica. Strain rates were moni...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Geophysical Research. B Vol. 105; no. B12; pp. 27895 - 27915
Main Authors: Cuffey, K. M., Conway, H., Gades, A., Hallet, B., Raymond, C. F., Whitlow, S.
Format: Journal Article
Language:English
Published: Washington, DC Blackwell Publishing Ltd 10-12-2000
American Geophysical Union
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract To improve understanding of the deformation properties of subfreezing polycrystalline glacier ice and, in particular the role of crystal size, chemical impurities, and rock particle impurities, we analyze in situ strain rates of the basal layers of Meserve Glacier, Antarctica. Strain rates were monitored on the walls of a subglacial tunnel (where down flow shear stress is relatively uniform) and ice properties were measured (texture, fabric, and impurity content). We propose a simple empirical model describing strain rate variations due to variations in crystal size and impurity content, and we use all relevant Meserve data to constrain model parameters. We conclude that there is a direct dependence of strain rate on crystal size, which reflects an important role for a grain‐size‐sensitive deformation mechanism such as grain boundary sliding or diffusion. Chemical impurities are found to enhance the grain‐size‐sensitive deformation and are found to be an important control on strain rate variations in the very impure ices of Meserve Glacier. However, the per molar sensitivity of strain rate to chemical impurity content is shown to be very low, such that in the ice age ices of the Greenland ice sheet there is probably an immeasurable contribution of chemical impurities to strain rate enhancement, though we cannot exclude chemical enhancements as high as 1.3 there. Our analyses detect no direct rheologic effect of rock particles in the Meserve ices, which suggests that rock content is not directly responsible for the low viscosity of dirty basal layers.
AbstractList To improve understanding of the deformation properties of subfreezing polycrystalline glacier ice and, in particular the role of crystal size, chemical impurities, and rock particle impurities, we analyze in situ strain rates of the basal layers of Meserve Glacier, Antarctica. Strain rates were monitored on the walls of a subglacial tunnel (where down flow shear stress is relatively uniform) and ice properties were measured (texture, fabric, and impurity content). We propose a simple empirical model describing strain rate variations due to variations in crystal size and impurity content, and we use all relevant Meserve data to constrain model parameters. We conclude that there is a direct dependence of strain rate on crystal size, which reflects an important role for a grain‐size‐sensitive deformation mechanism such as grain boundary sliding or diffusion. Chemical impurities are found to enhance the grain‐size‐sensitive deformation and are found to be an important control on strain rate variations in the very impure ices of Meserve Glacier. However, the per molar sensitivity of strain rate to chemical impurity content is shown to be very low, such that in the ice age ices of the Greenland ice sheet there is probably an immeasurable contribution of chemical impurities to strain rate enhancement, though we cannot exclude chemical enhancements as high as 1.3 there. Our analyses detect no direct rheologic effect of rock particles in the Meserve ices, which suggests that rock content is not directly responsible for the low viscosity of dirty basal layers.
Author Conway, H.
Raymond, C. F.
Whitlow, S.
Cuffey, K. M.
Hallet, B.
Gades, A.
Author_xml – sequence: 1
  givenname: K. M.
  surname: Cuffey
  fullname: Cuffey, K. M.
– sequence: 2
  givenname: H.
  surname: Conway
  fullname: Conway, H.
– sequence: 3
  givenname: A.
  surname: Gades
  fullname: Gades, A.
– sequence: 4
  givenname: B.
  surname: Hallet
  fullname: Hallet, B.
– sequence: 5
  givenname: C. F.
  surname: Raymond
  fullname: Raymond, C. F.
– sequence: 6
  givenname: S.
  surname: Whitlow
  fullname: Whitlow, S.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=857925$$DView record in Pascal Francis
BookMark eNp9kV1rFDEUhoNUcK298wcEBK92NF8zyXhnW91aqkJR9jJksyc1dmYyPZlBt3_DP2yWLcUrrw4HnveB857n5GhIAxDykrM3nIn2rWCMXZ62jAnNn5CF4HVTCcHEEVkwrkzFhNDPyEnOPwvIVN0oxhfkzzmEhL2bYhroiGkEnCJkmgLN8yYgwH0cbuhN53wEpNHDO3qdOtgDHnd5ch3N8R6W1P-APvqyxn6cMe4tS-qGLcXkb-noitd3xRyHAIiwpQFTX7YSn2bag8szQg_DlF-Qp8F1GU4e5jH5_vHDt7OL6urr6tPZ-6vKK22aqgbwimm18WB8KxUzrTdaSvDaKLWpnWw3W-2EZAUTUvigggmh3hpluJJBHpPXB2-5-26GPNk-Zg9d5wZIc7ZcG8NbVRdweQA9ppwRgh0x9g53ljO7L9_-W37BXz14XS6FBHSDj_kxY2rdir1UHqhfsYPdf432cnV9ykX5WUlVh1TME_x-TDm8tY2WurbrLyu7-rxeN_xC2HP5F--JpUE
CitedBy_id crossref_primary_10_1029_2000JB900270
crossref_primary_10_3189_172756405781813618
crossref_primary_10_1029_2002JB001842
crossref_primary_10_5194_tc_18_1053_2024
crossref_primary_10_1103_RevModPhys_78_695
crossref_primary_10_5331_bgr_19R01
crossref_primary_10_1016_j_quascirev_2009_03_005
crossref_primary_10_1017_jog_2018_47
crossref_primary_10_3189_002214311797409703
crossref_primary_10_1016_j_quascirev_2020_106526
crossref_primary_10_1002_ggge_20246
crossref_primary_10_1029_2006JF000600
crossref_primary_10_5194_tc_15_5717_2021
crossref_primary_10_3189_002214311795306619
crossref_primary_10_1080_14786435_2023_2296656
crossref_primary_10_1017_jog_2019_29
crossref_primary_10_1016_j_jsg_2013_11_003
crossref_primary_10_1016_j_crhy_2004_06_002
crossref_primary_10_1007_s00161_005_0006_1
crossref_primary_10_3389_feart_2019_00020
crossref_primary_10_1063_1_2212395
crossref_primary_10_3189_172756403781815564
crossref_primary_10_1039_D2CP02277J
crossref_primary_10_1017_jog_2020_95
crossref_primary_10_3389_feart_2020_615613
crossref_primary_10_1029_2006JF000698
crossref_primary_10_3189_002214309788608688
crossref_primary_10_1017_jog_2022_19
crossref_primary_10_1021_acs_jpcc_1c05461
crossref_primary_10_3189_002214308785836959
crossref_primary_10_1029_2001JB000621
crossref_primary_10_1016_S0012_821X_03_00364_9
crossref_primary_10_3189_172756503781830584
crossref_primary_10_3189_2015JoG14J133
crossref_primary_10_3189_172756505781829287
crossref_primary_10_1002_2014RG000453
crossref_primary_10_3189_172756502781831359
crossref_primary_10_3189_2014JoG13J132
crossref_primary_10_3189_172756402781817301
crossref_primary_10_1046_j_1365_246X_2002_01702_x
crossref_primary_10_1016_j_btre_2014_06_005
crossref_primary_10_1016_j_polar_2013_11_003
crossref_primary_10_1017_jog_2016_105
crossref_primary_10_1002_2014JF003178
crossref_primary_10_1017_jog_2024_22
crossref_primary_10_1002_gamm_201490025
Cites_doi 10.1029/2000JB900270
10.1017/S0260305500013501
10.1088/0034-4885/58/1/003
10.1029/92JE02326
10.1016/0165-232X(91)90058-O
10.1017/S0022143000029841
10.1029/96JB00412
10.1029/97JC00165
10.1017/S0022143000012417
10.1017/S0260305500005358
10.1017/S0260305500013458
10.1017/S0022143000012211
10.1038/physci230077a0
10.1017/S0022143000003658
10.1017/S026030550000433X
10.1017/S0022143000022309
10.1016/0036-9748(70)90176-6
10.1017/S0022112097006022
10.1098/rspa.1955.0066
10.1016/0021-9673(92)80334-Q
10.3189/S0260305500004316
10.1029/97JC01266
10.1029/RG010i001p00287
10.1016/0165-232X(94)90027-2
10.1021/j100244a014
10.1017/S0260305500006947
10.3189/002214399793377185
10.1016/0012-821X(94)90173-2
10.1017/S0260305500010168
10.1017/S0022143000023091
10.1017/S0022143000012132
10.1016/0165-232X(89)90014-1
10.1098/rspa.1957.0026
10.1017/S0022143000010364
10.1029/96JC03365
10.1016/S1359-6462(97)00246-7
10.1017/S0022143000005396
10.1016/0165-232X(84)90031-4
10.1130/0091-7613(2000)28<351:EACGB>2.0.CO;2
10.1029/1999GL900096
10.1029/98RG02638
10.1017/S0022143000009321
10.1126/science.240.4851.493
10.1029/1998GL900289
10.1017/S0022143000033645
10.1098/rspa.1971.0132
ContentType Journal Article
Copyright Copyright 2000 by the American Geophysical Union.
2001 INIST-CNRS
Copyright_xml – notice: Copyright 2000 by the American Geophysical Union.
– notice: 2001 INIST-CNRS
DBID BSCLL
IQODW
AAYXX
CITATION
7UA
C1K
DOI 10.1029/2000JB900271
DatabaseName Istex
Pascal-Francis
CrossRef
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitle CrossRef
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef
Water Resources Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Oceanography
Geology
Astronomy & Astrophysics
Physics
EISSN 2156-2202
EndPage 27915
ExternalDocumentID 10_1029_2000JB900271
857925
JGRB12456
ark_67375_WNG_GMWW61H2_D
Genre article
GeographicLocations Antarctica
GroupedDBID 12K
1OC
24P
AAXRX
ACAHQ
ACCZN
ACXBN
AEIGN
AEUYR
AFFPM
AHBTC
AITYG
ALMA_UNASSIGNED_HOLDINGS
BENPR
BRXPI
BSCLL
DCZOG
DRFUL
DRSTM
DU5
GUQSH
HCIFZ
LATKE
LITHE
LOXES
LUTES
LYRES
M2O
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
P-X
WHG
WIN
WXSBR
XSW
~OA
~~A
08R
7XC
88I
8FE
8FH
8G5
8R4
8R5
AANLZ
ABUWG
ALUQN
AMYDB
ATCPS
BBNVY
BHPHI
BKSAR
BPHCQ
DWQXO
GNUQQ
IQODW
M2P
Q2X
RNS
AAYXX
CITATION
7UA
C1K
ID FETCH-LOGICAL-c4786-5eec4074bce8c934089c8733ec7844b5a39bd7a230c40232cf4f8ff5d848143f3
ISSN 0148-0227
IngestDate Sat Aug 17 02:54:27 EDT 2024
Thu Nov 21 21:06:47 EST 2024
Sun Oct 22 16:08:49 EDT 2023
Sat Aug 24 00:51:16 EDT 2024
Wed Oct 30 09:56:36 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue B12
Keywords Polycrystalline ice
Measurement in situ
Ice crystals
Glacier
Impurity
Size
Ice sheet
Strain rate
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4786-5eec4074bce8c934089c8733ec7844b5a39bd7a230c40232cf4f8ff5d848143f3
Notes ark:/67375/WNG-GMWW61H2-D
ArticleID:2000JB900271
istex:7FF92C0C4BBFBB9948C7C3B96D3A0B2E8450F7F5
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2000JB900271
PQID 17881945
PQPubID 23462
PageCount 21
ParticipantIDs proquest_miscellaneous_17881945
crossref_primary_10_1029_2000JB900271
pascalfrancis_primary_857925
wiley_primary_10_1029_2000JB900271_JGRB12456
istex_primary_ark_67375_WNG_GMWW61H2_D
PublicationCentury 2000
PublicationDate 10 December 2000
PublicationDateYYYYMMDD 2000-12-10
PublicationDate_xml – month: 12
  year: 2000
  text: 10 December 2000
  day: 10
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
PublicationTitle Journal of Geophysical Research. B
PublicationTitleAlternate J. Geophys. Res
PublicationYear 2000
Publisher Blackwell Publishing Ltd
American Geophysical Union
Publisher_xml – name: Blackwell Publishing Ltd
– name: American Geophysical Union
References Peltier, W. R., Post glacial variations in the level of the sea: Implications for climate dynamics and solid-earth geophysics, Rev. Geophys., 36, 603-689, 1998.
Cuffey, K. M., T. Thorsteinsson, andE. D. Waddington, A renewed argument for crystal size control of ice sheet strain rates,J. Geophys. Res., 105B122000.
Mayewski, P. A., L. D. Meeker, M. S. Twickler, S. Whitlow, Q. Yang, W. B. Lyons, M. Prentice, Major features and forcing of high-latitude northern hemisphere atmospheric circulation using a 110,000-year-long glaciochemical series, J. Geophys. Res., 102, 26,345-26,366, 1997.
Pimienta, P., P. Duval, V. Y. Lipenkov, Mechanical behavior of ice along the 2040 m Vostok core, Antarctica, Ann. Glaciol., 10, 137-140, 1988.
Azuma, N., A. Higashi, Formation processes of ice fabric pattern in ice sheets, Ann. Glaciol., 6, 130-134, 1985.
Buck, C. F., P. A. Mayewski, M. J. Spencer, S. Whitlow, M. S. Twickler, D. Barrett, Determination of major ions in snow and ice cores by ion chromatography, J. Chromatogr., 594, 225-228, 1992.
Nye, J. P., The distribution of stress and velocity in glaciers and ice sheets, Proc. R. Soc. London, Ser. A, 259, 113-333, 1957.
Glen, J. W., The creep of polycrystalline ice, Proc. R. Soc. London, Ser. A, 228, 519-538, 1955.
van derVeen, C. J., I. M. Whillans, Development of fabric in ice, Cold Reg. Sci. Technol., 22, 171-195, 1994.
Riley, N. W., G. Noll, J. W. Glen, The creep of NaCl-doped ice monocrystals, J. Glaciol., 21, 501-507, 1978.
Alley, R. B., Fabrics in polar ice sheets: Development and prediction, Science, 240, 493-495, 1988.
Paterson, W. S. B., Why ice age ice is sometimes "soft", Cold Reg. Sci. Technol., 20, 75-98, 1991.
Azuma, N., A flow law for anisotropic ice and its application to ice sheets, Earth Planet. Sci. Lett., 128, 601-614, 1994.
Barnes, P., D. Tabor, J. C. F. Walker, The friction and creep of polycrystalline ice, Proc. R. Soc. London, Ser. A, 324, 127-155, 1971.
Jones, S. J., H. A. M. Chew, Effect of sample and grain size on the compressive strength of ice, Ann. Glaciol., 4, 129-132, 1983.
Azuma, N., K. Goto-Azuma, An anisotropic flow law for ice-sheet ice and its implications, Ann. Glaciol., 23, 202-208, 1996.
Budd, W. F., T. H. Jacka, A review of ice theology for ice sheet modelling, Cold Reg. Sci. Technol., 16, 107-144, 1989.
Holdsworth, G., C. Bull, The flow law of cold ice: Investigations on Meserve Glacier, Antarctica, IAHS Publ., 86, 204-216, 1970.
Cuffey, K. M., H. Conway, B. Hallet, A. M. Gades, C. F. Raymond, Interfacial water in polar glaciers and glacier sliding at -17°C, Geophys. Res. Lett., 26, 751-754, 1999.
Dash, J. G., H. Fu, J. Wettlaufer, The premelting of ice and its environmental consequences, Rep. Prog. Phys., 58, 115-167, 1995.
Paren, J. G., J. C. P. Walker, Influence of limited solubility on the electrical and mechanical properties of ice, Nature Phys. Sci., 230, 77-79, 1971.
Weertman, J., General theory of water flow at the base of a glacier or ice sheet, Rev. Geophys., 10, 287-333, 1972.
De La Chapelle, S., H. Milsch, O. Castelnau, P. Duval, Compressive creep of ice containing a liquid intergranular phase: rate-controlling processes in the dislocation creep regime, Geophys. Res. Lett., 26, 251-254, 1999.
Echelmeyer, K. A., W. D. Harrison, C. Larsen, J. E. Mitchell, The role of the margins in the dynamics of an active ice stream, J. Glaciol., 40, 527-538, 1994.
Nakamura, T., S. J. Jones, Softening effect of dissolved hydrogen chloride in ice crystals, Scr. Metall., 4, 123-126, 1970.
Underwood, E. E., Quantitative Stereology, Addison-Wesley-Longman, Reading, Mass., 1970.
Shoji, H., C. C. Langway Jr., Flow-law parameters of the Dye 3, Greenland, deep ice core, Ann. Glaciol., 10, 146-150, 1988.
Duval, P., M. F. Ashby, I. Anderman, Rate-controlling processes in the creep of polycrystalline ice, J. Phys. Chem., 87, 4066-4074, 1983.
Duval, P., H. LeGac, Does the permanent creep rate of polycrystalline ice increase with crystal size?, J. Glaciol., 25, 151-157, 1980.
Press, W. H., S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in FORTTRAN: The Art of Scientific Computing2nd ed., 963, Cambridge Univ. Press, New York, 1992.
Cuffey, K. M., H. Conway, A. M. Gades, B. Hallet, R. Lorrain, J. P. Severinghaus, E. J. Steig, B. Vaughn, J. W. C. White, Entrainment at cold glacier beds, Geology, 28, 351-354, 2000.
Dahl-Jensen, D., N. S. Gundestrup, Constitutive properties of ice at Dye 3, Greenland, IAHS Publ., 170, 31-43, 1987.
Hooke, R. L., B. H. Dahlin, M. T. Kauper, Creep of ice containing dispersed fine sand, J. Glaciol., 11, 327-36, 1972.
Fisher, D. A., Enhanced flow of Wisconsin ice related to solid conductivity through strain history and recrystallization, IAHS Publ., 170, 45-51, 1987.
Koerner, R. M., D. A. Fisher, Discontinuous flow, ice texture, and dirt content in the basal layers of the Devon Island ice cap, J. Glaciol., 23, 209-222, 1979.
Alley, R. B., Flow-law hypotheses for ice sheet modelling, J. Glaciol., 38, 245-256, 1992.
Alley, R. B., J. H. Perepezko, C. R. Bentley, Grain growth in polar ice, II, Application, J. Glaciol., 32, 425-433, 1986.
Echelmeyer, K., W. Zhongxiang, Direct observations of basal sliding and deformation of basal drift at sub-freezing temperatures, J. Glaciol., 33, 83-98, 1987.
Dahl-Jensen, D. J., T. Thorsteinsson, R. B. Alley, H. Shoji, Flow properties of the ice from the Greenland Ice Core Project ice core: The reason for folds?, J. Geophys. Res., 102, 26,831-26,840, 1997.
Lipenkov, V. Y., N. I. Barkov, P. Duval, P. Pimienta, Crystalline texture of the 2083 m ice core at Vostok Station, Antarctica, J. Glaciol., 35, 392-398, 1989.
Menke, W., Geophysical Data Analysis: Discrete Inverse Theory, Academic, San Diego, Calif., 1989.
Goldsby, D. L., D. L. Kohlstedt, Grain boundary sliding in fine-grained Ice I, Scr. Mater., 37, 1399-1406, 1997.
Jacka, T. H., Laboratory studies on relationships between ice crystal size and flow rate, Cold Reg. Sci. Technol., 10, 31-42, 1984.
Wettlaufer, J. S., M. G. Worster, H. E. Huppert, Natural convection during solidification of an alloy from above with application to the evolution of sea ice, J. Fluid Mech., 344, 291-316, 1997.
Thorsteinsson, T., E. D. Waddington, K. C. Taylor, R. B. Alley, D. D. Blankenship, Strain rate enhancement at Dye 3, Greenland, J. Glaciol., 45, 338-345, 1999.
Anderton, P. W., Ice fabrics and petrography, Meserve Glacier, Antarctica, J. Glaciol., 13, 285-306, 1974.
Etheridge, D. M., Dynamics of the Law Dome ice cap, Antarctica, as found from bore-hole measurements, Ann. Glaciol., 12, 46-50, 1989.
Jun, L., T. H. Jacka, W. F. Budd, Deformation rates in combined compression and shear for ice which is initially isotropic and after the development of strong anisotropy, Ann. Glaciol., 23, 247-252, 1996.
Castelnau, O., P. Duval, R. A. Lebensohn, G. R. Canova, Viscoplastic modeling of texture development in polycrystalline ice with a self-consistent approach: Comparison with bound estimates, J. Geophys Res., 101, 13,851-13,868, 1996.
Lliboutry, L., P. Duval, Various isotropic and anisotropic ices found in glaciers and polar ice caps and their corresponding rheologies, Ann. Geophys., 3, 207-224, 1985.
Durham, W. B., S. H. Kirby, L. A. Stern, Effects of dispersed particulates on the rheology of water ice at planetary conditions, J. Geophys. Res., 97, 20,883-20,897, 1992.
Gow, A. J., D. A. Meese, R. B. Alley, J. J. Fitzpatrick, S. Anandakrishnan, G. A. Woods, B. C. Elder, Physical and structural properties of the Greenland Ice Sheet Project 2 ice core: A review, J. Geophys. Res., 102, 26,559-26,576, 1997.
Kamb, W. B., Refraction corrections for universal stage measurements, I, Uniaxial crystals, Am. Mineral., 47, 227-245, 1962.
Paterson, W. S. B., The Physics of Glaciers3rd ed., 480, Pergamon, Tarrytown, N.Y., 1994.
Fisher, D. A., R. M. Koerner, On the special rheological properties of ancient microparticle-laden Northern Hemisphere ice as derived from bore-hole and core measurements, J. Glaciol., 32, 501-510, 1986.
1987; 33
1974; 13
1986; 32
1983; 4
1971; 324
1999; 45
1994; 22
1974
1970
1992; 97
1996; 101
1970; 4
1997; 102
1997; 344
1979; 23
1992; 594
1978; 21
1984; 10
1962; 47
1972; 10
1980
1989; 35
1972; 11
1996; 23
1989
1980; 25
2000; 28
1985; 3
1995; 58
1999; 26
1985; 6
1988; 10
1994
1988; 240
1992
1992; 38
1987; 170
1958
1994; 40
1994; 128
1989; 12
1957; 259
2000; 105
1997; 37
1955; 228
1991; 20
1983; 87
1970; 86
1971; 230
1989; 16
1969
1998; 36
Kamb W. B. (e_1_2_1_39_1) 1962; 47
Press W. H. (e_1_2_1_53_1) 1992
e_1_2_1_60_1
Ashby M. F. (e_1_2_1_6_1) 1969
Ashby M. F. (e_1_2_1_7_1) 1980
e_1_2_1_20_1
e_1_2_1_41_1
e_1_2_1_24_1
e_1_2_1_22_1
e_1_2_1_49_1
e_1_2_1_26_1
e_1_2_1_47_1
Menke W. (e_1_2_1_45_1) 1989
e_1_2_1_31_1
e_1_2_1_54_1
e_1_2_1_8_1
e_1_2_1_56_1
e_1_2_1_12_1
e_1_2_1_35_1
e_1_2_1_4_1
e_1_2_1_10_1
e_1_2_1_33_1
e_1_2_1_52_1
e_1_2_1_2_1
e_1_2_1_16_1
e_1_2_1_14_1
e_1_2_1_37_1
e_1_2_1_58_1
Holdsworth G. (e_1_2_1_34_1) 1970; 86
e_1_2_1_42_1
e_1_2_1_40_1
e_1_2_1_23_1
e_1_2_1_46_1
e_1_2_1_21_1
e_1_2_1_44_1
e_1_2_1_27_1
e_1_2_1_25_1
e_1_2_1_48_1
e_1_2_1_29_1
Fisher D. A. (e_1_2_1_28_1) 1987; 170
Lliboutry L. (e_1_2_1_43_1) 1985; 3
Paterson W. S. B. (e_1_2_1_50_1) 1994
e_1_2_1_30_1
e_1_2_1_55_1
e_1_2_1_5_1
Dahl‐Jensen D. (e_1_2_1_18_1) 1987; 170
Underwood E. E. (e_1_2_1_57_1) 1970
e_1_2_1_3_1
e_1_2_1_13_1
e_1_2_1_51_1
e_1_2_1_11_1
e_1_2_1_32_1
e_1_2_1_17_1
e_1_2_1_38_1
e_1_2_1_15_1
e_1_2_1_36_1
e_1_2_1_59_1
e_1_2_1_9_1
e_1_2_1_19_1
References_xml – volume: 97
  start-page: 20,883
  year: 1992
  end-page: 20,897
  article-title: Effects of dispersed particulates on the rheology of water ice at planetary conditions
  publication-title: J. Geophys. Res.
– volume: 170
  start-page: 31
  year: 1987
  end-page: 43
  article-title: Constitutive properties of ice at Dye 3, Greenland
  publication-title: IAHS Publ.
– volume: 259
  start-page: 113
  year: 1957
  end-page: 333
  article-title: The distribution of stress and velocity in glaciers and ice sheets
  publication-title: Proc. R. Soc. London, Ser. A
– volume: 28
  start-page: 351
  year: 2000
  end-page: 354
  article-title: Entrainment at cold glacier beds
  publication-title: Geology
– volume: 86
  start-page: 204
  year: 1970
  end-page: 216
  article-title: The flow law of cold ice: Investigations on Meserve Glacier, Antarctica
  publication-title: IAHS Publ.
– volume: 324
  start-page: 127
  year: 1971
  end-page: 155
  article-title: The friction and creep of polycrystalline ice
  publication-title: Proc. R. Soc. London, Ser. A
– volume: 35
  start-page: 392
  year: 1989
  end-page: 398
  article-title: Crystalline texture of the 2083 m ice core at Vostok Station, Antarctica
  publication-title: J. Glaciol.
– year: 1989
– volume: 40
  start-page: 527
  year: 1994
  end-page: 538
  article-title: The role of the margins in the dynamics of an active ice stream
  publication-title: J. Glaciol.
– volume: 6
  start-page: 130
  year: 1985
  end-page: 134
  article-title: Formation processes of ice fabric pattern in ice sheets
  publication-title: Ann. Glaciol.
– start-page: 113
  year: 1969
  end-page: 131
– volume: 26
  start-page: 751
  year: 1999
  end-page: 754
  article-title: Interfacial water in polar glaciers and glacier sliding at ‐17°C
  publication-title: Geophys. Res. Lett.
– volume: 170
  start-page: 45
  year: 1987
  end-page: 51
  article-title: Enhanced flow of Wisconsin ice related to solid conductivity through strain history and recrystallization
  publication-title: IAHS Publ.
– year: 1994
– volume: 36
  start-page: 603
  year: 1998
  end-page: 689
  article-title: Post glacial variations in the level of the sea: Implications for climate dynamics and solid‐earth geophysics
  publication-title: Rev. Geophys.
– volume: 47
  start-page: 227
  year: 1962
  end-page: 245
  article-title: Refraction corrections for universal stage measurements, I, Uniaxial crystals
  publication-title: Am. Mineral.
– volume: 4
  start-page: 123
  year: 1970
  end-page: 126
  article-title: Softening effect of dissolved hydrogen chloride in ice crystals
  publication-title: Scr. Metall.
– volume: 344
  start-page: 291
  year: 1997
  end-page: 316
  article-title: Natural convection during solidification of an alloy from above with application to the evolution of sea ice
  publication-title: J. Fluid Mech.
– volume: 21
  start-page: 501
  year: 1978
  end-page: 507
  article-title: The creep of NaCl‐doped ice monocrystals
  publication-title: J. Glaciol.
– volume: 10
  start-page: 137
  year: 1988
  end-page: 140
  article-title: Mechanical behavior of ice along the 2040 m Vostok core, Antarctica
  publication-title: Ann. Glaciol.
– volume: 13
  start-page: 285
  year: 1974
  end-page: 306
  article-title: Ice fabrics and petrography, Meserve Glacier, Antarctica
  publication-title: J. Glaciol.
– volume: 11
  start-page: 327
  year: 1972
  end-page: 36
  article-title: Creep of ice containing dispersed fine sand
  publication-title: J. Glaciol.
– volume: 26
  start-page: 251
  year: 1999
  end-page: 254
  article-title: Compressive creep of ice containing a liquid intergranular phase: rate‐controlling processes in the dislocation creep regime
  publication-title: Geophys. Res. Lett.
– volume: 20
  start-page: 75
  year: 1991
  end-page: 98
  article-title: Why ice age ice is sometimes “soft”
  publication-title: Cold Reg. Sci. Technol.
– volume: 23
  start-page: 202
  year: 1996
  end-page: 208
  article-title: An anisotropic flow law for ice‐sheet ice and its implications
  publication-title: Ann. Glaciol.
– volume: 12
  start-page: 46
  year: 1989
  end-page: 50
  article-title: Dynamics of the Law Dome ice cap, Antarctica, as found from bore‐hole measurements
  publication-title: Ann. Glaciol.
– volume: 38
  start-page: 245
  year: 1992
  end-page: 256
  article-title: Flow‐law hypotheses for ice sheet modelling
  publication-title: J. Glaciol.
– volume: 37
  start-page: 1399
  year: 1997
  end-page: 1406
  article-title: Grain boundary sliding in fine‐grained Ice I
  publication-title: Scr. Mater.
– volume: 101
  start-page: 13,851
  year: 1996
  end-page: 13,868
  article-title: Viscoplastic modeling of texture development in polycrystalline ice with a self‐consistent approach: Comparison with bound estimates
  publication-title: J. Geophys Res.
– year: 1958
– volume: 10
  start-page: 146
  year: 1988
  end-page: 150
  article-title: Flow‐law parameters of the Dye 3, Greenland, deep ice core
  publication-title: Ann. Glaciol.
– volume: 16
  start-page: 107
  year: 1989
  end-page: 144
  article-title: A review of ice theology for ice sheet modelling
  publication-title: Cold Reg. Sci. Technol.
– volume: 240
  start-page: 493
  year: 1988
  end-page: 495
  article-title: Fabrics in polar ice sheets: Development and prediction
  publication-title: Science
– volume: 32
  start-page: 501
  year: 1986
  end-page: 510
  article-title: On the special rheological properties of ancient microparticle‐laden Northern Hemisphere ice as derived from bore‐hole and core measurements
  publication-title: J. Glaciol.
– volume: 3
  start-page: 207
  year: 1985
  end-page: 224
  article-title: Various isotropic and anisotropic ices found in glaciers and polar ice caps and their corresponding rheologies
  publication-title: Ann. Geophys.
– volume: 594
  start-page: 225
  year: 1992
  end-page: 228
  article-title: Determination of major ions in snow and ice cores by ion chromatography
  publication-title: J. Chromatogr.
– volume: 102
  start-page: 26,345
  year: 1997
  end-page: 26,366
  article-title: Major features and forcing of high‐latitude northern hemisphere atmospheric circulation using a 110,000‐year‐long glaciochemical series
  publication-title: J. Geophys. Res.
– volume: 230
  start-page: 77
  year: 1971
  end-page: 79
  article-title: Influence of limited solubility on the electrical and mechanical properties of ice
  publication-title: Nature Phys. Sci.
– volume: 33
  start-page: 83
  year: 1987
  end-page: 98
  article-title: Direct observations of basal sliding and deformation of basal drift at sub‐freezing temperatures
  publication-title: J. Glaciol.
– volume: 102
  start-page: 26,831
  year: 1997
  end-page: 26,840
  article-title: Flow properties of the ice from the Greenland Ice Core Project ice core: The reason for folds?
  publication-title: J. Geophys. Res.
– volume: 22
  start-page: 171
  year: 1994
  end-page: 195
  article-title: Development of fabric in ice
  publication-title: Cold Reg. Sci. Technol.
– year: 1992
– volume: 228
  start-page: 519
  year: 1955
  end-page: 538
  article-title: The creep of polycrystalline ice
  publication-title: Proc. R. Soc. London, Ser. A
– volume: 45
  start-page: 338
  year: 1999
  end-page: 345
  article-title: Strain rate enhancement at Dye 3, Greenland
  publication-title: J. Glaciol.
– volume: 25
  start-page: 151
  year: 1980
  end-page: 157
  article-title: Does the permanent creep rate of polycrystalline ice increase with crystal size?
  publication-title: J. Glaciol.
– volume: 87
  start-page: 4066
  year: 1983
  end-page: 4074
  article-title: Rate‐controlling processes in the creep of polycrystalline ice
  publication-title: J. Phys. Chem.
– volume: 102
  start-page: 26,559
  year: 1997
  end-page: 26,576
  article-title: Physical and structural properties of the Greenland Ice Sheet Project 2 ice core: A review
  publication-title: J. Geophys. Res.
– volume: 10
  start-page: 31
  year: 1984
  end-page: 42
  article-title: Laboratory studies on relationships between ice crystal size and flow rate
  publication-title: Cold Reg. Sci. Technol.
– volume: 128
  start-page: 601
  year: 1994
  end-page: 614
  article-title: A flow law for anisotropic ice and its application to ice sheets
  publication-title: Earth Planet. Sci. Lett.
– volume: 58
  start-page: 115
  year: 1995
  end-page: 167
  article-title: The premelting of ice and its environmental consequences
  publication-title: Rep. Prog. Phys.
– year: 1974
– volume: 32
  start-page: 425
  year: 1986
  end-page: 433
  article-title: Grain growth in polar ice, II, Application
  publication-title: J. Glaciol.
– year: 1970
– volume: 23
  start-page: 247
  year: 1996
  end-page: 252
  article-title: Deformation rates in combined compression and shear for ice which is initially isotropic and after the development of strong anisotropy
  publication-title: Ann. Glaciol.
– start-page: 325
  year: 1980
  end-page: 336
– volume: 10
  start-page: 287
  year: 1972
  end-page: 333
  article-title: General theory of water flow at the base of a glacier or ice sheet
  publication-title: Rev. Geophys.
– volume: 105
  issue: B12
  year: 2000
  article-title: A renewed argument for crystal size control of ice sheet strain rates
  publication-title: J. Geophys. Res.
– volume: 4
  start-page: 129
  year: 1983
  end-page: 132
  article-title: Effect of sample and grain size on the compressive strength of ice
  publication-title: Ann. Glaciol.
– volume: 23
  start-page: 209
  year: 1979
  end-page: 222
  article-title: Discontinuous flow, ice texture, and dirt content in the basal layers of the Devon Island ice cap
  publication-title: J. Glaciol.
– ident: e_1_2_1_17_1
  doi: 10.1029/2000JB900270
– ident: e_1_2_1_38_1
  doi: 10.1017/S0260305500013501
– ident: e_1_2_1_20_1
  doi: 10.1088/0034-4885/58/1/003
– ident: e_1_2_1_22_1
  doi: 10.1029/92JE02326
– volume: 47
  start-page: 227
  year: 1962
  ident: e_1_2_1_39_1
  article-title: Refraction corrections for universal stage measurements, I, Uniaxial crystals
  publication-title: Am. Mineral.
  contributor:
    fullname: Kamb W. B.
– ident: e_1_2_1_49_1
  doi: 10.1016/0165-232X(91)90058-O
– volume-title: The Physics of Glaciers
  year: 1994
  ident: e_1_2_1_50_1
  contributor:
    fullname: Paterson W. S. B.
– ident: e_1_2_1_40_1
  doi: 10.1017/S0022143000029841
– volume: 86
  start-page: 204
  year: 1970
  ident: e_1_2_1_34_1
  article-title: The flow law of cold ice: Investigations on Meserve Glacier, Antarctica
  publication-title: IAHS Publ.
  contributor:
    fullname: Holdsworth G.
– ident: e_1_2_1_14_1
  doi: 10.1029/96JB00412
– ident: e_1_2_1_32_1
  doi: 10.1029/97JC00165
– ident: e_1_2_1_26_1
  doi: 10.1017/S0022143000012417
– ident: e_1_2_1_37_1
  doi: 10.1017/S0260305500005358
– ident: e_1_2_1_9_1
  doi: 10.1017/S0260305500013458
– volume: 3
  start-page: 207
  year: 1985
  ident: e_1_2_1_43_1
  article-title: Various isotropic and anisotropic ices found in glaciers and polar ice caps and their corresponding rheologies
  publication-title: Ann. Geophys.
  contributor:
    fullname: Lliboutry L.
– ident: e_1_2_1_29_1
  doi: 10.1017/S0022143000012211
– ident: e_1_2_1_48_1
  doi: 10.1038/physci230077a0
– ident: e_1_2_1_3_1
  doi: 10.1017/S0022143000003658
– volume-title: Quantitative Stereology
  year: 1970
  ident: e_1_2_1_57_1
  contributor:
    fullname: Underwood E. E.
– ident: e_1_2_1_55_1
  doi: 10.1017/S026030550000433X
– volume: 170
  start-page: 31
  year: 1987
  ident: e_1_2_1_18_1
  article-title: Constitutive properties of ice at Dye 3, Greenland
  publication-title: IAHS Publ.
  contributor:
    fullname: Dahl‐Jensen D.
– ident: e_1_2_1_35_1
  doi: 10.1017/S0022143000022309
– ident: e_1_2_1_46_1
  doi: 10.1016/0036-9748(70)90176-6
– ident: e_1_2_1_60_1
  doi: 10.1017/S0022112097006022
– ident: e_1_2_1_30_1
  doi: 10.1098/rspa.1955.0066
– ident: e_1_2_1_12_1
  doi: 10.1016/0021-9673(92)80334-Q
– volume-title: Geophysical Data Analysis: Discrete Inverse Theory
  year: 1989
  ident: e_1_2_1_45_1
  contributor:
    fullname: Menke W.
– ident: e_1_2_1_52_1
  doi: 10.3189/S0260305500004316
– start-page: 113
  volume-title: Physics of Strength and Plasticity
  year: 1969
  ident: e_1_2_1_6_1
  contributor:
    fullname: Ashby M. F.
– ident: e_1_2_1_19_1
  doi: 10.1029/97JC01266
– volume-title: Numerical Recipes in FORTTRAN: The Art of Scientific Computing
  year: 1992
  ident: e_1_2_1_53_1
  contributor:
    fullname: Press W. H.
– ident: e_1_2_1_59_1
  doi: 10.1029/RG010i001p00287
– ident: e_1_2_1_58_1
  doi: 10.1016/0165-232X(94)90027-2
– ident: e_1_2_1_24_1
  doi: 10.1021/j100244a014
– ident: e_1_2_1_27_1
  doi: 10.1017/S0260305500006947
– ident: e_1_2_1_56_1
  doi: 10.3189/002214399793377185
– ident: e_1_2_1_8_1
  doi: 10.1016/0012-821X(94)90173-2
– ident: e_1_2_1_10_1
  doi: 10.1017/S0260305500010168
– ident: e_1_2_1_5_1
  doi: 10.1017/S0022143000023091
– ident: e_1_2_1_4_1
  doi: 10.1017/S0022143000012132
– ident: e_1_2_1_13_1
  doi: 10.1016/0165-232X(89)90014-1
– ident: e_1_2_1_47_1
  doi: 10.1098/rspa.1957.0026
– ident: e_1_2_1_23_1
  doi: 10.1017/S0022143000010364
– ident: e_1_2_1_44_1
  doi: 10.1029/96JC03365
– ident: e_1_2_1_31_1
  doi: 10.1016/S1359-6462(97)00246-7
– ident: e_1_2_1_25_1
  doi: 10.1017/S0022143000005396
– ident: e_1_2_1_36_1
  doi: 10.1016/0165-232X(84)90031-4
– ident: e_1_2_1_16_1
  doi: 10.1130/0091-7613(2000)28<351:EACGB>2.0.CO;2
– ident: e_1_2_1_15_1
  doi: 10.1029/1999GL900096
– ident: e_1_2_1_51_1
  doi: 10.1029/98RG02638
– volume: 170
  start-page: 45
  year: 1987
  ident: e_1_2_1_28_1
  article-title: Enhanced flow of Wisconsin ice related to solid conductivity through strain history and recrystallization
  publication-title: IAHS Publ.
  contributor:
    fullname: Fisher D. A.
– ident: e_1_2_1_42_1
  doi: 10.1017/S0022143000009321
– start-page: 325
  volume-title: Recrystallization and Grain Growth of Multiphase and Particle Containing Materials
  year: 1980
  ident: e_1_2_1_7_1
  contributor:
    fullname: Ashby M. F.
– ident: e_1_2_1_2_1
  doi: 10.1126/science.240.4851.493
– ident: e_1_2_1_21_1
  doi: 10.1029/1998GL900289
– ident: e_1_2_1_41_1
– ident: e_1_2_1_33_1
– ident: e_1_2_1_54_1
  doi: 10.1017/S0022143000033645
– ident: e_1_2_1_11_1
  doi: 10.1098/rspa.1971.0132
SSID ssj0000456401
ssj0014561
ssj0030581
ssj0030583
ssj0043761
ssj0030582
ssj0030585
ssj0030584
ssj0030586
Score 1.9012587
Snippet To improve understanding of the deformation properties of subfreezing polycrystalline glacier ice and, in particular the role of crystal size, chemical...
SourceID proquest
crossref
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 27895
SubjectTerms Antarctica
Earth, ocean, space
Exact sciences and technology
External geophysics
Snow. Ice. Glaciers
Title Deformation properties of subfreezing glacier ice: Role of crystal size, chemical impurities, and rock particles inferred from in situ measurements
URI https://api.istex.fr/ark:/67375/WNG-GMWW61H2-D/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2000JB900271
https://search.proquest.com/docview/17881945
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVkgICUEBNVBgD9BL6hDb6xe3tA2pilpQHyqcrPV6V4po7ShuBO3f4A8zs7t-RIiKHrhEns3a2WTmm33kmxlC3nI_UhEH4-UZ9xwWSO5wyUMnka4vuO_lXobRyPsn0dHXeG_Mxisrdcrftu2_ahraQNcYOXsHbTcPhQa4Bp3DK2gdXv9J73uyiUdE8tUMedMmsWy1yNRcyhs8HIBFs8A4E6z5jpQ4yzEU8-sKoyOr6Y0-6BR1OoHp5QzL3E2NU9GcdHCk_VnNq9Okrjly2XW8yrSAR1wt-pftCWT1l2XwRJaz2lZqGiAO6aS8mOb9MXxAc2C9u1DKnLB_GvQPB01zWfzgJtCiaZvw3Ax1NGh9LCYa1_Y8WDrr0LwRy3ptjz8x6aGZvXQbrFlCx_OGyz59GHSMd8cyta2PjmJT19NO-F6UmIjSP2aToYfJWHEgBzsJbuDddtasmQJNv-C2nnrBcDA5hpHAivUeWYMP9cEtr43GZ9-Om0NBndyn5Si5TEcdGwEcc7wkeF3B7wqsKwRdIawFBhOLqdVpf1EbFAJf5X33aywt19bQ8_xE-jCvwCqUKf2ytDfr7vD0Eu30MXlkjYqOjE0-ISuyWCcbowr_7Skvr-kW1dfG3Kp1ct8UYr2Gq4m0V71D2EWWcy3BDbsXU8CSfe_hZyF5YXO8w01fzIOekl8d0NEWdLRUtAM6akFHAXQfKEIOO1jIUYTcNq0BR1vAbVOAG0W40QZutIYbRbiBRBFutAu3Z-Ts4_h0d9-x1U4cwaI4dAIpBYMFfSZkLBKfDeNExJHvSxHFjGUB95Msj7jnD6Eb7IOEYipWKsixIAbzlf-crBZlITcIZUIIBpN3HuaCSVfErlKhyjLYOvhZ5KkeeVcrNZ2ZpDapJqN4SdpVfo9saY03nfj8OxJBoyA9P5qkk8Pz89Dd99K9HtlcMonmhjiIEi_okTe1haQwe-FfkryQ5aJKXaxmkTDosa0N59bhpA2AXtyt-0vyoPUmm2T1ar6Qr8i9Kl-8tgj8DRYuDxI
link.rule.ids 315,782,786,27933,27934
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deformation+properties+of+subfreezing+glacier+ice%3A+Role+of+crystal+size%2C+chemical+impurities%2C+and+rock+particles+inferred+from+in+situ+measurements&rft.jtitle=Journal+of+Geophysical+Research%3A+Solid+Earth&rft.au=Cuffey%2C+K.+M.&rft.au=Conway%2C+H.&rft.au=Gades%2C+A.&rft.au=Hallet%2C+B.&rft.date=2000-12-10&rft.issn=0148-0227&rft.eissn=2156-2202&rft.volume=105&rft.issue=B12&rft.spage=27895&rft.epage=27915&rft_id=info:doi/10.1029%2F2000JB900271&rft.externalDBID=10.1029%252F2000JB900271&rft.externalDocID=JGRB12456
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon