MIPgen: optimized modeling and design of molecular inversion probes for targeted resequencing
Molecular inversion probes (MIPs) enable cost-effective multiplex targeted gene resequencing in large cohorts. However, the design of individual MIPs is a critical parameter governing the performance of this technology with respect to capture uniformity and specificity. MIPgen is a user-friendly pac...
Saved in:
Published in: | Bioinformatics (Oxford, England) Vol. 30; no. 18; pp. 2670 - 2672 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Oxford University Press
15-09-2014
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Molecular inversion probes (MIPs) enable cost-effective multiplex targeted gene resequencing in large cohorts. However, the design of individual MIPs is a critical parameter governing the performance of this technology with respect to capture uniformity and specificity. MIPgen is a user-friendly package that simplifies the process of designing custom MIP assays to arbitrary targets. New logistic and SVM-derived models enable in silico predictions of assay success, and assay redesign exhibits improved coverage uniformity relative to previous methods, which in turn improves the utility of MIPs for cost-effective targeted sequencing for candidate gene validation and for diagnostic sequencing in a clinical setting.
MIPgen is implemented in C++. Source code and accompanying Python scripts are available at http://shendurelab.github.io/MIPGEN/. |
---|---|
AbstractList | Summary
Molecular inversion probes (MIPs) enable cost-effective multiplex targeted gene resequencing in large cohorts. However, the design of individual MIPs is a critical parameter governing the performance of this technology with respect to capture uniformity and specificity. MIPgen is a user-friendly package that simplifies the process of designing custom MIP assays to arbitrary targets. New logistic and SVM-derived models enable
in silico
predictions of assay success, and assay redesign exhibits improved coverage uniformity relative to previous methods, which in turn improves the utility of MIPs for cost-effective targeted sequencing for candidate gene validation and for diagnostic sequencing in a clinical setting.
Availability and implementation:
MIPgen is implemented in C++. Source code and accompanying Python scripts are available at
http://shendurelab.github.io/MIPGEN/
.
Contact:
shendure@uw.edu
or
boylee@uw.edu
Supplementary information:
Supplementary data
are available at
Bioinformatics
online. UNLABELLEDMolecular inversion probes (MIPs) enable cost-effective multiplex targeted gene resequencing in large cohorts. However, the design of individual MIPs is a critical parameter governing the performance of this technology with respect to capture uniformity and specificity. MIPgen is a user-friendly package that simplifies the process of designing custom MIP assays to arbitrary targets. New logistic and SVM-derived models enable in silico predictions of assay success, and assay redesign exhibits improved coverage uniformity relative to previous methods, which in turn improves the utility of MIPs for cost-effective targeted sequencing for candidate gene validation and for diagnostic sequencing in a clinical setting. AVAILABILITY AND IMPLEMENTATIONMIPgen is implemented in C++. Source code and accompanying Python scripts are available at http://shendurelab.github.io/MIPGEN/. Summary Molecular inversion probes (MIPs) enable cost-effective multiplex targeted gene resequencing in large cohorts. However, the design of individual MIPs is a critical parameter governing the performance of this technology with respect to capture uniformity and specificity. MIPgen is a user-friendly package that simplifies the process of designing custom MIP assays to arbitrary targets. New logistic and SVM-derived models enable in silico predictions of assay success, and assay redesign exhibits improved coverage uniformity relative to previous methods, which in turn improves the utility of MIPs for cost-effective targeted sequencing for candidate gene validation and for diagnostic sequencing in a clinical setting. Availability and implementation: MIPgen is implemented in C++. Source code and accompanying Python scripts are available at http://shendurelab.github.io/MIPGEN/ . Contact: shendure@uw.edu or boylee@uw.edu Supplementary information: Supplementary data are available at Bioinformatics online. Molecular inversion probes (MIPs) enable cost-effective multiplex targeted gene resequencing in large cohorts. However, the design of individual MIPs is a critical parameter governing the performance of this technology with respect to capture uniformity and specificity. MIPgen is a user-friendly package that simplifies the process of designing custom MIP assays to arbitrary targets. New logistic and SVM-derived models enable in silico predictions of assay success, and assay redesign exhibits improved coverage uniformity relative to previous methods, which in turn improves the utility of MIPs for cost-effective targeted sequencing for candidate gene validation and for diagnostic sequencing in a clinical setting. MIPgen is implemented in C++. Source code and accompanying Python scripts are available at http://shendurelab.github.io/MIPGEN/. |
Author | Boyle, Evan A Kumar, Akash Shendure, Jay Martin, Beth K O'Roak, Brian J |
Author_xml | – sequence: 1 givenname: Evan A surname: Boyle fullname: Boyle, Evan A organization: Department of Genome Sciences, University of Washington, Seattle, WA 98105 and Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA – sequence: 2 givenname: Brian J surname: O'Roak fullname: O'Roak, Brian J organization: Department of Genome Sciences, University of Washington, Seattle, WA 98105 and Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA – sequence: 3 givenname: Beth K surname: Martin fullname: Martin, Beth K organization: Department of Genome Sciences, University of Washington, Seattle, WA 98105 and Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA – sequence: 4 givenname: Akash surname: Kumar fullname: Kumar, Akash organization: Department of Genome Sciences, University of Washington, Seattle, WA 98105 and Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA – sequence: 5 givenname: Jay surname: Shendure fullname: Shendure, Jay organization: Department of Genome Sciences, University of Washington, Seattle, WA 98105 and Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24867941$$D View this record in MEDLINE/PubMed |
BookMark | eNpVUclKBDEQDaK4f4KSo5fRZJJ0pj0IMriBogc9SkgnlTbSnYxJt6Bfb2R00FMV9ZZ68HbQeogBEDqg5JiSmp00PvrgYur14E0-aYaRCbaGtimr5ITPKF1f7YRtoZ2cXwkhgohqE21N-aySNafb6Pnu5qGFcIrjYvC9_wSL-2ih86HFOlhsIfs24OjKuQMzdjphH94hZR8DXqTYQMYlBh50amEo8gQZ3kYIpljsoQ2nuwz7P3MXPV1ePM6vJ7f3Vzfz89uJ4VIOEytdU7uazZxpSEUtZcRqCUZy0lBLrARHLZe2kcBpgYQ0mmg9k9xRQcCwXXS29F2MTQ_WQBiS7tQi-V6nDxW1V_-R4F9UG98Vp0JMhSgGRz8GKZbweVC9zwa6TgeIY1ZUVETIuprSQhVLqkkx5wRu9YYS9V2N-l-NWlZTdId_M65Uv12wLzZIlfQ |
CitedBy_id | crossref_primary_10_1002_tpg2_20270 crossref_primary_10_1038_s41431_020_0682_0 crossref_primary_10_1111_aos_14721 crossref_primary_10_1373_clinchem_2016_263897 crossref_primary_10_1093_brain_awac082 crossref_primary_10_1038_ncomms6595 crossref_primary_10_1038_s41379_019_0369_7 crossref_primary_10_1093_nar_gku1188 crossref_primary_10_1038_s41598_018_25328_5 crossref_primary_10_1016_j_ajhg_2016_09_010 crossref_primary_10_1038_ncomms13316 crossref_primary_10_1016_j_neuron_2021_08_005 crossref_primary_10_1038_s41598_017_11035_0 crossref_primary_10_1038_s41587_022_01639_x crossref_primary_10_1002_humu_22821 crossref_primary_10_1038_s41467_020_18723_y crossref_primary_10_3389_fonc_2019_00117 crossref_primary_10_47429_lmo_2023_13_4_282 crossref_primary_10_1016_j_ophtha_2020_07_037 crossref_primary_10_1186_s13053_021_00200_2 crossref_primary_10_1016_j_ebiom_2020_103130 crossref_primary_10_1038_s41559_016_0069 crossref_primary_10_7554_eLife_80204 crossref_primary_10_1371_journal_pone_0178169 crossref_primary_10_1002_humu_23906 crossref_primary_10_1007_s40291_017_0257_0 crossref_primary_10_1016_j_ajhg_2017_07_016 crossref_primary_10_1007_s00223_019_00530_3 crossref_primary_10_1177_0022034517722761 crossref_primary_10_1016_j_celrep_2023_112373 crossref_primary_10_1681_ASN_0000000000000222 crossref_primary_10_2139_ssrn_3202929 crossref_primary_10_1186_s13073_021_00907_w crossref_primary_10_18632_oncotarget_15593 crossref_primary_10_1016_j_xhgg_2024_100306 crossref_primary_10_1016_j_ccell_2018_12_011 crossref_primary_10_1186_s11689_017_9199_4 crossref_primary_10_1186_s12885_020_06785_6 crossref_primary_10_1373_clinchem_2017_284737 crossref_primary_10_1016_j_omtn_2021_08_008 crossref_primary_10_1038_ncomms15190 crossref_primary_10_1038_s41598_024_53358_9 crossref_primary_10_1186_s12915_021_01204_z crossref_primary_10_1016_j_jmoldx_2019_06_009 crossref_primary_10_1007_s00438_019_01558_8 crossref_primary_10_1002_humu_23137 crossref_primary_10_1016_j_ajhg_2017_05_013 crossref_primary_10_1038_ng_3287 crossref_primary_10_1002_ajmg_a_37771 crossref_primary_10_1136_jmg_2023_109510 crossref_primary_10_1186_s13059_017_1163_9 crossref_primary_10_1038_nrg_2017_117 crossref_primary_10_1182_bloodadvances_2016002923 crossref_primary_10_1038_nn_4589 crossref_primary_10_1101_gr_235820_118 crossref_primary_10_1093_nargab_lqab125 crossref_primary_10_1161_CIRCRESAHA_115_306723 crossref_primary_10_3389_fpls_2017_02016 crossref_primary_10_1111_his_13892 crossref_primary_10_1016_j_neurobiolaging_2020_03_018 crossref_primary_10_1002_tpg2_20399 crossref_primary_10_1016_j_fsigen_2019_07_006 crossref_primary_10_1002_humu_24219 crossref_primary_10_1111_eva_13517 crossref_primary_10_1016_j_ejmg_2021_104200 crossref_primary_10_1002_ana_25658 crossref_primary_10_1111_hae_13024 crossref_primary_10_1186_s40246_024_00613_9 crossref_primary_10_1007_s10048_020_00612_7 crossref_primary_10_1007_s00223_021_00881_w crossref_primary_10_1371_journal_pbio_3000926 crossref_primary_10_3389_fgene_2022_914376 crossref_primary_10_1053_j_gastro_2022_12_017 crossref_primary_10_3390_genes11010105 crossref_primary_10_1007_s00439_021_02334_8 crossref_primary_10_1136_jmedgenet_2017_104962 crossref_primary_10_1002_humu_23312 crossref_primary_10_1002_acn3_722 crossref_primary_10_1016_j_medj_2023_05_005 crossref_primary_10_2217_pgs_2019_0057 crossref_primary_10_2217_pgs_2018_0049 crossref_primary_10_1038_nature13908 crossref_primary_10_1016_j_ajhg_2015_01_003 crossref_primary_10_1371_journal_pcbi_1007956 crossref_primary_10_1016_S1474_4422_15_00278_1 crossref_primary_10_3390_biom13071117 crossref_primary_10_1002_ijc_32167 crossref_primary_10_1002_humu_23787 crossref_primary_10_1038_mp_2016_222 crossref_primary_10_1038_srep24051 crossref_primary_10_3390_ijms20225750 crossref_primary_10_1186_s12864_023_09453_8 crossref_primary_10_1016_j_jmoldx_2021_10_005 crossref_primary_10_1373_clinchem_2017_285981 crossref_primary_10_1038_s41431_021_00849_2 crossref_primary_10_1093_bioinformatics_btac081 crossref_primary_10_1016_j_gene_2023_148071 crossref_primary_10_1038_s41398_018_0343_z crossref_primary_10_1002_mds_26753 crossref_primary_10_1093_schbul_sbab007 crossref_primary_10_1371_journal_pone_0185777 crossref_primary_10_1101_gr_231753_117 crossref_primary_10_1007_s40291_020_00488_1 crossref_primary_10_1002_bdr2_2008 crossref_primary_10_1172_jci_insight_87623 crossref_primary_10_1096_fj_201800907RR crossref_primary_10_1186_s12864_022_08693_4 crossref_primary_10_2174_1871526522666220127115120 crossref_primary_10_1136_jmedgenet_2017_104611 crossref_primary_10_1016_j_jmoldx_2020_02_012 crossref_primary_10_1111_hae_13506 crossref_primary_10_1186_s12916_022_02386_1 crossref_primary_10_1101_gr_182212_114 crossref_primary_10_3389_fneur_2019_01332 crossref_primary_10_3390_jcm11236978 crossref_primary_10_3390_cancers11121971 |
Cites_doi | 10.1038/nmeth.1357 10.1186/gb-2011-12-9-r95 10.1038/nmeth.1871 10.1186/gb-2011-12-9-r94 10.1038/nbt.1530 10.1038/nature12439 10.1038/gim.2013.83 10.1093/bioinformatics/btq671 10.1073/pnas.1018981108 10.1038/nbt821 10.1101/gr.147686.112 10.1126/science.7522346 10.1038/nmeth.2572 10.1038/nature12141 10.1016/j.cancergencyto.2009.03.005 10.1038/nmeth1110 10.1038/ng.712 10.1126/science.1227764 10.1186/1471-2180-12-29 |
ContentType | Journal Article |
Copyright | The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com. The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2014 |
Copyright_xml | – notice: The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com. – notice: The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2014 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1093/bioinformatics/btu353 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1367-4811 |
EndPage | 2672 |
ExternalDocumentID | 10_1093_bioinformatics_btu353 24867941 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: CA160080 – fundername: NCI NIH HHS grantid: R21 CA160080 – fundername: NIGMS NIH HHS grantid: T32 GM007266 |
GroupedDBID | --- -E4 -~X .2P .DC .I3 0R~ 1TH 23N 2WC 4.4 48X 53G 5GY 5WA 70D AAIJN AAIMJ AAJKP AAJQQ AAKPC AAMDB AAMVS AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN ABEUO ABIXL ABNKS ABPTD ABQLI ABQTQ ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADRDM ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFXEN AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIJHB AJEEA AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT APWMN ARIXL ASPBG AVWKF AXUDD AYOIW AZVOD BAWUL BAYMD BCRHZ BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CGR CS3 CUY CVF CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS ECM EE~ EIF EJD EMOBN F5P F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NPM NU- NVLIB O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 RIG RNS ROL ROX RPM RUSNO RW1 RXO SV3 TEORI TJP TLC TOX TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 ~KM AAYXX ABEJV CITATION GROUPED_DOAJ 7X8 5PM AASNB |
ID | FETCH-LOGICAL-c477t-d7fb9f938fcb061d130da7ec740b1d0d7ef1d47db7e410da57ca0aa874f150ec3 |
IEDL.DBID | RPM |
ISSN | 1367-4803 |
IngestDate | Tue Sep 17 21:27:59 EDT 2024 Fri Oct 25 04:58:49 EDT 2024 Thu Nov 21 23:17:21 EST 2024 Tue Oct 15 23:51:42 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c477t-d7fb9f938fcb061d130da7ec740b1d0d7ef1d47db7e410da57ca0aa874f150ec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Associate Editor: Michael Brudno |
OpenAccessLink | https://academic.oup.com/bioinformatics/article-pdf/30/18/2670/16920274/btu353.pdf |
PMID | 24867941 |
PQID | 1560579621 |
PQPubID | 23479 |
PageCount | 3 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4155255 proquest_miscellaneous_1560579621 crossref_primary_10_1093_bioinformatics_btu353 pubmed_primary_24867941 |
PublicationCentury | 2000 |
PublicationDate | 2014-09-15 |
PublicationDateYYYYMMDD | 2014-09-15 |
PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioinformatics (Oxford, England) |
PublicationTitleAlternate | Bioinformatics |
PublicationYear | 2014 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | 21955854 - Genome Biol. 2011;12(9):R94 23665959 - Nature. 2013 Jun 13;498(7453):220-3 23382536 - Genome Res. 2013 May;23(5):843-54 19602459 - Cancer Genet Cytogenet. 2009 Aug;193(1):9-18 22404909 - BMC Microbiol. 2012;12:29 7522346 - Science. 1994 Sep 30;265(5181):2085-8 17934468 - Nat Methods. 2007 Nov;4(11):931-6 19330000 - Nat Biotechnol. 2009 Apr;27(4):353-60 21208982 - Bioinformatics. 2011 Mar 1;27(5):718-9 19620972 - Nat Methods. 2009 Aug;6(8):613-8 21955857 - Genome Biol. 2011;12(9):R95 23934111 - Nature. 2013 Sep 12;501(7466):217-21 12730666 - Nat Biotechnol. 2003 Jun;21(6):673-8 22306810 - Nat Methods. 2012 Mar;9(3):270-2 19525355 - Genome Res. 2009 Sep;19(9):1606-15 23765052 - Genet Med. 2014 Feb;16(2):132-40 23892896 - Nat Methods. 2013 Sep;10(9):903-9 21076407 - Nat Genet. 2010 Dec;42(12):1109-12 23160955 - Science. 2012 Dec 21;338(6114):1619-22 21467225 - Proc Natl Acad Sci U S A. 2011 Apr 19;108(16):6549-54 Umbarger (2023012711554469000_btu353-B17) 2013; 16 O'Roak (2023012711554469000_btu353-B12) 2012; 338 Diep (2023012711554469000_btu353-B3) 2012; 9 Deng (2023012711554469000_btu353-B2) 2009; 27 Hiatt (2023012711554469000_btu353-B6) 2013; 23 Li (2023012711554469000_btu353-B8) 2011; 27 Nuttle (2023012711554469000_btu353-B11) 2013; 10 Sulonen (2023012711554469000_btu353-B16) 2011; 12 Zhang (2023012711554469000_btu353-B20) 2009; 6 Nilsson (2023012711554469000_btu353-B10) 1994; 265 Schiffman (2023012711554469000_btu353-B15) 2009; 193 Li (2023012711554469000_btu353-B9) 2009; 19 Hyman (2023012711554469000_btu353-B7) 2012; 12 Asan (2023012711554469000_btu353-B1) 2011; 12 Hardenbol (2023012711554469000_btu353-B5) 2003; 21 Vissers (2023012711554469000_btu353-B18) 2010; 42 Porreca (2023012711554469000_btu353-B14) 2007; 4 Zaidi (2023012711554469000_btu353-B19) 2013; 498 Epi4K Consortium et al. (2023012711554469000_btu353-B4) 2013; 501 Peidong (2023012711554469000_btu353-B13) 2011; 108 |
References_xml | – volume: 6 start-page: 613 year: 2009 ident: 2023012711554469000_btu353-B20 article-title: Digital RNA allelotyping reveals tissue-specific and allele-specific gene expression in human publication-title: Nat. Methods doi: 10.1038/nmeth.1357 contributor: fullname: Zhang – volume: 12 start-page: R95 year: 2011 ident: 2023012711554469000_btu353-B1 article-title: Comprehensive comparison of three commercial human whole-exome capture platforms publication-title: Genome Biol. doi: 10.1186/gb-2011-12-9-r95 contributor: fullname: Asan – volume: 9 start-page: 270 year: 2012 ident: 2023012711554469000_btu353-B3 article-title: Library-free methylation sequencing with bisulfite padlock probes publication-title: Nat. Methods doi: 10.1038/nmeth.1871 contributor: fullname: Diep – volume: 12 start-page: R94 year: 2011 ident: 2023012711554469000_btu353-B16 article-title: Comparison of solution-based exome capture methods for next generation sequencing publication-title: Genome Biol. doi: 10.1186/gb-2011-12-9-r94 contributor: fullname: Sulonen – volume: 27 start-page: 353 year: 2009 ident: 2023012711554469000_btu353-B2 article-title: Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1530 contributor: fullname: Deng – volume: 501 start-page: 217 year: 2013 ident: 2023012711554469000_btu353-B4 article-title: De novo mutations in epileptic encephalopathies publication-title: Nature doi: 10.1038/nature12439 contributor: fullname: Epi4K Consortium et al. – volume: 16 start-page: 132 year: 2013 ident: 2023012711554469000_btu353-B17 article-title: Next-generation carrier screening publication-title: Genet. Med doi: 10.1038/gim.2013.83 contributor: fullname: Umbarger – volume: 27 start-page: 718 year: 2011 ident: 2023012711554469000_btu353-B8 article-title: Tabix: fast retrieval of sequence features from generic TAB-delimited files publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq671 contributor: fullname: Li – volume: 108 start-page: 6549 year: 2011 ident: 2023012711554469000_btu353-B13 article-title: High-quality DNA sequence capture of 524 disease candidate genes publication-title: PNAS doi: 10.1073/pnas.1018981108 contributor: fullname: Peidong – volume: 21 start-page: 673 year: 2003 ident: 2023012711554469000_btu353-B5 article-title: Multiplexed genotyping with sequence-tagged molecular inversion probes publication-title: Nat. Biotechnol. doi: 10.1038/nbt821 contributor: fullname: Hardenbol – volume: 23 start-page: 843 year: 2013 ident: 2023012711554469000_btu353-B6 article-title: Single molecule molecular inversion probes for targeted, high-accuracy detection of low-frequency variation publication-title: Genome Res. doi: 10.1101/gr.147686.112 contributor: fullname: Hiatt – volume: 19 start-page: 1606 year: 2009 ident: 2023012711554469000_btu353-B9 article-title: Multiplex padlock targeted sequencing reveals human hypermutable CpG variations publication-title: Genes Dev. contributor: fullname: Li – volume: 265 start-page: 2085 year: 1994 ident: 2023012711554469000_btu353-B10 article-title: Padlock probes: circularizing oligonucleotides for localized DNA detection publication-title: Science doi: 10.1126/science.7522346 contributor: fullname: Nilsson – volume: 10 start-page: 903 year: 2013 ident: 2023012711554469000_btu353-B11 article-title: Rapid and accurate large-scale genotyping of duplicated genes and discovery of interlocus gene conversions publication-title: Nat. Methods doi: 10.1038/nmeth.2572 contributor: fullname: Nuttle – volume: 498 start-page: 220 year: 2013 ident: 2023012711554469000_btu353-B19 article-title: De novo mutations in histone-modifying genes in congenital heart disease publication-title: Nature doi: 10.1038/nature12141 contributor: fullname: Zaidi – volume: 193 start-page: 9 year: 2009 ident: 2023012711554469000_btu353-B15 article-title: Molecular inversion probes reveal patterns of 9p21 deletion and copy number aberrations in childhood leukemia publication-title: Cancer Genet. Cytogenet. doi: 10.1016/j.cancergencyto.2009.03.005 contributor: fullname: Schiffman – volume: 4 start-page: 931 year: 2007 ident: 2023012711554469000_btu353-B14 article-title: Multiplex amplification of large sets of human exons publication-title: Nat. Methods doi: 10.1038/nmeth1110 contributor: fullname: Porreca – volume: 42 start-page: 1109 year: 2010 ident: 2023012711554469000_btu353-B18 article-title: A de novo paradigm for mental retardation publication-title: Nat. Genet. doi: 10.1038/ng.712 contributor: fullname: Vissers – volume: 338 start-page: 1619 year: 2012 ident: 2023012711554469000_btu353-B12 article-title: Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders publication-title: Science doi: 10.1126/science.1227764 contributor: fullname: O'Roak – volume: 12 start-page: 29 year: 2012 ident: 2023012711554469000_btu353-B7 article-title: Molecular probe technology detects bacteria without culture publication-title: BMC Microbiol. doi: 10.1186/1471-2180-12-29 contributor: fullname: Hyman |
SSID | ssj0005056 |
Score | 2.5395381 |
Snippet | Molecular inversion probes (MIPs) enable cost-effective multiplex targeted gene resequencing in large cohorts. However, the design of individual MIPs is a... Summary Molecular inversion probes (MIPs) enable cost-effective multiplex targeted gene resequencing in large cohorts. However, the design of individual MIPs... UNLABELLEDMolecular inversion probes (MIPs) enable cost-effective multiplex targeted gene resequencing in large cohorts. However, the design of individual MIPs... Summary Molecular inversion probes (MIPs) enable cost-effective multiplex targeted gene resequencing in large cohorts. However, the design of individual MIPs... |
SourceID | pubmedcentral proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 2670 |
SubjectTerms | Algorithms Applications Notes Computational Biology - methods Computer Simulation DNA Probes - genetics Humans Models, Statistical Sequence Analysis - methods |
Title | MIPgen: optimized modeling and design of molecular inversion probes for targeted resequencing |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24867941 https://search.proquest.com/docview/1560579621 https://pubmed.ncbi.nlm.nih.gov/PMC4155255 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB2yC4FcQts0jdskKJCr11Ikr-zewmZDQ0lYaAu9FKMvU0PWXrLrQPPrM5LtkG1vvVqWMKPBb2S_eQ_gnGth8OTjYoSfMka8nsbKMhZrRp3KTca5DZ8uvsm7n9nV3MvkpEMvTCDtG11N6vvlpK5-B27lammSgSeWLG5nHgSxFE5GMMLacDiiD7wOGixbvRRZLDLKh7adnCe6ano5Ui-BnOhNy1NvpHMRZOcE28amfwrOv3mTr4Do-g3s9xUkueye9C3suPod7Haekn8O4NftzQKT4jNp8GWwrJ6cJcHtBiGKqNoSGygbpCnxcu-MS6r6sftsRry_jFsTfHrSccRxum9QCnxrXOI9_Lief599iXsPhdgIKTexlaXOy5xnpdEI3RYhyyrpjBRUM0utdCWzQnqRZcFwKJVGUaUyKUosFZ3hhzCum9odASkpc5aanDrLBQ7lwjqd66mcqtTb_EUwGaJXrDqpjKL7xc2L7cgXXeQjOBtiXGBS-z8VqnZNuy58e7dvkr1gEXzoYv6y5LBZEcit3Xi5wQtmb49gHgXh7D5vPv73zE-whwWT8HwRlh7DePPQuhMYrW17iuX4zdfTkIrPDBvoqg |
link.rule.ids | 230,315,729,782,786,887,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3BItReCoW2LBTqSlyzsbGzTrghygoEi5AKEhcU-SsiUjdB7C4S_fWMnQR16Y1rJrbkPDsztt-8AdjnWhjc-bgI3U8Rob8eRsoyFmlGncpMyrkNRxe_5eVt-uvEy-QkXS5MIO0bXQ6qP5NBVd4HbuXDxMQdTyy-Gh97J4ihcLwMK7heKe026R2zg4airV6MLBIp5V3iTsZjXdatIKkXQY71bM4TX0rnIAjPCbbonf4LOd8yJ_9xRaO1dw5iHT61sSc5asyfYclVG7DaVKN83oS78dkVTqdDUuNvZFL-dZaEOjno3IiqLLGB7EHqAh-3NXVJWT01B27EV6ZxU4KjJg27HJv71KbA1MYuvsDN6OT6-DRqqy9ERkg5i6wsdFZkPC2MRqdv0dlZJZ2RgmpmqZWuYFZIL88sGJoSaRRVKpWiwCDTGf4VelVduS0gBWXOUpNRZ7lAUyas05keyqFKfIHAPgy6r54_NCIbeXM5zvNFxPIGsT787LDJcTn4Ow5VuXo-zX1iuE-vPWB9-NZg9dplB3If5AKKry94qe1FC4IXJLdbsLbf3fIHfDi9Hl_kF2eX5zvwEcMu4VknLPkOvdnj3O3C8tTO98JEfgGrbf00 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwGP3EioZ44TZg5bIZaa9p7NqtE95Qt4pqF1Vik3iZIl-1SDSp1hYJfj2fnaSi8AavcWzJOXa-z_bxOQAnXAuDKx-XYPjxCcbrcaIsY4lm1KncZJzbuHXxRV59zU7PgkzO1uorkvaNLgfVt8WgKu8it3K5MGnHE0vnl5MQBDEVTpfWp3vwEOcsHXYL9Y7dQaNxaxAkS0RGeXd5J-epLutWlDQIIad6veGjYKczjOJzgu1GqL_Szj_Zk7-Fo-nT_-jIM3jS5qDkU_PKc3jgqhew37hS_jiA28vZHIfVR1Lj72RR_nSWRL8cDHJEVZbYSPogtcfHrbcuKavvzcYbCQ41bkWw56RhmWP1cMUpMraxiZdwMz27nnxOWheGxAgp14mVXuc-55k3GoO_xaBnlXRGCqqZpVY6z6yQQaZZMCwaSaOoUpkUHpNNZ_gr6FV15Q6BeMqcpSanznKBRbmwTud6LMdqFIwC-zDovnyxbMQ2iuaQnBe7qBUNan340OFT4LQIZx2qcvVmVYQL4uGa7ZD14XWD17bJDug-yB0kty8Eye3dEgQwSm-3gL3555rH8Gh-Oi0uZlfnb-ExZl8ikE_Y6B301vcb9x72VnZzFMfyL35L_7Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MIPgen%3A+optimized+modeling+and+design+of+molecular+inversion+probes+for+targeted+resequencing&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Boyle%2C+Evan+A&rft.au=O%27Roak%2C+Brian+J&rft.au=Martin%2C+Beth+K&rft.au=Kumar%2C+Akash&rft.date=2014-09-15&rft.eissn=1367-4811&rft.volume=30&rft.issue=18&rft.spage=2670&rft.epage=2672&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtu353&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |