Activin-A limits Th17 pathogenicity and autoimmune neuroinflammation via CD39 and CD73 ectonucleotidases and Hif1-α–dependent pathways

In multiple sclerosis (MS), Th17 cells are critical drivers of autoimmune central nervous system (CNS) inflammation and demyelination. Th17 cells exhibit functional heterogeneity fostering both pathogenic and nonpathogenic, tissue-protective functions. Still, the factors that control Th17 pathogenic...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 117; no. 22; pp. 12269 - 12280
Main Authors: Morianos, Ioannis, Trochoutsou, Aikaterini I., Papadopoulou, Gina, Semitekolou, Maria, Banos, Aggelos, Konstantopoulos, Dimitris, Manousopoulou, Antigoni, Kapasa, Maria, Wei, Ping, Lomenick, Brett, Belaidi, Elise, Kalamatas, Themis, Karageorgiou, Klinta, Doskas, Triantafyllos, Sallusto, Federica, Pan, Fan, Garbis, Spiros D., Quintana, Francisco J., Xanthou, Georgina
Format: Journal Article
Language:English
Published: United States National Academy of Sciences 02-06-2020
Series:From the Cover
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In multiple sclerosis (MS), Th17 cells are critical drivers of autoimmune central nervous system (CNS) inflammation and demyelination. Th17 cells exhibit functional heterogeneity fostering both pathogenic and nonpathogenic, tissue-protective functions. Still, the factors that control Th17 pathogenicity remain incompletely defined. Here, using experimental autoimmune encephalomyelitis, an established mouse MS model, we report that therapeutic administration of activin-A ameliorates disease severity and alleviates CNS immunopathology and demyelination, associated with decreased activation of Th17 cells. In fact, activin-A signaling through activin-like kinase-4 receptor represses pathogenic transcriptional programs in Th17-polarized cells, while it enhances antiinflammatory gene modules. Whole-genome profiling and in vivo functional studies revealed that activation of the ATP-depleting CD39 and CD73 ectonucleotidases is essential for activin-A–induced suppression of the pathogenic signature and the encephalitogenic functions of Th17 cells. Mechanistically, the aryl hydrocarbon receptor, along with STAT3 and c-Maf, are recruited to promoter elements on Entpd1 and Nt5e (encoding CD39 and CD73, respectively) and other antiinflammatory genes, and control their expression in Th17 cells in response to activin-A. Notably, we show that activin-A negatively regulates the metabolic sensor, hypoxia-inducible factor-1α, and key inflammatory proteins linked to pathogenic Th17 cell states. Of translational relevance, we demonstrate that activin-A is induced in the CNS of individuals with MS and restrains human Th17 cell responses. These findings uncover activin-A as a critical controller of Th17 cell pathogenicity that can be targeted for the suppression of autoimmune CNS inflammation.
AbstractList In multiple sclerosis (MS), Th17 cells are critical drivers of autoimmune central nervous system (CNS) inflammation and demyelination. Th17 cells exhibit functional heterogeneity fostering both pathogenic and nonpathogenic, tissue-protective functions. Still, the factors that control Th17 pathogenicity remain incompletely defined. Here, using experimental autoimmune encephalomyelitis, an established mouse MS model, we report that therapeutic administration of activin-A ameliorates disease severity and alleviates CNS immunopathology and demyelination, associated with decreased activation of Th17 cells. In fact, activin-A signaling through activin-like kinase-4 receptor represses pathogenic transcriptional programs in Th17-polarized cells, while it enhances antiinflammatory gene modules. Whole-genome profiling and in vivo functional studies revealed that activation of the ATP-depleting CD39 and CD73 ectonucleotidases is essential for activin-A-induced suppression of the pathogenic signature and the encephalitogenic functions of Th17 cells. Mechanistically, the aryl hydrocarbon receptor, along with STAT3 and c-Maf, are recruited to promoter elements on and (encoding CD39 and CD73, respectively) and other antiinflammatory genes, and control their expression in Th17 cells in response to activin-A. Notably, we show that activin-A negatively regulates the metabolic sensor, hypoxia-inducible factor-1α, and key inflammatory proteins linked to pathogenic Th17 cell states. Of translational relevance, we demonstrate that activin-A is induced in the CNS of individuals with MS and restrains human Th17 cell responses. These findings uncover activin-A as a critical controller of Th17 cell pathogenicity that can be targeted for the suppression of autoimmune CNS inflammation.
In multiple sclerosis (MS), Th17 cells are critical drivers of autoimmune central nervous system (CNS) inflammation and demyelination. Th17 cells exhibit functional heterogeneity fostering both pathogenic and nonpathogenic, tissue-protective functions. Still, the factors that control Th17 pathogenicity remain incompletely defined. Here, using experimental autoimmune encephalomyelitis, an established mouse MS model, we report that therapeutic administration of activin-A ameliorates disease severity and alleviates CNS immunopathology and demyelination, associated with decreased activation of Th17 cells. In fact, activin-A signaling through activin-like kinase-4 receptor represses pathogenic transcriptional programs in Th17-polarized cells, while it enhances antiinflammatory gene modules. Whole-genome profiling and in vivo functional studies revealed that activation of the ATP-depleting CD39 and CD73 ectonucleotidases is essential for activin-A–induced suppression of the pathogenic signature and the encephalitogenic functions of Th17 cells. Mechanistically, the aryl hydrocarbon receptor, along with STAT3 and c-Maf, are recruited to promoter elements on Entpd1 and Nt5e (encoding CD39 and CD73, respectively) and other antiinflammatory genes, and control their expression in Th17 cells in response to activin-A. Notably, we show that activin-A negatively regulates the metabolic sensor, hypoxia-inducible factor-1α, and key inflammatory proteins linked to pathogenic Th17 cell states. Of translational relevance, we demonstrate that activin-A is induced in the CNS of individuals with MS and restrains human Th17 cell responses. These findings uncover activin-A as a critical controller of Th17 cell pathogenicity that can be targeted for the suppression of autoimmune CNS inflammation.
Pathogenic Th17 cells are critical drivers of autoimmune neuroinflammation in multiple sclerosis (MS). We report that administration of the cytokine activin-A ameliorated disease severity in an animal MS model and attenuated CNS neuroinflammation associated with decreased pathogenic Th17 responses. Whole-genome profiling and functional studies revealed that activin-A upregulated the antiinflammatory CD73 and CD39 ectonucleotidases and this was essential for the suppression of the pathogenic signature and encephalitogenic functions of Th17 cells. Mechanistically, activin-A signaling increased antiinflammatory gene expression through activation of the transcription factors AhR, STAT3, and c-Maf and inhibited pathogenic Th17 programs through down-regulation of the metabolic sensor, Hif1-α, and other inflammatory proteins. Of clinical relevance, we show that activin-A restrained pathogenic human Th17 cell responses in MS patients. In multiple sclerosis (MS), Th17 cells are critical drivers of autoimmune central nervous system (CNS) inflammation and demyelination. Th17 cells exhibit functional heterogeneity fostering both pathogenic and nonpathogenic, tissue-protective functions. Still, the factors that control Th17 pathogenicity remain incompletely defined. Here, using experimental autoimmune encephalomyelitis, an established mouse MS model, we report that therapeutic administration of activin-A ameliorates disease severity and alleviates CNS immunopathology and demyelination, associated with decreased activation of Th17 cells. In fact, activin-A signaling through activin-like kinase-4 receptor represses pathogenic transcriptional programs in Th17-polarized cells, while it enhances antiinflammatory gene modules. Whole-genome profiling and in vivo functional studies revealed that activation of the ATP-depleting CD39 and CD73 ectonucleotidases is essential for activin-A–induced suppression of the pathogenic signature and the encephalitogenic functions of Th17 cells. Mechanistically, the aryl hydrocarbon receptor, along with STAT3 and c-Maf, are recruited to promoter elements on Entpd1 and Nt5e (encoding CD39 and CD73, respectively) and other antiinflammatory genes, and control their expression in Th17 cells in response to activin-A. Notably, we show that activin-A negatively regulates the metabolic sensor, hypoxia-inducible factor-1α, and key inflammatory proteins linked to pathogenic Th17 cell states. Of translational relevance, we demonstrate that activin-A is induced in the CNS of individuals with MS and restrains human Th17 cell responses. These findings uncover activin-A as a critical controller of Th17 cell pathogenicity that can be targeted for the suppression of autoimmune CNS inflammation.
In multiple sclerosis (MS), Th17 cells are critical drivers of autoimmune central nervous system (CNS) inflammation and demyelination. Th17 cells exhibit functional heterogeneity fostering both pathogenic and nonpathogenic, tissue-protective functions. Still, the factors that control Th17 pathogenicity remain incompletely defined. Here, using experimental autoimmune encephalomyelitis, an established mouse MS model, we report that therapeutic administration of activin-A ameliorates disease severity and alleviates CNS immunopathology and demyelination, associated with decreased activation of Th17 cells. In fact, activin-A signaling through activin-like kinase-4 receptor represses pathogenic transcriptional programs in Th17-polarized cells, while it enhances antiinflammatory gene modules. Whole-genome profiling and in vivo functional studies revealed that activation of the ATP-depleting CD39 and CD73 ectonucleotidases is essential for activin-A–induced suppression of the pathogenic signature and the encephalitogenic functions of Th17 cells. Mechanistically, the aryl hydrocarbon receptor, along with STAT3 and c-Maf, are recruited to promoter elements on Entpd1 and Nt5e (encoding CD39 and CD73, respectively) and other antiinflammatory genes, and control their expression in Th17 cells in response to activin-A. Notably, we show that activin-A negatively regulates the metabolic sensor, hypoxia-inducible factor-1α, and key inflammatory proteins linked to pathogenic Th17 cell states. Of translational relevance, we demonstrate that activin-A is induced in the CNS of individuals with MS and restrains human Th17 cell responses. These findings uncover activin-A as a critical controller of Th17 cell pathogenicity that can be targeted for the suppression of autoimmune CNS inflammation.
Author Quintana, Francisco J.
Wei, Ping
Karageorgiou, Klinta
Doskas, Triantafyllos
Xanthou, Georgina
Lomenick, Brett
Pan, Fan
Kalamatas, Themis
Morianos, Ioannis
Banos, Aggelos
Trochoutsou, Aikaterini I.
Manousopoulou, Antigoni
Kapasa, Maria
Belaidi, Elise
Papadopoulou, Gina
Sallusto, Federica
Garbis, Spiros D.
Semitekolou, Maria
Konstantopoulos, Dimitris
Author_xml – sequence: 1
  givenname: Ioannis
  surname: Morianos
  fullname: Morianos, Ioannis
– sequence: 2
  givenname: Aikaterini I.
  surname: Trochoutsou
  fullname: Trochoutsou, Aikaterini I.
– sequence: 3
  givenname: Gina
  surname: Papadopoulou
  fullname: Papadopoulou, Gina
– sequence: 4
  givenname: Maria
  surname: Semitekolou
  fullname: Semitekolou, Maria
– sequence: 5
  givenname: Aggelos
  surname: Banos
  fullname: Banos, Aggelos
– sequence: 6
  givenname: Dimitris
  surname: Konstantopoulos
  fullname: Konstantopoulos, Dimitris
– sequence: 7
  givenname: Antigoni
  surname: Manousopoulou
  fullname: Manousopoulou, Antigoni
– sequence: 8
  givenname: Maria
  surname: Kapasa
  fullname: Kapasa, Maria
– sequence: 9
  givenname: Ping
  surname: Wei
  fullname: Wei, Ping
– sequence: 10
  givenname: Brett
  surname: Lomenick
  fullname: Lomenick, Brett
– sequence: 11
  givenname: Elise
  surname: Belaidi
  fullname: Belaidi, Elise
– sequence: 12
  givenname: Themis
  surname: Kalamatas
  fullname: Kalamatas, Themis
– sequence: 13
  givenname: Klinta
  surname: Karageorgiou
  fullname: Karageorgiou, Klinta
– sequence: 14
  givenname: Triantafyllos
  surname: Doskas
  fullname: Doskas, Triantafyllos
– sequence: 15
  givenname: Federica
  surname: Sallusto
  fullname: Sallusto, Federica
– sequence: 16
  givenname: Fan
  surname: Pan
  fullname: Pan, Fan
– sequence: 17
  givenname: Spiros D.
  surname: Garbis
  fullname: Garbis, Spiros D.
– sequence: 18
  givenname: Francisco J.
  surname: Quintana
  fullname: Quintana, Francisco J.
– sequence: 19
  givenname: Georgina
  surname: Xanthou
  fullname: Xanthou, Georgina
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32409602$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04759166$$DView record in HAL
BookMark eNpdkk1v0zAYxy00xLrBmRMoEpdxyOaX2I4vk6oOKFIlLuNsOcmT1VVil9gp6o0r530Svggfgk-C244Ckw-W_P89r_6foRPnHSD0kuBLgiW7WjsTLokiJVGCEPkETQhWJBeFwidogjGVeVnQ4hSdhbDCGCte4mfolNECK4HpBH2f1tFurMunWWd7G0N2uyQyW5u49HfgbG3jNjOuycwYve370UHmYBy8dW1n-t5E6122sSab3TC1J2c3kmVQR-_GugMfbWMChL00ty3Jf_749e2-gTW4Blzcl_pqtuE5etqaLsCLh_scfX7_7nY2zxefPnycTRd5XUgZ84rjqgHGKyXrkpVc0BYEVZQTARWTpk2zMaCUkbaCEtcFNLgSFaeKkaIkmJ2j60Pe9Vj10NSph8F0ej3Y3gxb7Y3V_yvOLvWd32hJJZecpARvDwmWj8Lm04XeveFCckWE2OzYi4dig_8yQoi6t6GGrjMO_Bh0-od0OMcsoW8eoSs_Di6tIlGEioKTckddHah68CEM0B47IFjvLKF3ltB_LZEiXv8775H_44EEvDoAqxD9cNSpSBujkrLfZ_G_aQ
CitedBy_id crossref_primary_10_1016_j_intimp_2024_112217
crossref_primary_10_3389_fimmu_2022_921366
crossref_primary_10_1186_s13046_021_02092_5
crossref_primary_10_1111_all_15221
crossref_primary_10_1073_pnas_2008491117
crossref_primary_10_4103_1673_5374_377588
crossref_primary_10_1111_imm_13280
crossref_primary_10_1371_journal_ppat_1010596
crossref_primary_10_1093_humrep_deae107
crossref_primary_10_3389_fcell_2020_621760
crossref_primary_10_3390_ijms22010141
crossref_primary_10_3390_nu16060810
crossref_primary_10_1016_j_ejphar_2023_175879
crossref_primary_10_1136_jitc_2021_003995
crossref_primary_10_1002_mgg3_1538
crossref_primary_10_1016_j_immuni_2020_12_010
crossref_primary_10_1111_febs_15853
crossref_primary_10_1111_imm_13608
crossref_primary_10_3390_nu13020466
crossref_primary_10_1016_j_coi_2023_102333
crossref_primary_10_1093_brain_awad332
Cites_doi 10.1016/j.celrep.2015.07.038
10.1038/ni.3494
10.1038/nri.2016.144
10.1007/s00401-018-1813-3
10.1101/gad.924501
10.1038/ni.1915
10.1016/j.cell.2015.11.009
10.1038/ncomms4770
10.1016/j.immuni.2011.12.019
10.1177/1352458509355068
10.1038/nri3871
10.4049/jimmunol.0803143
10.1016/j.jaut.2019.102314
10.1084/jem.20110278
10.1038/s41586-018-0846-z
10.1038/s41590-018-0083-5
10.1038/nm.3868
10.1038/nri.2016.112
10.1186/s12964-019-0361-3
10.1038/ni.1993
10.1073/pnas.0711175105
10.1016/j.jaci.2011.12.965
10.1073/pnas.1616942114
10.1038/nn.3469
10.1002/eji.201141512
10.1038/s41467-018-03852-2
10.1016/j.cell.2012.09.016
10.1038/nm.3704
10.1038/ni.1912
10.1016/j.cell.2015.10.068
10.2353/ajpath.2008.070690
10.1038/nprot.2006.285
10.1016/j.immuni.2016.05.015
10.1038/s41586-018-0806-7
10.1016/j.cell.2011.07.033
10.1038/nature14452
10.1084/jem.20062512
10.1212/WNL.57.6.1132
10.3389/fncel.2017.00333
10.1016/j.ymthe.2018.07.018
10.1038/nature10957
10.1016/j.cytogfr.2013.03.003
10.1172/JCI78085
10.1177/135245859900500206
10.1038/ni.1995
10.1038/nri.2017.50
10.1084/jem.20082603
10.1038/ni.2416
10.4049/jimmunol.182.3.1237
10.1038/s41467-017-01571-8
10.1038/nature06880
10.1371/journal.pone.0173655
ContentType Journal Article
Copyright Copyright National Academy of Sciences Jun 2, 2020
Distributed under a Creative Commons Attribution 4.0 International License
2020
Copyright_xml – notice: Copyright National Academy of Sciences Jun 2, 2020
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: 2020
DBID NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
1XC
5PM
DOI 10.1073/pnas.1918196117
DatabaseName PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
Virology and AIDS Abstracts


CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 12280
ExternalDocumentID oai_HAL_hal_04759166v1
10_1073_pnas_1918196117
32409602
26931272
Genre Journal Article
GrantInformation_xml – fundername: National Multiple Sclerosis Society (National MS Society)
  grantid: RG4111A1 and JF2161-A-5
– fundername: General Secretariat for Research and Technology (GSRT)
  grantid: #5035
– fundername: U.S. Department of Defense (DOD)
  grantid: PC130767
– fundername: HHS | National Institutes of Health (NIH)
  grantid: R21AI122389
– fundername: General Secretariat for Research and Technology (GSRT)
  grantid: 09-12-1074
– fundername: "Theoharis" PhD scholarship
  grantid: -
– fundername: Fondation Santé Research Grant in the Biomedical Sciences
  grantid: -
– fundername: Alexander and Margaret Stewart Trust (Alexander & Margaret Stewart Trust)
  grantid: -
– fundername: HHS | National Institutes of Health (NIH)
  grantid: NS102807; NS087867; ES02530; AI126880 and AI093903
– fundername: Melanoma Research Alliance (MRA)
  grantid: -
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
79B
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADZLD
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASUFR
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
F5P
FRP
GX1
HH5
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
~02
~KM
ADACV
H13
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
1XC
5PM
ID FETCH-LOGICAL-c477t-b50bde35b97c838562fe6292516eb37af3243e2231fbe80c4ed0b6b5293148103
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:16:33 EDT 2024
Fri Nov 01 06:44:20 EDT 2024
Fri Aug 16 23:41:00 EDT 2024
Tue Nov 19 15:48:16 EST 2024
Thu Nov 21 22:00:18 EST 2024
Sat Sep 28 08:27:19 EDT 2024
Fri Feb 02 07:18:44 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords autoimmune neuroinflammation
activin-A
cytokines
ectonucleotidases
Th17 cell differentiation
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Published under the PNAS license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c477t-b50bde35b97c838562fe6292516eb37af3243e2231fbe80c4ed0b6b5293148103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: I.M., G.P., M.S., F.S., F.P., F.J.Q., and G.X. designed research; I.M., A.I.T., G.P., M.S., A.B., A.M., P.W., and B.L. performed research; E.B. contributed new reagents/analytic tools; T.K., K.K., and T.D. recruited patients and acquired clinical samples; I.M., A.I.T., G.P., M.S., D.K., A.M., M.K., P.W., S.D.G., and G.X. analyzed data; and I.M., S.D.G., F.J.Q., and G.X. wrote the paper.
1A.I.T. and G.P. contributed equally to this work.
Edited by Gabriel A. Rabinovich, University of Buenos Aires, Autonomous City of Buenos Aires, Argentina, and approved April 1, 2020 (received for review October 24, 2019)
2S.D.G. and F.J.Q. contributed equally to this work.
ORCID 0000-0002-5647-6505
0000-0003-4589-1612
0000-0001-7944-2343
0000-0002-2956-2221
0000-0002-1050-0805
0000-0003-2142-3021
0000-0002-3022-4350
OpenAccessLink https://www.pnas.org/content/pnas/117/22/12269.full.pdf
PMID 32409602
PQID 2412645183
PQPubID 42026
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7275751
hal_primary_oai_HAL_hal_04759166v1
proquest_miscellaneous_2404045503
proquest_journals_2412645183
crossref_primary_10_1073_pnas_1918196117
pubmed_primary_32409602
jstor_primary_26931272
PublicationCentury 2000
PublicationDate 2020-06-02
PublicationDateYYYYMMDD 2020-06-02
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle From the Cover
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2020
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References Mahon P. C. (e_1_3_4_41_2) 2001; 15
Ciofani M. (e_1_3_4_34_2) 2012; 151
Jiang Y. (e_1_3_4_35_2) 2018; 9
Lee Y. (e_1_3_4_8_2) 2012; 13
Shi L. Z. (e_1_3_4_39_2) 2011; 208
Gandhi R. (e_1_3_4_38_2) 2010; 11
Gaublomme J. T. (e_1_3_4_47_2) 2015; 163
Apetoh L. (e_1_3_4_37_2) 2010; 11
Zielinski C. E. (e_1_3_4_11_2) 2012; 484
Mascanfroni I. D. (e_1_3_4_28_2) 2015; 21
Mills J. H. (e_1_3_4_30_2) 2008; 105
Burkett P. R. (e_1_3_4_3_2) 2015; 125
Hirota K. (e_1_3_4_26_2) 2011; 12
Tzartos J. S. (e_1_3_4_6_2) 2008; 172
Deaglio S. (e_1_3_4_29_2) 2007; 204
Semitekolou M. (e_1_3_4_21_2) 2009; 206
Karmaus P. W. F. (e_1_3_4_24_2) 2019; 565
Dos Passos G. R. (e_1_3_4_4_2) 2016; 2016
Huber S. (e_1_3_4_19_2) 2009; 182
Yang X.-P. (e_1_3_4_36_2) 2011; 12
Heinemann C. (e_1_3_4_14_2) 2014; 5
Dang E. V. (e_1_3_4_40_2) 2011; 146
Jones C. P. (e_1_3_4_17_2) 2012; 129
Regateiro F. S. (e_1_3_4_48_2) 2011; 41
Stockinger B. (e_1_3_4_7_2) 2017; 17
Matusevicius D. (e_1_3_4_5_2) 1999; 5
Croxford A. L. (e_1_3_4_27_2) 2009; 182
Ji A. L. (e_1_3_4_51_2) 2016; 20
Lau D. (e_1_3_4_44_2) 2015; 12
Tousa S. (e_1_3_4_22_2) 2017; 114
Gabryšová L. (e_1_3_4_50_2) 2018; 19
Quintana F. J. (e_1_3_4_25_2) 2008; 453
Chalmin F. (e_1_3_4_33_2) 2012; 36
Hedger M. P. (e_1_3_4_15_2) 2013; 24
Mellergård J. (e_1_3_4_52_2) 2010; 16
Locci M. (e_1_3_4_20_2) 2016; 17
Wang C. (e_1_3_4_10_2) 2015; 163
Stromnes I. M. (e_1_3_4_54_2) 2006; 1
Buchthal B. (e_1_3_4_43_2) 2018; 26
Lünemann J. D. (e_1_3_4_53_2) 2001; 57
Weinberg S. E. (e_1_3_4_42_2) 2019; 565
Korn T. (e_1_3_4_2_2) 2017; 17
Gagliani N. (e_1_3_4_13_2) 2015; 523
Dillenburg A. (e_1_3_4_45_2) 2018; 135
Chen W. (e_1_3_4_16_2) 2016; 16
Jakovljevic M. (e_1_3_4_32_2) 2017; 11
Morianos I. (e_1_3_4_18_2) 2019; 104
Miron V. E. (e_1_3_4_46_2) 2013; 16
Dendrou C. A. (e_1_3_4_1_2) 2015; 15
Hu D. (e_1_3_4_12_2) 2017; 8
Berod L. (e_1_3_4_23_2) 2014; 20
Hernandez-Mir G. (e_1_3_4_31_2) 2017; 12
Ichiyama K. (e_1_3_4_9_2) 2016; 44
Zhang Z. (e_1_3_4_49_2) 2019; 17
References_xml – volume: 12
  start-page: 1353
  year: 2015
  ident: e_1_3_4_44_2
  article-title: BDNF reduces toxic extrasynaptic NMDA receptor signaling via synaptic NMDA receptors and nuclear-calcium-induced transcription of inhba/activin A
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.07.038
  contributor:
    fullname: Lau D.
– volume: 17
  start-page: 976
  year: 2016
  ident: e_1_3_4_20_2
  article-title: Activin A programs the differentiation of human TFH cells
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3494
  contributor:
    fullname: Locci M.
– volume: 17
  start-page: 179
  year: 2017
  ident: e_1_3_4_2_2
  article-title: T cell responses in the central nervous system
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2016.144
  contributor:
    fullname: Korn T.
– volume: 135
  start-page: 887
  year: 2018
  ident: e_1_3_4_45_2
  article-title: Activin receptors regulate the oligodendrocyte lineage in health and disease
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-018-1813-3
  contributor:
    fullname: Dillenburg A.
– volume: 15
  start-page: 2675
  year: 2001
  ident: e_1_3_4_41_2
  article-title: FIH-1: A novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity
  publication-title: Genes Dev.
  doi: 10.1101/gad.924501
  contributor:
    fullname: Mahon P. C.
– volume: 11
  start-page: 846
  year: 2010
  ident: e_1_3_4_38_2
  article-title: Activation of the aryl hydrocarbon receptor induces human type 1 regulatory T cell-like and Foxp3(+) regulatory T cells
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1915
  contributor:
    fullname: Gandhi R.
– volume: 163
  start-page: 1400
  year: 2015
  ident: e_1_3_4_47_2
  article-title: Single-cell genomics unveils critical regulators of Th17 cell pathogenicity
  publication-title: Cell
  doi: 10.1016/j.cell.2015.11.009
  contributor:
    fullname: Gaublomme J. T.
– volume: 5
  start-page: 3770
  year: 2014
  ident: e_1_3_4_14_2
  article-title: IL-27 and IL-12 oppose pro-inflammatory IL-23 in CD4+ T cells by inducing Blimp1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4770
  contributor:
    fullname: Heinemann C.
– volume: 36
  start-page: 362
  year: 2012
  ident: e_1_3_4_33_2
  article-title: Stat3 and Gfi-1 transcription factors control Th17 cell immunosuppressive activity via the regulation of ectonucleotidase expression
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.12.019
  contributor:
    fullname: Chalmin F.
– volume: 16
  start-page: 208
  year: 2010
  ident: e_1_3_4_52_2
  article-title: Natalizumab treatment in multiple sclerosis: Marked decline of chemokines and cytokines in cerebrospinal fluid
  publication-title: Mult. Scler.
  doi: 10.1177/1352458509355068
  contributor:
    fullname: Mellergård J.
– volume: 15
  start-page: 545
  year: 2015
  ident: e_1_3_4_1_2
  article-title: Immunopathology of multiple sclerosis
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3871
  contributor:
    fullname: Dendrou C. A.
– volume: 182
  start-page: 4633
  year: 2009
  ident: e_1_3_4_19_2
  article-title: Activin a promotes the TGF-β-induced conversion of CD4+CD25- T cells into Foxp3+ induced regulatory T cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0803143
  contributor:
    fullname: Huber S.
– volume: 104
  start-page: 102314
  year: 2019
  ident: e_1_3_4_18_2
  article-title: Activin-A in the regulation of immunity in health and disease
  publication-title: J. Autoimmun.
  doi: 10.1016/j.jaut.2019.102314
  contributor:
    fullname: Morianos I.
– volume: 208
  start-page: 1367
  year: 2011
  ident: e_1_3_4_39_2
  article-title: HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20110278
  contributor:
    fullname: Shi L. Z.
– volume: 565
  start-page: 495
  year: 2019
  ident: e_1_3_4_42_2
  article-title: Mitochondrial complex III is essential for suppressive function of regulatory T cells
  publication-title: Nature
  doi: 10.1038/s41586-018-0846-z
  contributor:
    fullname: Weinberg S. E.
– volume: 19
  start-page: 497
  year: 2018
  ident: e_1_3_4_50_2
  article-title: c-Maf controls immune responses by regulating disease-specific gene networks and repressing IL-2 in CD4+ T cells
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-018-0083-5
  contributor:
    fullname: Gabryšová L.
– volume: 21
  start-page: 638
  year: 2015
  ident: e_1_3_4_28_2
  article-title: Metabolic control of type 1 regulatory T cell differentiation by AHR and HIF1-α
  publication-title: Nat. Med.
  doi: 10.1038/nm.3868
  contributor:
    fullname: Mascanfroni I. D.
– volume: 16
  start-page: 723
  year: 2016
  ident: e_1_3_4_16_2
  article-title: Immunoregulation by members of the TGFβ superfamily
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2016.112
  contributor:
    fullname: Chen W.
– volume: 17
  start-page: 45
  year: 2019
  ident: e_1_3_4_49_2
  article-title: Activin a promotes myofibroblast differentiation of endometrial mesenchymal stem cells via STAT3-dependent Smad/CTGF pathway
  publication-title: Cell Commun. Signal.
  doi: 10.1186/s12964-019-0361-3
  contributor:
    fullname: Zhang Z.
– volume: 12
  start-page: 255
  year: 2011
  ident: e_1_3_4_26_2
  article-title: Fate mapping of IL-17-producing T cells in inflammatory responses
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1993
  contributor:
    fullname: Hirota K.
– volume: 105
  start-page: 9325
  year: 2008
  ident: e_1_3_4_30_2
  article-title: CD73 is required for efficient entry of lymphocytes into the central nervous system during experimental autoimmune encephalomyelitis
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0711175105
  contributor:
    fullname: Mills J. H.
– volume: 129
  start-page: 1000
  year: 2012
  ident: e_1_3_4_17_2
  article-title: Activin A and TGF-β promote T(H)9 cell-mediated pulmonary allergic pathology
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2011.12.965
  contributor:
    fullname: Jones C. P.
– volume: 114
  start-page: E2891
  year: 2017
  ident: e_1_3_4_22_2
  article-title: Activin-A co-opts IRF4 and AhR signaling to induce human regulatory T cells that restrain asthmatic responses
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1616942114
  contributor:
    fullname: Tousa S.
– volume: 16
  start-page: 1211
  year: 2013
  ident: e_1_3_4_46_2
  article-title: M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3469
  contributor:
    fullname: Miron V. E.
– volume: 41
  start-page: 2955
  year: 2011
  ident: e_1_3_4_48_2
  article-title: Generation of anti-inflammatory adenosine by leukocytes is regulated by TGF-β
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201141512
  contributor:
    fullname: Regateiro F. S.
– volume: 9
  start-page: 1424
  year: 2018
  ident: e_1_3_4_35_2
  article-title: Epigenetic activation during T helper 17 cell differentiation is mediated by Tripartite motif containing 28
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03852-2
  contributor:
    fullname: Jiang Y.
– volume: 151
  start-page: 289
  year: 2012
  ident: e_1_3_4_34_2
  article-title: A validated regulatory network for Th17 cell specification
  publication-title: Cell
  doi: 10.1016/j.cell.2012.09.016
  contributor:
    fullname: Ciofani M.
– volume: 20
  start-page: 1327
  year: 2014
  ident: e_1_3_4_23_2
  article-title: De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells
  publication-title: Nat. Med.
  doi: 10.1038/nm.3704
  contributor:
    fullname: Berod L.
– volume: 11
  start-page: 854
  year: 2010
  ident: e_1_3_4_37_2
  article-title: The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1912
  contributor:
    fullname: Apetoh L.
– volume: 20
  start-page: 4274
  year: 2016
  ident: e_1_3_4_51_2
  article-title: The clinical significance of level changes of hs-CRP, IL-10 and TNF for patients with MS during active and relieving period
  publication-title: Eur. Rev. Med. Pharmacol. Sci.
  contributor:
    fullname: Ji A. L.
– volume: 163
  start-page: 1413
  year: 2015
  ident: e_1_3_4_10_2
  article-title: CD5L/AIM regulates lipid biosynthesis and restrains Th17 cell pathogenicity
  publication-title: Cell
  doi: 10.1016/j.cell.2015.10.068
  contributor:
    fullname: Wang C.
– volume: 172
  start-page: 146
  year: 2008
  ident: e_1_3_4_6_2
  article-title: Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis
  publication-title: Am. J. Pathol.
  doi: 10.2353/ajpath.2008.070690
  contributor:
    fullname: Tzartos J. S.
– volume: 1
  start-page: 1810
  year: 2006
  ident: e_1_3_4_54_2
  article-title: Active induction of experimental allergic encephalomyelitis
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2006.285
  contributor:
    fullname: Stromnes I. M.
– volume: 44
  start-page: 1284
  year: 2016
  ident: e_1_3_4_9_2
  article-title: The MicroRNA-183-96-182 cluster promotes T helper 17 cell pathogenicity by negatively regulating transcription factor Foxo1 expression
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.05.015
  contributor:
    fullname: Ichiyama K.
– volume: 565
  start-page: 101
  year: 2019
  ident: e_1_3_4_24_2
  article-title: Metabolic heterogeneity underlies reciprocal fates of TH17 cell stemness and plasticity
  publication-title: Nature
  doi: 10.1038/s41586-018-0806-7
  contributor:
    fullname: Karmaus P. W. F.
– volume: 146
  start-page: 772
  year: 2011
  ident: e_1_3_4_40_2
  article-title: Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1
  publication-title: Cell
  doi: 10.1016/j.cell.2011.07.033
  contributor:
    fullname: Dang E. V.
– volume: 523
  start-page: 221
  year: 2015
  ident: e_1_3_4_13_2
  article-title: Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation
  publication-title: Nature
  doi: 10.1038/nature14452
  contributor:
    fullname: Gagliani N.
– volume: 204
  start-page: 1257
  year: 2007
  ident: e_1_3_4_29_2
  article-title: Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20062512
  contributor:
    fullname: Deaglio S.
– volume: 57
  start-page: 1132
  year: 2001
  ident: e_1_3_4_53_2
  article-title: Downregulation of transforming growth factor-beta1 in interferon-beta1a-treated MS patients
  publication-title: Neurology
  doi: 10.1212/WNL.57.6.1132
  contributor:
    fullname: Lünemann J. D.
– volume: 11
  start-page: 333
  year: 2017
  ident: e_1_3_4_32_2
  article-title: Down-regulation of NTPDase2 and ADP-sensitive P2 purinoceptors correlate with severity of symptoms during experimental autoimmune encephalomyelitis
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2017.00333
  contributor:
    fullname: Jakovljevic M.
– volume: 26
  start-page: 2357
  year: 2018
  ident: e_1_3_4_43_2
  article-title: Post-injury nose-to-brain delivery of activin A and SerpinB2 reduces brain damage in a mouse stroke model
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2018.07.018
  contributor:
    fullname: Buchthal B.
– volume: 484
  start-page: 514
  year: 2012
  ident: e_1_3_4_11_2
  article-title: Pathogen-induced human TH17 cells produce IFN-γ or IL-10 and are regulated by IL-1β
  publication-title: Nature
  doi: 10.1038/nature10957
  contributor:
    fullname: Zielinski C. E.
– volume: 24
  start-page: 285
  year: 2013
  ident: e_1_3_4_15_2
  article-title: The activins and their binding protein, follistatin-Diagnostic and therapeutic targets in inflammatory disease and fibrosis
  publication-title: Cytokine Growth Factor Rev.
  doi: 10.1016/j.cytogfr.2013.03.003
  contributor:
    fullname: Hedger M. P.
– volume: 125
  start-page: 2211
  year: 2015
  ident: e_1_3_4_3_2
  article-title: Pouring fuel on the fire: Th17 cells, the environment, and autoimmunity
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI78085
  contributor:
    fullname: Burkett P. R.
– volume: 5
  start-page: 101
  year: 1999
  ident: e_1_3_4_5_2
  article-title: Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis
  publication-title: Mult. Scler.
  doi: 10.1177/135245859900500206
  contributor:
    fullname: Matusevicius D.
– volume: 2016
  start-page: 5314541
  year: 2016
  ident: e_1_3_4_4_2
  article-title: Th17 cells pathways in multiple sclerosis and neuromyelitis optica spectrum disorders: Pathophysiological and therapeutic implications
  publication-title: Mediators Inflamm.
  contributor:
    fullname: Dos Passos G. R.
– volume: 12
  start-page: 247
  year: 2011
  ident: e_1_3_4_36_2
  article-title: Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1995
  contributor:
    fullname: Yang X.-P.
– volume: 17
  start-page: 535
  year: 2017
  ident: e_1_3_4_7_2
  article-title: The dichotomous nature of T helper 17 cells
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2017.50
  contributor:
    fullname: Stockinger B.
– volume: 206
  start-page: 1769
  year: 2009
  ident: e_1_3_4_21_2
  article-title: Activin-A induces regulatory T cells that suppress T helper cell immune responses and protect from allergic airway disease
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20082603
  contributor:
    fullname: Semitekolou M.
– volume: 13
  start-page: 991
  year: 2012
  ident: e_1_3_4_8_2
  article-title: Induction and molecular signature of pathogenic TH17 cells
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2416
  contributor:
    fullname: Lee Y.
– volume: 182
  start-page: 1237
  year: 2009
  ident: e_1_3_4_27_2
  article-title: Cutting edge: An IL-17F-CreEYFP reporter mouse allows fate mapping of Th17 cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.182.3.1237
  contributor:
    fullname: Croxford A. L.
– volume: 8
  start-page: 1600
  year: 2017
  ident: e_1_3_4_12_2
  article-title: Transcriptional signature of human pro-inflammatory TH17 cells identifies reduced IL10 gene expression in multiple sclerosis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01571-8
  contributor:
    fullname: Hu D.
– volume: 453
  start-page: 65
  year: 2008
  ident: e_1_3_4_25_2
  article-title: Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor
  publication-title: Nature
  doi: 10.1038/nature06880
  contributor:
    fullname: Quintana F. J.
– volume: 12
  start-page: e0173655
  year: 2017
  ident: e_1_3_4_31_2
  article-title: CD73 is expressed by inflammatory Th17 cells in experimental autoimmune encephalomyelitis but does not limit differentiation or pathogenesis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0173655
  contributor:
    fullname: Hernandez-Mir G.
SSID ssj0009580
Score 2.5025008
Snippet In multiple sclerosis (MS), Th17 cells are critical drivers of autoimmune central nervous system (CNS) inflammation and demyelination. Th17 cells exhibit...
Pathogenic Th17 cells are critical drivers of autoimmune neuroinflammation in multiple sclerosis (MS). We report that administration of the cytokine activin-A...
SourceID pubmedcentral
hal
proquest
crossref
pubmed
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 12269
SubjectTerms Activin
Aromatic compounds
Biological Sciences
c-Maf protein
CD73 antigen
Cell activation
Central nervous system
Demyelination
Experimental allergic encephalomyelitis
Functionals
Gene expression
Genomes
Helper cells
Heterogeneity
Hypoxia
Hypoxia-inducible factor 1
Hypoxia-inducible factors
In vivo methods and tests
Inflammation
Kinases
Life Sciences
Lymphocytes T
Multiple sclerosis
Pathogenicity
Pathogens
Receptors
Stat3 protein
Transcription
SummonAdditionalLinks – databaseName: JSTOR Health & General Sciences
  dbid: JSG
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwELXYnrhACxRCCzIIpHIIdeLETo6r3ZYVQlxaJG6RHTvaSJVTkWyr3nrtmS_hR_gIvoQZJ9l2EUhc41FiacYzbzKeN4S8kQrihtI6zEvDwqSSLMxZlYQmTSxjJhfWz4xcnMjPX7P5EdLkvB17YfBapb8X6Kv4AJD0mT2MRc6jWIKnnWT-9H08-XCHWTfr-0xicLdJnIz8PZIfnjvVvoeEBKKeiPxIstvQM1nixcf-DuLf0OWflyTvRJ3jh_-5323yYICVdNrbwQ65Z90jsjMc3JYeDOzS7x6Tmyl6uNqFU3qGzU0tPV1GkuJk4gaMqS4BllPlDFWrrqmxe8RST3oJpgjW03c60ota0dmc515yNpec4t9_h-TITVcbCI2tX1rUVRT-_PHr-vs4bbfzn7pUV-0T8uX46HS2CId5DGGZSNmFOmXaWJ7qXJYZzwA5VVbEOSAkASm5VBWAM24Bb0SVthkrE2uYFjoFRAFJV8T4LtlyjbPPCM0MeEoDUMGKMoEUU6WyVBZ8QaawdlgF5GBUVXHe024UvlwueYFaLW61GpDXoMq1FNJlL6afCnzGkMwwEuIiCsiu19JabFRRQPZH1RfD6W0LQDWAE1PwdgF5tV6Gc4fFFOVss0IZcH_YEg4yT3tLWb8cSQ4hM4SXyw0b2tjk5oqrl57bG-AkVsKe_2u_e-R-jBk__geK98lW921lX5BJa1Yv_bH4DW5CCks
  priority: 102
  providerName: JSTOR
Title Activin-A limits Th17 pathogenicity and autoimmune neuroinflammation via CD39 and CD73 ectonucleotidases and Hif1-α–dependent pathways
URI https://www.jstor.org/stable/26931272
https://www.ncbi.nlm.nih.gov/pubmed/32409602
https://www.proquest.com/docview/2412645183
https://search.proquest.com/docview/2404045503
https://hal.science/hal-04759166
https://pubmed.ncbi.nlm.nih.gov/PMC7275751
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6xPXFBFCiElpVBHMohu86vk-Nqt9UeACFRJG6REzvaSK2zItlW3Lhy5kl4ER6iT9IZ5wcWceIaezdW5u-zPfMNwGshMW7IPHfTQnE3LAV3U16GropCzblKY217Rq4_ivefk9UZ0eREQy2MTdov8mpmLq9mptrY3MrtVTEf8sTmH94tMebSdcF8AhPEhsMWfWTaTbq6Ex_db-iHA5-PCOZbI5sZblAwCsaeR_33iI4OMby_F5UmG8qJ7NIT_wU8_86f_CMgnT-EBz2SZItuxYdwT5tHcNjbasNOe0LpN4_h-4KcWmXcBbukeqaGXWw8wagZcY36UxWIxJk0isldW1dUMKKZ5blE7UOF6Yob2XUl2XIVpHbmciUCRgf-hviQ67ZSGA0bO7SuSs_99fP224-hwW5rX3UjvzZP4NP52cVy7fYtGNwiFKJ184jnSgdRnooiCRIES6WO_RRBUYy7cCFL_ICBRojhlblOeBFqxfM4jxBE4D7L48ERHJja6GfAEoXOUSE60HER4leXkSikRvNPJF0Xlg6cDiLIth3TRmZvyEWQkeCy34Jz4BWKaJxFDNnrxduMnnHiL_Ti-Npz4MhKcJzmx7goX_gOnAwizXqDbTIEMggNI3RwDrwch9HU6P5EGl3vaA56PKoCxzlPOw0Y_3xQJAfEnm7sLXJ_BLXb0nn32vz8v395DPd9OgWgsyH_BA7aLzv9AiaN2k1tiuvU9tGYWjO5Aw9dFMk
link.rule.ids 230,315,729,782,786,808,811,887,27933,27934,53800,53802,58025,58037,58258,58270
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwELVoOcAFKFAIFDAIpHJI68SJnRxXu62CWHphkbhFTuxoI1VORbKteuPKmS_hR_gIvoQZJ9l2EUhcYyuxNOOZN5mZN4S8lgr8hioKPy0186NKMj9lVeTrODKM6VQYNzMy-yhPPiezI6TJeTP2wmBZpasLdFl8AEjFqTkMRcqDUIKlvRknjMu-cu8at27Sd5qEYHCjMBoZfCQ_PLOqPYCQBPyeCNxQsivns7XE0se-CvFv-PLPMslrfuf47n-e-B65MwBLOuk1YYfcMPY-2Rmubkv3B37ptw_ItwnauNr6E3qK7U0tXSwDSXE2cQPqVJcAzKmymqpV19TYP2Koo70EZQT96Xsd6Xmt6HTGU7dzOpOc4v9_i_TITVdrcI6tW8rqKvB__vj19fs4b7dzn7pQl-1D8un4aDHN_GEig19GUnZ-EbNCGx4XqSwTngB2qowIU8BIAoJyqSqAZ9wA4giqwiSsjIxmhShiwBQQdgWM75Jt21jzmNBEg63UABaMKCMIMlUsS2XAGiQKs4eVR_ZHUeVnPfFG7hLmkuco1fxKqh55BaJc70LC7Gwyz_EZQzrDQIjzwCO7TkrrbaOIPLI3ij4f7m-bA64BpBiDvfPIy_Uy3DxMpyhrmhXuAQOITeGw51GvKeuXI80hxIbwcrmhQxuH3Fyx9dKxewOgxFzYk3-d9wW5lS0-zPP5u5P3T8ntEON__CsU7pHt7svKPCNbrV49d1fkN6zXDa4
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BbtQwELVokRAXSoFCoIBBHNqDu06cxMlxtdvVIqoKiSJxi-zY0UaqkhXJFnHj2jNfwo_wEf2SzjjJtovgwDW2EksznnmTmXlDyDupwG8orVmaG87CQnKW8iJkJgot5yaNrZsZOf8kT78k02OkyTkcemGwrNLVBbosPgAkfW5HS1OMgjgVfiDB2t6NIKpJuuEAt_h1k67bJACjGwbhwOIjxWhZqeYIwhLwfbHvBpPdOKCtBZY_dpWIf8OYf5ZK3vI9s53_OPVD8qAHmHTcacQuuWOrR2S3v8INPeh5pg8fk8sx2rqyYmN6jm1ODT1b-JLijOIa1KrMAaBTVRmqVm1dYh-JpY7-EpQS9KjreaQXpaKTqUjdzslUCop5gAppkuu2NOAkG7c0Lwuf_f519ePnMHe3dZ_6pr43T8jn2fHZZM76yQwsD6VsmY64NlZEOpV5IhLAUIWNgxSwUgzBuVQFwDRhAXn4hbYJz0NruI51BNgCwi-fiz2yXdWVfUZoYsBmGgANNs5DCDZVJHNlwSokCrOIhUcOBnFly46AI3OJcykylGx2I1mPvAVxrnchcfZ8fJLhM460hn4cX_ge2XOSWm8bROSR_UH8WX-PmwzwDSDGCOyeR96sl-EGYlpFVbZe4R4whNgcDnuedtqyfjnSHUKMCC-XG3q0ccjNlapcOJZvAJaYE3v-r_O-Jvc-TmfZyfvTDy_I_QB_A-DPoWCfbLdfV_Yl2WrM6pW7JddFLxAn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Activin-A+limits+Th17+pathogenicity+and+autoimmune+neuroinflammation+via+CD39+and+CD73+ectonucleotidases+and+Hif1-%CE%B1%E2%80%93dependent+pathways&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Morianos%2C+Ioannis&rft.au=Trochoutsou%2C+Aikaterini+I.&rft.au=Papadopoulou%2C+Gina&rft.au=Semitekolou%2C+Maria&rft.date=2020-06-02&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=117&rft.issue=22&rft.spage=12269&rft.epage=12280&rft_id=info:doi/10.1073%2Fpnas.1918196117&rft.externalDocID=26931272
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon