Activin-A limits Th17 pathogenicity and autoimmune neuroinflammation via CD39 and CD73 ectonucleotidases and Hif1-α–dependent pathways
In multiple sclerosis (MS), Th17 cells are critical drivers of autoimmune central nervous system (CNS) inflammation and demyelination. Th17 cells exhibit functional heterogeneity fostering both pathogenic and nonpathogenic, tissue-protective functions. Still, the factors that control Th17 pathogenic...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS Vol. 117; no. 22; pp. 12269 - 12280 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
National Academy of Sciences
02-06-2020
|
Series: | From the Cover |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | In multiple sclerosis (MS), Th17 cells are critical drivers of autoimmune central nervous system (CNS) inflammation and demyelination. Th17 cells exhibit functional heterogeneity fostering both pathogenic and nonpathogenic, tissue-protective functions. Still, the factors that control Th17 pathogenicity remain incompletely defined. Here, using experimental autoimmune encephalomyelitis, an established mouse MS model, we report that therapeutic administration of activin-A ameliorates disease severity and alleviates CNS immunopathology and demyelination, associated with decreased activation of Th17 cells. In fact, activin-A signaling through activin-like kinase-4 receptor represses pathogenic transcriptional programs in Th17-polarized cells, while it enhances antiinflammatory gene modules. Whole-genome profiling and in vivo functional studies revealed that activation of the ATP-depleting CD39 and CD73 ectonucleotidases is essential for activin-A–induced suppression of the pathogenic signature and the encephalitogenic functions of Th17 cells. Mechanistically, the aryl hydrocarbon receptor, along with STAT3 and c-Maf, are recruited to promoter elements on Entpd1 and Nt5e (encoding CD39 and CD73, respectively) and other antiinflammatory genes, and control their expression in Th17 cells in response to activin-A. Notably, we show that activin-A negatively regulates the metabolic sensor, hypoxia-inducible factor-1α, and key inflammatory proteins linked to pathogenic Th17 cell states. Of translational relevance, we demonstrate that activin-A is induced in the CNS of individuals with MS and restrains human Th17 cell responses. These findings uncover activin-A as a critical controller of Th17 cell pathogenicity that can be targeted for the suppression of autoimmune CNS inflammation. |
---|---|
AbstractList | In multiple sclerosis (MS), Th17 cells are critical drivers of autoimmune central nervous system (CNS) inflammation and demyelination. Th17 cells exhibit functional heterogeneity fostering both pathogenic and nonpathogenic, tissue-protective functions. Still, the factors that control Th17 pathogenicity remain incompletely defined. Here, using experimental autoimmune encephalomyelitis, an established mouse MS model, we report that therapeutic administration of activin-A ameliorates disease severity and alleviates CNS immunopathology and demyelination, associated with decreased activation of Th17 cells. In fact, activin-A signaling through activin-like kinase-4 receptor represses pathogenic transcriptional programs in Th17-polarized cells, while it enhances antiinflammatory gene modules. Whole-genome profiling and in vivo functional studies revealed that activation of the ATP-depleting CD39 and CD73 ectonucleotidases is essential for activin-A-induced suppression of the pathogenic signature and the encephalitogenic functions of Th17 cells. Mechanistically, the aryl hydrocarbon receptor, along with STAT3 and c-Maf, are recruited to promoter elements on
and
(encoding CD39 and CD73, respectively) and other antiinflammatory genes, and control their expression in Th17 cells in response to activin-A. Notably, we show that activin-A negatively regulates the metabolic sensor, hypoxia-inducible factor-1α, and key inflammatory proteins linked to pathogenic Th17 cell states. Of translational relevance, we demonstrate that activin-A is induced in the CNS of individuals with MS and restrains human Th17 cell responses. These findings uncover activin-A as a critical controller of Th17 cell pathogenicity that can be targeted for the suppression of autoimmune CNS inflammation. In multiple sclerosis (MS), Th17 cells are critical drivers of autoimmune central nervous system (CNS) inflammation and demyelination. Th17 cells exhibit functional heterogeneity fostering both pathogenic and nonpathogenic, tissue-protective functions. Still, the factors that control Th17 pathogenicity remain incompletely defined. Here, using experimental autoimmune encephalomyelitis, an established mouse MS model, we report that therapeutic administration of activin-A ameliorates disease severity and alleviates CNS immunopathology and demyelination, associated with decreased activation of Th17 cells. In fact, activin-A signaling through activin-like kinase-4 receptor represses pathogenic transcriptional programs in Th17-polarized cells, while it enhances antiinflammatory gene modules. Whole-genome profiling and in vivo functional studies revealed that activation of the ATP-depleting CD39 and CD73 ectonucleotidases is essential for activin-A–induced suppression of the pathogenic signature and the encephalitogenic functions of Th17 cells. Mechanistically, the aryl hydrocarbon receptor, along with STAT3 and c-Maf, are recruited to promoter elements on Entpd1 and Nt5e (encoding CD39 and CD73, respectively) and other antiinflammatory genes, and control their expression in Th17 cells in response to activin-A. Notably, we show that activin-A negatively regulates the metabolic sensor, hypoxia-inducible factor-1α, and key inflammatory proteins linked to pathogenic Th17 cell states. Of translational relevance, we demonstrate that activin-A is induced in the CNS of individuals with MS and restrains human Th17 cell responses. These findings uncover activin-A as a critical controller of Th17 cell pathogenicity that can be targeted for the suppression of autoimmune CNS inflammation. Pathogenic Th17 cells are critical drivers of autoimmune neuroinflammation in multiple sclerosis (MS). We report that administration of the cytokine activin-A ameliorated disease severity in an animal MS model and attenuated CNS neuroinflammation associated with decreased pathogenic Th17 responses. Whole-genome profiling and functional studies revealed that activin-A upregulated the antiinflammatory CD73 and CD39 ectonucleotidases and this was essential for the suppression of the pathogenic signature and encephalitogenic functions of Th17 cells. Mechanistically, activin-A signaling increased antiinflammatory gene expression through activation of the transcription factors AhR, STAT3, and c-Maf and inhibited pathogenic Th17 programs through down-regulation of the metabolic sensor, Hif1-α, and other inflammatory proteins. Of clinical relevance, we show that activin-A restrained pathogenic human Th17 cell responses in MS patients. In multiple sclerosis (MS), Th17 cells are critical drivers of autoimmune central nervous system (CNS) inflammation and demyelination. Th17 cells exhibit functional heterogeneity fostering both pathogenic and nonpathogenic, tissue-protective functions. Still, the factors that control Th17 pathogenicity remain incompletely defined. Here, using experimental autoimmune encephalomyelitis, an established mouse MS model, we report that therapeutic administration of activin-A ameliorates disease severity and alleviates CNS immunopathology and demyelination, associated with decreased activation of Th17 cells. In fact, activin-A signaling through activin-like kinase-4 receptor represses pathogenic transcriptional programs in Th17-polarized cells, while it enhances antiinflammatory gene modules. Whole-genome profiling and in vivo functional studies revealed that activation of the ATP-depleting CD39 and CD73 ectonucleotidases is essential for activin-A–induced suppression of the pathogenic signature and the encephalitogenic functions of Th17 cells. Mechanistically, the aryl hydrocarbon receptor, along with STAT3 and c-Maf, are recruited to promoter elements on Entpd1 and Nt5e (encoding CD39 and CD73, respectively) and other antiinflammatory genes, and control their expression in Th17 cells in response to activin-A. Notably, we show that activin-A negatively regulates the metabolic sensor, hypoxia-inducible factor-1α, and key inflammatory proteins linked to pathogenic Th17 cell states. Of translational relevance, we demonstrate that activin-A is induced in the CNS of individuals with MS and restrains human Th17 cell responses. These findings uncover activin-A as a critical controller of Th17 cell pathogenicity that can be targeted for the suppression of autoimmune CNS inflammation. In multiple sclerosis (MS), Th17 cells are critical drivers of autoimmune central nervous system (CNS) inflammation and demyelination. Th17 cells exhibit functional heterogeneity fostering both pathogenic and nonpathogenic, tissue-protective functions. Still, the factors that control Th17 pathogenicity remain incompletely defined. Here, using experimental autoimmune encephalomyelitis, an established mouse MS model, we report that therapeutic administration of activin-A ameliorates disease severity and alleviates CNS immunopathology and demyelination, associated with decreased activation of Th17 cells. In fact, activin-A signaling through activin-like kinase-4 receptor represses pathogenic transcriptional programs in Th17-polarized cells, while it enhances antiinflammatory gene modules. Whole-genome profiling and in vivo functional studies revealed that activation of the ATP-depleting CD39 and CD73 ectonucleotidases is essential for activin-A–induced suppression of the pathogenic signature and the encephalitogenic functions of Th17 cells. Mechanistically, the aryl hydrocarbon receptor, along with STAT3 and c-Maf, are recruited to promoter elements on Entpd1 and Nt5e (encoding CD39 and CD73, respectively) and other antiinflammatory genes, and control their expression in Th17 cells in response to activin-A. Notably, we show that activin-A negatively regulates the metabolic sensor, hypoxia-inducible factor-1α, and key inflammatory proteins linked to pathogenic Th17 cell states. Of translational relevance, we demonstrate that activin-A is induced in the CNS of individuals with MS and restrains human Th17 cell responses. These findings uncover activin-A as a critical controller of Th17 cell pathogenicity that can be targeted for the suppression of autoimmune CNS inflammation. |
Author | Quintana, Francisco J. Wei, Ping Karageorgiou, Klinta Doskas, Triantafyllos Xanthou, Georgina Lomenick, Brett Pan, Fan Kalamatas, Themis Morianos, Ioannis Banos, Aggelos Trochoutsou, Aikaterini I. Manousopoulou, Antigoni Kapasa, Maria Belaidi, Elise Papadopoulou, Gina Sallusto, Federica Garbis, Spiros D. Semitekolou, Maria Konstantopoulos, Dimitris |
Author_xml | – sequence: 1 givenname: Ioannis surname: Morianos fullname: Morianos, Ioannis – sequence: 2 givenname: Aikaterini I. surname: Trochoutsou fullname: Trochoutsou, Aikaterini I. – sequence: 3 givenname: Gina surname: Papadopoulou fullname: Papadopoulou, Gina – sequence: 4 givenname: Maria surname: Semitekolou fullname: Semitekolou, Maria – sequence: 5 givenname: Aggelos surname: Banos fullname: Banos, Aggelos – sequence: 6 givenname: Dimitris surname: Konstantopoulos fullname: Konstantopoulos, Dimitris – sequence: 7 givenname: Antigoni surname: Manousopoulou fullname: Manousopoulou, Antigoni – sequence: 8 givenname: Maria surname: Kapasa fullname: Kapasa, Maria – sequence: 9 givenname: Ping surname: Wei fullname: Wei, Ping – sequence: 10 givenname: Brett surname: Lomenick fullname: Lomenick, Brett – sequence: 11 givenname: Elise surname: Belaidi fullname: Belaidi, Elise – sequence: 12 givenname: Themis surname: Kalamatas fullname: Kalamatas, Themis – sequence: 13 givenname: Klinta surname: Karageorgiou fullname: Karageorgiou, Klinta – sequence: 14 givenname: Triantafyllos surname: Doskas fullname: Doskas, Triantafyllos – sequence: 15 givenname: Federica surname: Sallusto fullname: Sallusto, Federica – sequence: 16 givenname: Fan surname: Pan fullname: Pan, Fan – sequence: 17 givenname: Spiros D. surname: Garbis fullname: Garbis, Spiros D. – sequence: 18 givenname: Francisco J. surname: Quintana fullname: Quintana, Francisco J. – sequence: 19 givenname: Georgina surname: Xanthou fullname: Xanthou, Georgina |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32409602$$D View this record in MEDLINE/PubMed https://hal.science/hal-04759166$$DView record in HAL |
BookMark | eNpdkk1v0zAYxy00xLrBmRMoEpdxyOaX2I4vk6oOKFIlLuNsOcmT1VVil9gp6o0r530Svggfgk-C244Ckw-W_P89r_6foRPnHSD0kuBLgiW7WjsTLokiJVGCEPkETQhWJBeFwidogjGVeVnQ4hSdhbDCGCte4mfolNECK4HpBH2f1tFurMunWWd7G0N2uyQyW5u49HfgbG3jNjOuycwYve370UHmYBy8dW1n-t5E6122sSab3TC1J2c3kmVQR-_GugMfbWMChL00ty3Jf_749e2-gTW4Blzcl_pqtuE5etqaLsCLh_scfX7_7nY2zxefPnycTRd5XUgZ84rjqgHGKyXrkpVc0BYEVZQTARWTpk2zMaCUkbaCEtcFNLgSFaeKkaIkmJ2j60Pe9Vj10NSph8F0ej3Y3gxb7Y3V_yvOLvWd32hJJZecpARvDwmWj8Lm04XeveFCckWE2OzYi4dig_8yQoi6t6GGrjMO_Bh0-od0OMcsoW8eoSs_Di6tIlGEioKTckddHah68CEM0B47IFjvLKF3ltB_LZEiXv8775H_44EEvDoAqxD9cNSpSBujkrLfZ_G_aQ |
CitedBy_id | crossref_primary_10_1016_j_intimp_2024_112217 crossref_primary_10_3389_fimmu_2022_921366 crossref_primary_10_1186_s13046_021_02092_5 crossref_primary_10_1111_all_15221 crossref_primary_10_1073_pnas_2008491117 crossref_primary_10_4103_1673_5374_377588 crossref_primary_10_1111_imm_13280 crossref_primary_10_1371_journal_ppat_1010596 crossref_primary_10_1093_humrep_deae107 crossref_primary_10_3389_fcell_2020_621760 crossref_primary_10_3390_ijms22010141 crossref_primary_10_3390_nu16060810 crossref_primary_10_1016_j_ejphar_2023_175879 crossref_primary_10_1136_jitc_2021_003995 crossref_primary_10_1002_mgg3_1538 crossref_primary_10_1016_j_immuni_2020_12_010 crossref_primary_10_1111_febs_15853 crossref_primary_10_1111_imm_13608 crossref_primary_10_3390_nu13020466 crossref_primary_10_1016_j_coi_2023_102333 crossref_primary_10_1093_brain_awad332 |
Cites_doi | 10.1016/j.celrep.2015.07.038 10.1038/ni.3494 10.1038/nri.2016.144 10.1007/s00401-018-1813-3 10.1101/gad.924501 10.1038/ni.1915 10.1016/j.cell.2015.11.009 10.1038/ncomms4770 10.1016/j.immuni.2011.12.019 10.1177/1352458509355068 10.1038/nri3871 10.4049/jimmunol.0803143 10.1016/j.jaut.2019.102314 10.1084/jem.20110278 10.1038/s41586-018-0846-z 10.1038/s41590-018-0083-5 10.1038/nm.3868 10.1038/nri.2016.112 10.1186/s12964-019-0361-3 10.1038/ni.1993 10.1073/pnas.0711175105 10.1016/j.jaci.2011.12.965 10.1073/pnas.1616942114 10.1038/nn.3469 10.1002/eji.201141512 10.1038/s41467-018-03852-2 10.1016/j.cell.2012.09.016 10.1038/nm.3704 10.1038/ni.1912 10.1016/j.cell.2015.10.068 10.2353/ajpath.2008.070690 10.1038/nprot.2006.285 10.1016/j.immuni.2016.05.015 10.1038/s41586-018-0806-7 10.1016/j.cell.2011.07.033 10.1038/nature14452 10.1084/jem.20062512 10.1212/WNL.57.6.1132 10.3389/fncel.2017.00333 10.1016/j.ymthe.2018.07.018 10.1038/nature10957 10.1016/j.cytogfr.2013.03.003 10.1172/JCI78085 10.1177/135245859900500206 10.1038/ni.1995 10.1038/nri.2017.50 10.1084/jem.20082603 10.1038/ni.2416 10.4049/jimmunol.182.3.1237 10.1038/s41467-017-01571-8 10.1038/nature06880 10.1371/journal.pone.0173655 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Jun 2, 2020 Distributed under a Creative Commons Attribution 4.0 International License 2020 |
Copyright_xml | – notice: Copyright National Academy of Sciences Jun 2, 2020 – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2020 |
DBID | NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 1XC 5PM |
DOI | 10.1073/pnas.1918196117 |
DatabaseName | PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed Virology and AIDS Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 12280 |
ExternalDocumentID | oai_HAL_hal_04759166v1 10_1073_pnas_1918196117 32409602 26931272 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Multiple Sclerosis Society (National MS Society) grantid: RG4111A1 and JF2161-A-5 – fundername: General Secretariat for Research and Technology (GSRT) grantid: #5035 – fundername: U.S. Department of Defense (DOD) grantid: PC130767 – fundername: HHS | National Institutes of Health (NIH) grantid: R21AI122389 – fundername: General Secretariat for Research and Technology (GSRT) grantid: 09-12-1074 – fundername: "Theoharis" PhD scholarship grantid: - – fundername: Fondation Santé Research Grant in the Biomedical Sciences grantid: - – fundername: Alexander and Margaret Stewart Trust (Alexander & Margaret Stewart Trust) grantid: - – fundername: HHS | National Institutes of Health (NIH) grantid: NS102807; NS087867; ES02530; AI126880 and AI093903 – fundername: Melanoma Research Alliance (MRA) grantid: - |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 79B 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK ADZLD AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM ASUFR BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS F5P FRP GX1 HH5 HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZA5 ZCA ~02 ~KM ADACV H13 IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 1XC 5PM |
ID | FETCH-LOGICAL-c477t-b50bde35b97c838562fe6292516eb37af3243e2231fbe80c4ed0b6b5293148103 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:16:33 EDT 2024 Fri Nov 01 06:44:20 EDT 2024 Fri Aug 16 23:41:00 EDT 2024 Tue Nov 19 15:48:16 EST 2024 Thu Nov 21 22:00:18 EST 2024 Sat Sep 28 08:27:19 EDT 2024 Fri Feb 02 07:18:44 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | autoimmune neuroinflammation activin-A cytokines ectonucleotidases Th17 cell differentiation |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Published under the PNAS license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c477t-b50bde35b97c838562fe6292516eb37af3243e2231fbe80c4ed0b6b5293148103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions: I.M., G.P., M.S., F.S., F.P., F.J.Q., and G.X. designed research; I.M., A.I.T., G.P., M.S., A.B., A.M., P.W., and B.L. performed research; E.B. contributed new reagents/analytic tools; T.K., K.K., and T.D. recruited patients and acquired clinical samples; I.M., A.I.T., G.P., M.S., D.K., A.M., M.K., P.W., S.D.G., and G.X. analyzed data; and I.M., S.D.G., F.J.Q., and G.X. wrote the paper. 1A.I.T. and G.P. contributed equally to this work. Edited by Gabriel A. Rabinovich, University of Buenos Aires, Autonomous City of Buenos Aires, Argentina, and approved April 1, 2020 (received for review October 24, 2019) 2S.D.G. and F.J.Q. contributed equally to this work. |
ORCID | 0000-0002-5647-6505 0000-0003-4589-1612 0000-0001-7944-2343 0000-0002-2956-2221 0000-0002-1050-0805 0000-0003-2142-3021 0000-0002-3022-4350 |
OpenAccessLink | https://www.pnas.org/content/pnas/117/22/12269.full.pdf |
PMID | 32409602 |
PQID | 2412645183 |
PQPubID | 42026 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7275751 hal_primary_oai_HAL_hal_04759166v1 proquest_miscellaneous_2404045503 proquest_journals_2412645183 crossref_primary_10_1073_pnas_1918196117 pubmed_primary_32409602 jstor_primary_26931272 |
PublicationCentury | 2000 |
PublicationDate | 2020-06-02 |
PublicationDateYYYYMMDD | 2020-06-02 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | From the Cover |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2020 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | Mahon P. C. (e_1_3_4_41_2) 2001; 15 Ciofani M. (e_1_3_4_34_2) 2012; 151 Jiang Y. (e_1_3_4_35_2) 2018; 9 Lee Y. (e_1_3_4_8_2) 2012; 13 Shi L. Z. (e_1_3_4_39_2) 2011; 208 Gandhi R. (e_1_3_4_38_2) 2010; 11 Gaublomme J. T. (e_1_3_4_47_2) 2015; 163 Apetoh L. (e_1_3_4_37_2) 2010; 11 Zielinski C. E. (e_1_3_4_11_2) 2012; 484 Mascanfroni I. D. (e_1_3_4_28_2) 2015; 21 Mills J. H. (e_1_3_4_30_2) 2008; 105 Burkett P. R. (e_1_3_4_3_2) 2015; 125 Hirota K. (e_1_3_4_26_2) 2011; 12 Tzartos J. S. (e_1_3_4_6_2) 2008; 172 Deaglio S. (e_1_3_4_29_2) 2007; 204 Semitekolou M. (e_1_3_4_21_2) 2009; 206 Karmaus P. W. F. (e_1_3_4_24_2) 2019; 565 Dos Passos G. R. (e_1_3_4_4_2) 2016; 2016 Huber S. (e_1_3_4_19_2) 2009; 182 Yang X.-P. (e_1_3_4_36_2) 2011; 12 Heinemann C. (e_1_3_4_14_2) 2014; 5 Dang E. V. (e_1_3_4_40_2) 2011; 146 Jones C. P. (e_1_3_4_17_2) 2012; 129 Regateiro F. S. (e_1_3_4_48_2) 2011; 41 Stockinger B. (e_1_3_4_7_2) 2017; 17 Matusevicius D. (e_1_3_4_5_2) 1999; 5 Croxford A. L. (e_1_3_4_27_2) 2009; 182 Ji A. L. (e_1_3_4_51_2) 2016; 20 Lau D. (e_1_3_4_44_2) 2015; 12 Tousa S. (e_1_3_4_22_2) 2017; 114 Gabryšová L. (e_1_3_4_50_2) 2018; 19 Quintana F. J. (e_1_3_4_25_2) 2008; 453 Chalmin F. (e_1_3_4_33_2) 2012; 36 Hedger M. P. (e_1_3_4_15_2) 2013; 24 Mellergård J. (e_1_3_4_52_2) 2010; 16 Locci M. (e_1_3_4_20_2) 2016; 17 Wang C. (e_1_3_4_10_2) 2015; 163 Stromnes I. M. (e_1_3_4_54_2) 2006; 1 Buchthal B. (e_1_3_4_43_2) 2018; 26 Lünemann J. D. (e_1_3_4_53_2) 2001; 57 Weinberg S. E. (e_1_3_4_42_2) 2019; 565 Korn T. (e_1_3_4_2_2) 2017; 17 Gagliani N. (e_1_3_4_13_2) 2015; 523 Dillenburg A. (e_1_3_4_45_2) 2018; 135 Chen W. (e_1_3_4_16_2) 2016; 16 Jakovljevic M. (e_1_3_4_32_2) 2017; 11 Morianos I. (e_1_3_4_18_2) 2019; 104 Miron V. E. (e_1_3_4_46_2) 2013; 16 Dendrou C. A. (e_1_3_4_1_2) 2015; 15 Hu D. (e_1_3_4_12_2) 2017; 8 Berod L. (e_1_3_4_23_2) 2014; 20 Hernandez-Mir G. (e_1_3_4_31_2) 2017; 12 Ichiyama K. (e_1_3_4_9_2) 2016; 44 Zhang Z. (e_1_3_4_49_2) 2019; 17 |
References_xml | – volume: 12 start-page: 1353 year: 2015 ident: e_1_3_4_44_2 article-title: BDNF reduces toxic extrasynaptic NMDA receptor signaling via synaptic NMDA receptors and nuclear-calcium-induced transcription of inhba/activin A publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.07.038 contributor: fullname: Lau D. – volume: 17 start-page: 976 year: 2016 ident: e_1_3_4_20_2 article-title: Activin A programs the differentiation of human TFH cells publication-title: Nat. Immunol. doi: 10.1038/ni.3494 contributor: fullname: Locci M. – volume: 17 start-page: 179 year: 2017 ident: e_1_3_4_2_2 article-title: T cell responses in the central nervous system publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2016.144 contributor: fullname: Korn T. – volume: 135 start-page: 887 year: 2018 ident: e_1_3_4_45_2 article-title: Activin receptors regulate the oligodendrocyte lineage in health and disease publication-title: Acta Neuropathol. doi: 10.1007/s00401-018-1813-3 contributor: fullname: Dillenburg A. – volume: 15 start-page: 2675 year: 2001 ident: e_1_3_4_41_2 article-title: FIH-1: A novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity publication-title: Genes Dev. doi: 10.1101/gad.924501 contributor: fullname: Mahon P. C. – volume: 11 start-page: 846 year: 2010 ident: e_1_3_4_38_2 article-title: Activation of the aryl hydrocarbon receptor induces human type 1 regulatory T cell-like and Foxp3(+) regulatory T cells publication-title: Nat. Immunol. doi: 10.1038/ni.1915 contributor: fullname: Gandhi R. – volume: 163 start-page: 1400 year: 2015 ident: e_1_3_4_47_2 article-title: Single-cell genomics unveils critical regulators of Th17 cell pathogenicity publication-title: Cell doi: 10.1016/j.cell.2015.11.009 contributor: fullname: Gaublomme J. T. – volume: 5 start-page: 3770 year: 2014 ident: e_1_3_4_14_2 article-title: IL-27 and IL-12 oppose pro-inflammatory IL-23 in CD4+ T cells by inducing Blimp1 publication-title: Nat. Commun. doi: 10.1038/ncomms4770 contributor: fullname: Heinemann C. – volume: 36 start-page: 362 year: 2012 ident: e_1_3_4_33_2 article-title: Stat3 and Gfi-1 transcription factors control Th17 cell immunosuppressive activity via the regulation of ectonucleotidase expression publication-title: Immunity doi: 10.1016/j.immuni.2011.12.019 contributor: fullname: Chalmin F. – volume: 16 start-page: 208 year: 2010 ident: e_1_3_4_52_2 article-title: Natalizumab treatment in multiple sclerosis: Marked decline of chemokines and cytokines in cerebrospinal fluid publication-title: Mult. Scler. doi: 10.1177/1352458509355068 contributor: fullname: Mellergård J. – volume: 15 start-page: 545 year: 2015 ident: e_1_3_4_1_2 article-title: Immunopathology of multiple sclerosis publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3871 contributor: fullname: Dendrou C. A. – volume: 182 start-page: 4633 year: 2009 ident: e_1_3_4_19_2 article-title: Activin a promotes the TGF-β-induced conversion of CD4+CD25- T cells into Foxp3+ induced regulatory T cells publication-title: J. Immunol. doi: 10.4049/jimmunol.0803143 contributor: fullname: Huber S. – volume: 104 start-page: 102314 year: 2019 ident: e_1_3_4_18_2 article-title: Activin-A in the regulation of immunity in health and disease publication-title: J. Autoimmun. doi: 10.1016/j.jaut.2019.102314 contributor: fullname: Morianos I. – volume: 208 start-page: 1367 year: 2011 ident: e_1_3_4_39_2 article-title: HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells publication-title: J. Exp. Med. doi: 10.1084/jem.20110278 contributor: fullname: Shi L. Z. – volume: 565 start-page: 495 year: 2019 ident: e_1_3_4_42_2 article-title: Mitochondrial complex III is essential for suppressive function of regulatory T cells publication-title: Nature doi: 10.1038/s41586-018-0846-z contributor: fullname: Weinberg S. E. – volume: 19 start-page: 497 year: 2018 ident: e_1_3_4_50_2 article-title: c-Maf controls immune responses by regulating disease-specific gene networks and repressing IL-2 in CD4+ T cells publication-title: Nat. Immunol. doi: 10.1038/s41590-018-0083-5 contributor: fullname: Gabryšová L. – volume: 21 start-page: 638 year: 2015 ident: e_1_3_4_28_2 article-title: Metabolic control of type 1 regulatory T cell differentiation by AHR and HIF1-α publication-title: Nat. Med. doi: 10.1038/nm.3868 contributor: fullname: Mascanfroni I. D. – volume: 16 start-page: 723 year: 2016 ident: e_1_3_4_16_2 article-title: Immunoregulation by members of the TGFβ superfamily publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2016.112 contributor: fullname: Chen W. – volume: 17 start-page: 45 year: 2019 ident: e_1_3_4_49_2 article-title: Activin a promotes myofibroblast differentiation of endometrial mesenchymal stem cells via STAT3-dependent Smad/CTGF pathway publication-title: Cell Commun. Signal. doi: 10.1186/s12964-019-0361-3 contributor: fullname: Zhang Z. – volume: 12 start-page: 255 year: 2011 ident: e_1_3_4_26_2 article-title: Fate mapping of IL-17-producing T cells in inflammatory responses publication-title: Nat. Immunol. doi: 10.1038/ni.1993 contributor: fullname: Hirota K. – volume: 105 start-page: 9325 year: 2008 ident: e_1_3_4_30_2 article-title: CD73 is required for efficient entry of lymphocytes into the central nervous system during experimental autoimmune encephalomyelitis publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0711175105 contributor: fullname: Mills J. H. – volume: 129 start-page: 1000 year: 2012 ident: e_1_3_4_17_2 article-title: Activin A and TGF-β promote T(H)9 cell-mediated pulmonary allergic pathology publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2011.12.965 contributor: fullname: Jones C. P. – volume: 114 start-page: E2891 year: 2017 ident: e_1_3_4_22_2 article-title: Activin-A co-opts IRF4 and AhR signaling to induce human regulatory T cells that restrain asthmatic responses publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1616942114 contributor: fullname: Tousa S. – volume: 16 start-page: 1211 year: 2013 ident: e_1_3_4_46_2 article-title: M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination publication-title: Nat. Neurosci. doi: 10.1038/nn.3469 contributor: fullname: Miron V. E. – volume: 41 start-page: 2955 year: 2011 ident: e_1_3_4_48_2 article-title: Generation of anti-inflammatory adenosine by leukocytes is regulated by TGF-β publication-title: Eur. J. Immunol. doi: 10.1002/eji.201141512 contributor: fullname: Regateiro F. S. – volume: 9 start-page: 1424 year: 2018 ident: e_1_3_4_35_2 article-title: Epigenetic activation during T helper 17 cell differentiation is mediated by Tripartite motif containing 28 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03852-2 contributor: fullname: Jiang Y. – volume: 151 start-page: 289 year: 2012 ident: e_1_3_4_34_2 article-title: A validated regulatory network for Th17 cell specification publication-title: Cell doi: 10.1016/j.cell.2012.09.016 contributor: fullname: Ciofani M. – volume: 20 start-page: 1327 year: 2014 ident: e_1_3_4_23_2 article-title: De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells publication-title: Nat. Med. doi: 10.1038/nm.3704 contributor: fullname: Berod L. – volume: 11 start-page: 854 year: 2010 ident: e_1_3_4_37_2 article-title: The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27 publication-title: Nat. Immunol. doi: 10.1038/ni.1912 contributor: fullname: Apetoh L. – volume: 20 start-page: 4274 year: 2016 ident: e_1_3_4_51_2 article-title: The clinical significance of level changes of hs-CRP, IL-10 and TNF for patients with MS during active and relieving period publication-title: Eur. Rev. Med. Pharmacol. Sci. contributor: fullname: Ji A. L. – volume: 163 start-page: 1413 year: 2015 ident: e_1_3_4_10_2 article-title: CD5L/AIM regulates lipid biosynthesis and restrains Th17 cell pathogenicity publication-title: Cell doi: 10.1016/j.cell.2015.10.068 contributor: fullname: Wang C. – volume: 172 start-page: 146 year: 2008 ident: e_1_3_4_6_2 article-title: Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis publication-title: Am. J. Pathol. doi: 10.2353/ajpath.2008.070690 contributor: fullname: Tzartos J. S. – volume: 1 start-page: 1810 year: 2006 ident: e_1_3_4_54_2 article-title: Active induction of experimental allergic encephalomyelitis publication-title: Nat. Protoc. doi: 10.1038/nprot.2006.285 contributor: fullname: Stromnes I. M. – volume: 44 start-page: 1284 year: 2016 ident: e_1_3_4_9_2 article-title: The MicroRNA-183-96-182 cluster promotes T helper 17 cell pathogenicity by negatively regulating transcription factor Foxo1 expression publication-title: Immunity doi: 10.1016/j.immuni.2016.05.015 contributor: fullname: Ichiyama K. – volume: 565 start-page: 101 year: 2019 ident: e_1_3_4_24_2 article-title: Metabolic heterogeneity underlies reciprocal fates of TH17 cell stemness and plasticity publication-title: Nature doi: 10.1038/s41586-018-0806-7 contributor: fullname: Karmaus P. W. F. – volume: 146 start-page: 772 year: 2011 ident: e_1_3_4_40_2 article-title: Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1 publication-title: Cell doi: 10.1016/j.cell.2011.07.033 contributor: fullname: Dang E. V. – volume: 523 start-page: 221 year: 2015 ident: e_1_3_4_13_2 article-title: Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation publication-title: Nature doi: 10.1038/nature14452 contributor: fullname: Gagliani N. – volume: 204 start-page: 1257 year: 2007 ident: e_1_3_4_29_2 article-title: Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression publication-title: J. Exp. Med. doi: 10.1084/jem.20062512 contributor: fullname: Deaglio S. – volume: 57 start-page: 1132 year: 2001 ident: e_1_3_4_53_2 article-title: Downregulation of transforming growth factor-beta1 in interferon-beta1a-treated MS patients publication-title: Neurology doi: 10.1212/WNL.57.6.1132 contributor: fullname: Lünemann J. D. – volume: 11 start-page: 333 year: 2017 ident: e_1_3_4_32_2 article-title: Down-regulation of NTPDase2 and ADP-sensitive P2 purinoceptors correlate with severity of symptoms during experimental autoimmune encephalomyelitis publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2017.00333 contributor: fullname: Jakovljevic M. – volume: 26 start-page: 2357 year: 2018 ident: e_1_3_4_43_2 article-title: Post-injury nose-to-brain delivery of activin A and SerpinB2 reduces brain damage in a mouse stroke model publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2018.07.018 contributor: fullname: Buchthal B. – volume: 484 start-page: 514 year: 2012 ident: e_1_3_4_11_2 article-title: Pathogen-induced human TH17 cells produce IFN-γ or IL-10 and are regulated by IL-1β publication-title: Nature doi: 10.1038/nature10957 contributor: fullname: Zielinski C. E. – volume: 24 start-page: 285 year: 2013 ident: e_1_3_4_15_2 article-title: The activins and their binding protein, follistatin-Diagnostic and therapeutic targets in inflammatory disease and fibrosis publication-title: Cytokine Growth Factor Rev. doi: 10.1016/j.cytogfr.2013.03.003 contributor: fullname: Hedger M. P. – volume: 125 start-page: 2211 year: 2015 ident: e_1_3_4_3_2 article-title: Pouring fuel on the fire: Th17 cells, the environment, and autoimmunity publication-title: J. Clin. Invest. doi: 10.1172/JCI78085 contributor: fullname: Burkett P. R. – volume: 5 start-page: 101 year: 1999 ident: e_1_3_4_5_2 article-title: Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis publication-title: Mult. Scler. doi: 10.1177/135245859900500206 contributor: fullname: Matusevicius D. – volume: 2016 start-page: 5314541 year: 2016 ident: e_1_3_4_4_2 article-title: Th17 cells pathways in multiple sclerosis and neuromyelitis optica spectrum disorders: Pathophysiological and therapeutic implications publication-title: Mediators Inflamm. contributor: fullname: Dos Passos G. R. – volume: 12 start-page: 247 year: 2011 ident: e_1_3_4_36_2 article-title: Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5 publication-title: Nat. Immunol. doi: 10.1038/ni.1995 contributor: fullname: Yang X.-P. – volume: 17 start-page: 535 year: 2017 ident: e_1_3_4_7_2 article-title: The dichotomous nature of T helper 17 cells publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2017.50 contributor: fullname: Stockinger B. – volume: 206 start-page: 1769 year: 2009 ident: e_1_3_4_21_2 article-title: Activin-A induces regulatory T cells that suppress T helper cell immune responses and protect from allergic airway disease publication-title: J. Exp. Med. doi: 10.1084/jem.20082603 contributor: fullname: Semitekolou M. – volume: 13 start-page: 991 year: 2012 ident: e_1_3_4_8_2 article-title: Induction and molecular signature of pathogenic TH17 cells publication-title: Nat. Immunol. doi: 10.1038/ni.2416 contributor: fullname: Lee Y. – volume: 182 start-page: 1237 year: 2009 ident: e_1_3_4_27_2 article-title: Cutting edge: An IL-17F-CreEYFP reporter mouse allows fate mapping of Th17 cells publication-title: J. Immunol. doi: 10.4049/jimmunol.182.3.1237 contributor: fullname: Croxford A. L. – volume: 8 start-page: 1600 year: 2017 ident: e_1_3_4_12_2 article-title: Transcriptional signature of human pro-inflammatory TH17 cells identifies reduced IL10 gene expression in multiple sclerosis publication-title: Nat. Commun. doi: 10.1038/s41467-017-01571-8 contributor: fullname: Hu D. – volume: 453 start-page: 65 year: 2008 ident: e_1_3_4_25_2 article-title: Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor publication-title: Nature doi: 10.1038/nature06880 contributor: fullname: Quintana F. J. – volume: 12 start-page: e0173655 year: 2017 ident: e_1_3_4_31_2 article-title: CD73 is expressed by inflammatory Th17 cells in experimental autoimmune encephalomyelitis but does not limit differentiation or pathogenesis publication-title: PLoS One doi: 10.1371/journal.pone.0173655 contributor: fullname: Hernandez-Mir G. |
SSID | ssj0009580 |
Score | 2.5025008 |
Snippet | In multiple sclerosis (MS), Th17 cells are critical drivers of autoimmune central nervous system (CNS) inflammation and demyelination. Th17 cells exhibit... Pathogenic Th17 cells are critical drivers of autoimmune neuroinflammation in multiple sclerosis (MS). We report that administration of the cytokine activin-A... |
SourceID | pubmedcentral hal proquest crossref pubmed jstor |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 12269 |
SubjectTerms | Activin Aromatic compounds Biological Sciences c-Maf protein CD73 antigen Cell activation Central nervous system Demyelination Experimental allergic encephalomyelitis Functionals Gene expression Genomes Helper cells Heterogeneity Hypoxia Hypoxia-inducible factor 1 Hypoxia-inducible factors In vivo methods and tests Inflammation Kinases Life Sciences Lymphocytes T Multiple sclerosis Pathogenicity Pathogens Receptors Stat3 protein Transcription |
SummonAdditionalLinks | – databaseName: JSTOR Health & General Sciences dbid: JSG link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwELXYnrhACxRCCzIIpHIIdeLETo6r3ZYVQlxaJG6RHTvaSJVTkWyr3nrtmS_hR_gIvoQZJ9l2EUhc41FiacYzbzKeN4S8kQrihtI6zEvDwqSSLMxZlYQmTSxjJhfWz4xcnMjPX7P5EdLkvB17YfBapb8X6Kv4AJD0mT2MRc6jWIKnnWT-9H08-XCHWTfr-0xicLdJnIz8PZIfnjvVvoeEBKKeiPxIstvQM1nixcf-DuLf0OWflyTvRJ3jh_-5323yYICVdNrbwQ65Z90jsjMc3JYeDOzS7x6Tmyl6uNqFU3qGzU0tPV1GkuJk4gaMqS4BllPlDFWrrqmxe8RST3oJpgjW03c60ota0dmc515yNpec4t9_h-TITVcbCI2tX1rUVRT-_PHr-vs4bbfzn7pUV-0T8uX46HS2CId5DGGZSNmFOmXaWJ7qXJYZzwA5VVbEOSAkASm5VBWAM24Bb0SVthkrE2uYFjoFRAFJV8T4LtlyjbPPCM0MeEoDUMGKMoEUU6WyVBZ8QaawdlgF5GBUVXHe024UvlwueYFaLW61GpDXoMq1FNJlL6afCnzGkMwwEuIiCsiu19JabFRRQPZH1RfD6W0LQDWAE1PwdgF5tV6Gc4fFFOVss0IZcH_YEg4yT3tLWb8cSQ4hM4SXyw0b2tjk5oqrl57bG-AkVsKe_2u_e-R-jBk__geK98lW921lX5BJa1Yv_bH4DW5CCks priority: 102 providerName: JSTOR |
Title | Activin-A limits Th17 pathogenicity and autoimmune neuroinflammation via CD39 and CD73 ectonucleotidases and Hif1-α–dependent pathways |
URI | https://www.jstor.org/stable/26931272 https://www.ncbi.nlm.nih.gov/pubmed/32409602 https://www.proquest.com/docview/2412645183 https://search.proquest.com/docview/2404045503 https://hal.science/hal-04759166 https://pubmed.ncbi.nlm.nih.gov/PMC7275751 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6xPXFBFCiElpVBHMohu86vk-Nqt9UeACFRJG6REzvaSK2zItlW3Lhy5kl4ER6iT9IZ5wcWceIaezdW5u-zPfMNwGshMW7IPHfTQnE3LAV3U16GropCzblKY217Rq4_ivefk9UZ0eREQy2MTdov8mpmLq9mptrY3MrtVTEf8sTmH94tMebSdcF8AhPEhsMWfWTaTbq6Ex_db-iHA5-PCOZbI5sZblAwCsaeR_33iI4OMby_F5UmG8qJ7NIT_wU8_86f_CMgnT-EBz2SZItuxYdwT5tHcNjbasNOe0LpN4_h-4KcWmXcBbukeqaGXWw8wagZcY36UxWIxJk0isldW1dUMKKZ5blE7UOF6Yob2XUl2XIVpHbmciUCRgf-hviQ67ZSGA0bO7SuSs_99fP224-hwW5rX3UjvzZP4NP52cVy7fYtGNwiFKJ184jnSgdRnooiCRIES6WO_RRBUYy7cCFL_ICBRojhlblOeBFqxfM4jxBE4D7L48ERHJja6GfAEoXOUSE60HER4leXkSikRvNPJF0Xlg6cDiLIth3TRmZvyEWQkeCy34Jz4BWKaJxFDNnrxduMnnHiL_Ti-Npz4MhKcJzmx7goX_gOnAwizXqDbTIEMggNI3RwDrwch9HU6P5EGl3vaA56PKoCxzlPOw0Y_3xQJAfEnm7sLXJ_BLXb0nn32vz8v395DPd9OgWgsyH_BA7aLzv9AiaN2k1tiuvU9tGYWjO5Aw9dFMk |
link.rule.ids | 230,315,729,782,786,808,811,887,27933,27934,53800,53802,58025,58037,58258,58270 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwELVoOcAFKFAIFDAIpHJI68SJnRxXu62CWHphkbhFTuxoI1VORbKteuPKmS_hR_gIvoQZJ9l2EUhcYyuxNOOZN5mZN4S8lgr8hioKPy0186NKMj9lVeTrODKM6VQYNzMy-yhPPiezI6TJeTP2wmBZpasLdFl8AEjFqTkMRcqDUIKlvRknjMu-cu8at27Sd5qEYHCjMBoZfCQ_PLOqPYCQBPyeCNxQsivns7XE0se-CvFv-PLPMslrfuf47n-e-B65MwBLOuk1YYfcMPY-2Rmubkv3B37ptw_ItwnauNr6E3qK7U0tXSwDSXE2cQPqVJcAzKmymqpV19TYP2Koo70EZQT96Xsd6Xmt6HTGU7dzOpOc4v9_i_TITVdrcI6tW8rqKvB__vj19fs4b7dzn7pQl-1D8un4aDHN_GEig19GUnZ-EbNCGx4XqSwTngB2qowIU8BIAoJyqSqAZ9wA4giqwiSsjIxmhShiwBQQdgWM75Jt21jzmNBEg63UABaMKCMIMlUsS2XAGiQKs4eVR_ZHUeVnPfFG7hLmkuco1fxKqh55BaJc70LC7Gwyz_EZQzrDQIjzwCO7TkrrbaOIPLI3ij4f7m-bA64BpBiDvfPIy_Uy3DxMpyhrmhXuAQOITeGw51GvKeuXI80hxIbwcrmhQxuH3Fyx9dKxewOgxFzYk3-d9wW5lS0-zPP5u5P3T8ntEON__CsU7pHt7svKPCNbrV49d1fkN6zXDa4 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BbtQwELVokRAXSoFCoIBBHNqDu06cxMlxtdvVIqoKiSJxi-zY0UaqkhXJFnHj2jNfwo_wEf2SzjjJtovgwDW2EksznnmTmXlDyDupwG8orVmaG87CQnKW8iJkJgot5yaNrZsZOf8kT78k02OkyTkcemGwrNLVBbosPgAkfW5HS1OMgjgVfiDB2t6NIKpJuuEAt_h1k67bJACjGwbhwOIjxWhZqeYIwhLwfbHvBpPdOKCtBZY_dpWIf8OYf5ZK3vI9s53_OPVD8qAHmHTcacQuuWOrR2S3v8INPeh5pg8fk8sx2rqyYmN6jm1ODT1b-JLijOIa1KrMAaBTVRmqVm1dYh-JpY7-EpQS9KjreaQXpaKTqUjdzslUCop5gAppkuu2NOAkG7c0Lwuf_f519ePnMHe3dZ_6pr43T8jn2fHZZM76yQwsD6VsmY64NlZEOpV5IhLAUIWNgxSwUgzBuVQFwDRhAXn4hbYJz0NruI51BNgCwi-fiz2yXdWVfUZoYsBmGgANNs5DCDZVJHNlwSokCrOIhUcOBnFly46AI3OJcykylGx2I1mPvAVxrnchcfZ8fJLhM460hn4cX_ge2XOSWm8bROSR_UH8WX-PmwzwDSDGCOyeR96sl-EGYlpFVbZe4R4whNgcDnuedtqyfjnSHUKMCC-XG3q0ccjNlapcOJZvAJaYE3v-r_O-Jvc-TmfZyfvTDy_I_QB_A-DPoWCfbLdfV_Yl2WrM6pW7JddFLxAn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Activin-A+limits+Th17+pathogenicity+and+autoimmune+neuroinflammation+via+CD39+and+CD73+ectonucleotidases+and+Hif1-%CE%B1%E2%80%93dependent+pathways&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Morianos%2C+Ioannis&rft.au=Trochoutsou%2C+Aikaterini+I.&rft.au=Papadopoulou%2C+Gina&rft.au=Semitekolou%2C+Maria&rft.date=2020-06-02&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=117&rft.issue=22&rft.spage=12269&rft.epage=12280&rft_id=info:doi/10.1073%2Fpnas.1918196117&rft.externalDocID=26931272 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |