Healthcare Operations and Black Swan Event for COVID-19 Pandemic: A Predictive Analytics

COVID-19 pandemic has questioned the way healthcare operations take place globally as the healthcare professionals face an unprecedented task of controlling and treating the COVID-19 infected patients with a highly straining and draining facility due to the erratic admissions of infected patients. H...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on engineering management Vol. 70; no. 9; pp. 3229 - 3243
Main Authors: Devarajan, Jinil Persis, Manimuthu, Arunmozhi, Sreedharan, V Raja
Format: Journal Article
Language:English
Published: United States IEEE 01-09-2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract COVID-19 pandemic has questioned the way healthcare operations take place globally as the healthcare professionals face an unprecedented task of controlling and treating the COVID-19 infected patients with a highly straining and draining facility due to the erratic admissions of infected patients. However, COVID-19 is considered as a white swan event. Yet, the impact of the COVID-19 pandemic on healthcare operations is highly uncertain and disruptive making it as a black swan event. Therefore, the study explores the impact of the COVID-19 outbreak on healthcare operations and develops machine learning-based forecasting models using time series data to foresee the progression of COVID-19 and further using predictive analytics to better manage healthcare operations. The prediction error of the proposed model is found to be 0.039 for new cases and 0.006 for active COVID-19 cases with respect to mean absolute percentage error. The proposed simulated model further could generate predictive analytics and yielded future recovery rate, resource management ratios, and average cycle time of a patient tested COVID-19 positive. Further, the study will help healthcare professionals to devise better resilience and decision-making for managing uncertainty and disruption in healthcare operations.
AbstractList COVID-19 pandemic has questioned the way healthcare operations take place globally as the healthcare professionals face an unprecedented task of controlling and treating the COVID-19 infected patients with a highly straining and draining facility due to the erratic admissions of infected patients. However, COVID-19 is considered as a white swan event. Yet, the impact of the COVID-19 pandemic on healthcare operations is highly uncertain and disruptive making it as a black swan event. Therefore, the study explores the impact of the COVID-19 outbreak on healthcare operations and develops machine learning-based forecasting models using time series data to foresee the progression of COVID-19 and further using predictive analytics to better manage healthcare operations. The prediction error of the proposed model is found to be 0.039 for new cases and 0.006 for active COVID-19 cases with respect to mean absolute percentage error. The proposed simulated model further could generate predictive analytics and yielded future recovery rate, resource management ratios, and average cycle time of a patient tested COVID-19 positive. Further, the study will help healthcare professionals to devise better resilience and decision-making for managing uncertainty and disruption in healthcare operations.
COVID-19 pandemic has questioned the way healthcare operations take place globally as the healthcare professionals face an unprecedented task of controlling and treating the COVID-19 infected patients with a highly straining and draining facility due to the erratic admissions of infected patients. However, COVID-19 is considered as a white swan event. Yet, the impact of the COVID-19 pandemic on healthcare operations is highly uncertain and disruptive making it as a black swan event. Therefore, the study explores the impact of the COVID-19 outbreak on healthcare operations and develops machine learning-based forecasting models using time series data to foresee the progression of COVID-19 and further using predictive analytics to better manage healthcare operations. The prediction error of the proposed model is found to be 0.039 for new cases and 0.006 for active COVID-19 cases with respect to mean absolute percentage error. The proposed simulated model further could generate predictive analytics and yielded future recovery rate, resource management ratios, and average cycle time of a patient tested COVID-19 positive. Further, the study will help healthcare professionals to devise better resilience and decision-making for managing uncertainty and disruption in healthcare operations.COVID-19 pandemic has questioned the way healthcare operations take place globally as the healthcare professionals face an unprecedented task of controlling and treating the COVID-19 infected patients with a highly straining and draining facility due to the erratic admissions of infected patients. However, COVID-19 is considered as a white swan event. Yet, the impact of the COVID-19 pandemic on healthcare operations is highly uncertain and disruptive making it as a black swan event. Therefore, the study explores the impact of the COVID-19 outbreak on healthcare operations and develops machine learning-based forecasting models using time series data to foresee the progression of COVID-19 and further using predictive analytics to better manage healthcare operations. The prediction error of the proposed model is found to be 0.039 for new cases and 0.006 for active COVID-19 cases with respect to mean absolute percentage error. The proposed simulated model further could generate predictive analytics and yielded future recovery rate, resource management ratios, and average cycle time of a patient tested COVID-19 positive. Further, the study will help healthcare professionals to devise better resilience and decision-making for managing uncertainty and disruption in healthcare operations.
Author Sreedharan, V Raja
Manimuthu, Arunmozhi
Devarajan, Jinil Persis
AuthorAffiliation Nanyang Technological University 54761 Singapore 639798 Singapore
Operations and Supply Chain Management area National Institute of Industrial Engineering (NITIE) 29529 Mumbai 400087 India
BEAR Lab, Rabat Business School Université Internationale de Rabat 450759 Rabat 11103 Morocco
AuthorAffiliation_xml – name: Operations and Supply Chain Management area National Institute of Industrial Engineering (NITIE) 29529 Mumbai 400087 India
– name: BEAR Lab, Rabat Business School Université Internationale de Rabat 450759 Rabat 11103 Morocco
– name: Nanyang Technological University 54761 Singapore 639798 Singapore
Author_xml – sequence: 1
  givenname: Jinil Persis
  orcidid: 0000-0003-0087-3592
  surname: Devarajan
  fullname: Devarajan, Jinil Persis
  email: jinilpersis@gmail.com
  organization: Operations and Supply Chain Management area, National Institute of Industrial Engineering (NITIE), Mumbai, India
– sequence: 2
  givenname: Arunmozhi
  orcidid: 0000-0003-4909-4880
  surname: Manimuthu
  fullname: Manimuthu, Arunmozhi
  email: arunmozhi.m@ntu.edu.sg
  organization: Nanyang Technological University, Singapore, Singapore
– sequence: 3
  givenname: V Raja
  orcidid: 0000-0003-3601-8002
  surname: Sreedharan
  fullname: Sreedharan, V Raja
  email: raja.sreedharan@uir.ac.ma
  organization: BEAR Lab, Rabat Business School, Université Internationale de Rabat, Rabat, Morocco
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37954443$$D View this record in MEDLINE/PubMed
BookMark eNpdkd9rUzEUx4NMXDd9FwQJ-OLLrfl5b-LLqLW6waQDp_gW0uTUZd4mNbmt7L83pbWoTyE5n_PNOXzO0ElMERB6TsmYUqLf3M4-jRlhdMxJ17aEP0IjKqVqCBHkBI0IoarRXNNTdFbKfb0KycgTdMo7LYUQfIS-XYLthztnM-D5GrIdQooF2-jxu966H_jzLxvxbAtxwMuU8XT-9ep9QzW-qQisgnuLJ_gmgw9uCFvAk2j7hyG48hQ9Xtq-wLPDeY6-fJjdTi-b6_nHq-nkunGi64ZGiEXbWSek1r6TnnIuWgmtF6rVznu3WIInlPlKWytY54RTaqGkbzte3yg_Rxf73PVmsQLv6qDZ9madw8rmB5NsMP9WYrgz39PWUNIyoqWsCa8PCTn93EAZzCoUB31vI6RNMUwpLZVmklX01X_ofdrkuvKO4oITTVtVKbKnXE6lZFgep6HE7LyZ6s3svJmDt9ry8u8tjg1_RFXgxR4IAHAsayGkrD_-BvX8nGA
CODEN IEEMA4
CitedBy_id crossref_primary_10_1080_17517575_2024_2317153
crossref_primary_10_1109_TEM_2022_3151842
crossref_primary_10_1109_TEM_2022_3209879
crossref_primary_10_1109_TEM_2021_3096862
crossref_primary_10_1108_K_09_2022_1348
crossref_primary_10_1109_TEM_2021_3116068
crossref_primary_10_1109_TEM_2022_3147815
crossref_primary_10_1007_s42524_024_3061_7
crossref_primary_10_1080_0954898X_2024_2350579
crossref_primary_10_1002_mde_3691
crossref_primary_10_1109_TEM_2024_3366313
crossref_primary_10_1108_IJQRM_09_2020_0315
crossref_primary_10_1109_TEM_2022_3201440
crossref_primary_10_1108_BIJ_07_2021_0421
crossref_primary_10_1109_TEM_2022_3151636
crossref_primary_10_1007_s10479_022_04875_1
crossref_primary_10_1109_TEM_2022_3187792
Cites_doi 10.1016/j.asoc.2018.08.024
10.1016/j.ijforecast.2019.04.021
10.1080/07408179908969913
10.1016/j.ijinfomgt.2020.102124
10.1016/j.knosys.2019.105006
10.1016/0040-1625(80)90084-0
10.3390/s18124436
10.1016/j.ijinfomgt.2020.102175
10.1109/SmartGridComm.2011.6102379
10.1016/j.techfore.2021.120602
10.1080/09537287.2020.1852623
10.1016/j.ejor.2016.06.052
10.1016/j.eswa.2020.113237
10.1016/j.bj.2020.05.001
10.1016/S1473-3099(13)70204-4
10.1101/2020.04.15.20066712
10.1016/j.techfore.2020.120092
10.25165/j.ijabe.20181104.4475
10.1016/j.ins.2020.12.024
10.1049/iet-net.2018.5053
10.1016/j.eswa.2019.112950
10.1016/j.tre.2020.101922
10.1016/j.ejor.2006.12.004
10.1016/j.eswa.2013.03.025
10.1016/j.neunet.2019.04.014
10.1109/TIE.2017.2733438
10.1016/j.techfore.2019.04.009
10.1016/j.asoc.2020.106181
10.1002/alr.22602
10.1016/j.eswa.2015.02.050
10.1016/j.techfore.2018.01.018
10.1016/j.cie.2019.06.035
10.1016/j.dib.2020.105340
10.1016/j.eswa.2017.04.013
10.1016/j.resourpol.2019.02.017
10.1007/s00521-019-04050-x
10.1016/j.ejor.2015.08.036
10.1109/TIT.2018.2884673
10.1016/j.mjafi.2020.05.001
10.1371/journal.pone.0230405
10.1016/j.techfore.2020.120072
10.1016/j.compag.2019.104878
10.1016/0040-1625(95)00197-2
10.1016/j.chaos.2020.109866
10.1016/j.compag.2018.06.008
10.1109/TEM.2020.3004885
10.1109/TEM.2019.2939398
10.1007/s00170-006-0864-0
10.1016/j.techfore.2017.02.012
10.1016/j.resourpol.2019.02.014
10.1016/j.dsx.2020.05.008
10.1016/j.numecd.2020.05.027
10.1016/j.jeconom.2017.01.008
10.1007/s10479-020-03877-1
10.1109/MDAT.2019.2897925
10.1016/j.scitotenv.2020.138959
10.1016/j.jclepro.2021.126871
10.1109/MDAT.2020.3021029
10.1109/ACCESS.2020.2971591
10.1016/j.compag.2018.10.024
10.1136/svn-2017-000101
10.1056/NEJMp2005630
10.1016/j.asoc.2013.03.008
10.1017/dmp.2020.115
10.1109/TNNLS.2019.2900046
10.1080/00207543.2021.1910361
10.1093/bib/bbx044
10.1080/02640414.2019.1574949
10.1016/j.ijmst.2017.09.001
10.1016/j.ijinfomgt.2020.102184
10.1016/0169-2070(95)00635-4
10.1016/j.iot.2020.100222
10.1016/j.compag.2004.04.003
10.1016/j.chaos.2020.109829
10.1016/j.trc.2019.12.022
10.1109/JIOT.2019.2903245
10.1016/j.imr.2020.100434
10.3390/s19204482
10.1016/j.earlhumdev.2020.105026
10.1038/s41591-020-1132-9
10.1016/j.ijinfomgt.2020.102180
10.1016/j.ijforecast.2019.04.014
10.1016/j.cie.2016.09.012
10.1016/j.pmcj.2008.02.001
10.1016/j.eswa.2018.03.024
10.1016/j.eswa.2018.11.019
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
2021 IEEE
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
– notice: 2021 IEEE
DBID 97E
RIA
RIE
NPM
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7X8
5PM
DOI 10.1109/TEM.2021.3076603
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
PubMed
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Civil Engineering Abstracts
PubMed

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0040
EndPage 3243
ExternalDocumentID 10_1109_TEM_2021_3076603
37954443
9445568
Genre orig-research
Journal Article
GroupedDBID -~X
.-4
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAYOK
ABQJQ
ACGFO
ACGFS
ACGOD
ACHQT
ACIWK
ACNCT
ADMHC
AENEX
AETIX
AFOGA
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BKOMP
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIG
RNS
TAE
TN5
VH1
NPM
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7X8
5PM
ID FETCH-LOGICAL-c477t-44b67ac4599d75d133465e6d4869cddcbfed012dc47aa427c4c88b85d673c4713
IEDL.DBID RIE
ISSN 0018-9391
IngestDate Tue Sep 17 21:29:31 EDT 2024
Sat Oct 26 02:04:51 EDT 2024
Thu Oct 10 19:48:07 EDT 2024
Fri Aug 23 00:44:09 EDT 2024
Sat Nov 02 12:22:52 EDT 2024
Mon Nov 04 11:48:18 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords deep learning
data analytics
long short-term memory (LSTM)
multilayer perceptron
prediction
time series
COVID-19 (novel corona)
extreme learning machine (ELM)
Language English
License This article is free to access and download, along with rights for full text and data mining, re-use and analysis.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c477t-44b67ac4599d75d133465e6d4869cddcbfed012dc47aa427c4c88b85d673c4713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3601-8002
0000-0003-4909-4880
0000-0003-0087-3592
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10620955
PMID 37954443
PQID 2834309168
PQPubID 4949
PageCount 15
ParticipantIDs ieee_primary_9445568
pubmed_primary_37954443
proquest_miscellaneous_2889589252
proquest_journals_2834309168
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10620955
crossref_primary_10_1109_TEM_2021_3076603
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on engineering management
PublicationTitleAbbrev TEM
PublicationTitleAlternate IEEE Trans Eng Manag
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
Taleb (ref89) 2007
ref17
ref16
ref19
ref18
ref51
ref50
ref91
ref90
ref46
ref45
ref48
ref47
ref42
ref86
ref41
ref85
ref44
ref88
ref43
ref87
ref49
Georgiou (ref15) 2020
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref82
ref81
ref40
ref83
ref80
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref76
Carmona-Bentez (ref28) 2002; 69
ref2
ref1
ref39
ref38
Mkinen (ref84) 2020; 4
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref34
  doi: 10.1016/j.asoc.2018.08.024
– ident: ref42
  doi: 10.1016/j.ijforecast.2019.04.021
– ident: ref41
  doi: 10.1080/07408179908969913
– ident: ref83
  doi: 10.1016/j.ijinfomgt.2020.102124
– ident: ref60
  doi: 10.1016/j.knosys.2019.105006
– ident: ref27
  doi: 10.1016/0040-1625(80)90084-0
– ident: ref63
  doi: 10.3390/s18124436
– ident: ref90
  doi: 10.1016/j.ijinfomgt.2020.102175
– ident: ref37
  doi: 10.1109/SmartGridComm.2011.6102379
– ident: ref18
  doi: 10.1016/j.techfore.2021.120602
– ident: ref76
  doi: 10.1080/09537287.2020.1852623
– volume: 4
  start-page: 1
  issue: 1
  year: 2020
  ident: ref84
  article-title: Tackling challenges of the future with new approaches
  publication-title: CERN IdeaSquare J. Exp. Innov.
  contributor:
    fullname: Mkinen
– ident: ref80
  doi: 10.1016/j.ejor.2016.06.052
– ident: ref23
  doi: 10.1016/j.eswa.2020.113237
– ident: ref11
  doi: 10.1016/j.bj.2020.05.001
– ident: ref52
  doi: 10.1016/S1473-3099(13)70204-4
– year: 2020
  ident: ref15
  article-title: COVID-19 outbreak in Greece has passed its rising inflection point and stepping into its peak
  doi: 10.1101/2020.04.15.20066712
  contributor:
    fullname: Georgiou
– ident: ref7
  doi: 10.1016/j.techfore.2020.120092
– ident: ref47
  doi: 10.25165/j.ijabe.20181104.4475
– ident: ref40
  doi: 10.1016/j.ins.2020.12.024
– ident: ref78
  doi: 10.1049/iet-net.2018.5053
– ident: ref68
  doi: 10.1016/j.eswa.2019.112950
– ident: ref8
  doi: 10.1016/j.tre.2020.101922
– ident: ref24
  doi: 10.1016/j.ejor.2006.12.004
– ident: ref20
  doi: 10.1016/j.eswa.2013.03.025
– ident: ref61
  doi: 10.1016/j.neunet.2019.04.014
– ident: ref66
  doi: 10.1109/TIE.2017.2733438
– ident: ref54
  doi: 10.1016/j.techfore.2019.04.009
– ident: ref62
  doi: 10.1016/j.asoc.2020.106181
– ident: ref1
  doi: 10.1002/alr.22602
– ident: ref58
  doi: 10.1016/j.eswa.2015.02.050
– ident: ref69
  doi: 10.1016/j.techfore.2018.01.018
– ident: ref71
  doi: 10.1016/j.cie.2019.06.035
– ident: ref14
  doi: 10.1016/j.dib.2020.105340
– year: 2007
  ident: ref89
  publication-title: The Black Swan: The Impact of the Highly Improbable
  contributor:
    fullname: Taleb
– volume: 69
  start-page: 71
  year: 2002
  ident: ref28
  article-title: SARIMA damp trend grey forecasting model for airline industry
  publication-title: Technol. Forecast. Soc. Change
  contributor:
    fullname: Carmona-Bentez
– ident: ref33
  doi: 10.1016/j.eswa.2017.04.013
– ident: ref39
  doi: 10.1016/j.resourpol.2019.02.017
– ident: ref59
  doi: 10.1007/s00521-019-04050-x
– ident: ref72
  doi: 10.1016/j.ejor.2015.08.036
– ident: ref31
  doi: 10.1109/TIT.2018.2884673
– ident: ref16
  doi: 10.1016/j.mjafi.2020.05.001
– ident: ref70
  doi: 10.1371/journal.pone.0230405
– ident: ref5
  doi: 10.1016/j.techfore.2020.120072
– ident: ref64
  doi: 10.1016/j.compag.2019.104878
– ident: ref67
  doi: 10.1016/0040-1625(95)00197-2
– ident: ref4
  doi: 10.1016/j.chaos.2020.109866
– ident: ref45
  doi: 10.1016/j.compag.2018.06.008
– ident: ref81
  doi: 10.1109/TEM.2020.3004885
– ident: ref82
  doi: 10.1109/TEM.2019.2939398
– ident: ref38
  doi: 10.1007/s00170-006-0864-0
– ident: ref43
  doi: 10.1016/j.techfore.2017.02.012
– ident: ref55
  doi: 10.1016/j.resourpol.2019.02.014
– ident: ref9
  doi: 10.1016/j.dsx.2020.05.008
– ident: ref6
  doi: 10.1016/j.numecd.2020.05.027
– ident: ref74
  doi: 10.1016/j.jeconom.2017.01.008
– ident: ref79
  doi: 10.1007/s10479-020-03877-1
– ident: ref88
  doi: 10.1109/MDAT.2019.2897925
– ident: ref2
  doi: 10.1016/j.scitotenv.2020.138959
– ident: ref75
  doi: 10.1016/j.jclepro.2021.126871
– ident: ref85
  doi: 10.1109/MDAT.2020.3021029
– ident: ref35
  doi: 10.1109/ACCESS.2020.2971591
– ident: ref46
  doi: 10.1016/j.compag.2018.10.024
– ident: ref44
  doi: 10.1136/svn-2017-000101
– ident: ref22
  doi: 10.1056/NEJMp2005630
– ident: ref49
  doi: 10.1016/j.asoc.2013.03.008
– ident: ref3
  doi: 10.1017/dmp.2020.115
– ident: ref29
  doi: 10.1109/TNNLS.2019.2900046
– ident: ref77
  doi: 10.1080/00207543.2021.1910361
– ident: ref17
  doi: 10.1093/bib/bbx044
– ident: ref57
  doi: 10.1080/02640414.2019.1574949
– ident: ref25
  doi: 10.1016/j.ijmst.2017.09.001
– ident: ref26
  doi: 10.1016/j.ijinfomgt.2020.102184
– ident: ref73
  doi: 10.1016/0169-2070(95)00635-4
– ident: ref13
  doi: 10.1016/j.iot.2020.100222
– ident: ref86
  doi: 10.1109/MDAT.2019.2897925
– ident: ref87
  doi: 10.1049/iet-net.2018.5053
– ident: ref56
  doi: 10.1016/j.compag.2004.04.003
– ident: ref12
  doi: 10.1016/j.chaos.2020.109829
– ident: ref30
  doi: 10.1016/j.trc.2019.12.022
– ident: ref65
  doi: 10.1109/JIOT.2019.2903245
– ident: ref10
  doi: 10.1016/j.imr.2020.100434
– ident: ref21
  doi: 10.3390/s19204482
– ident: ref19
  doi: 10.1016/j.earlhumdev.2020.105026
– ident: ref48
  doi: 10.1038/s41591-020-1132-9
– ident: ref91
  doi: 10.1016/j.ijinfomgt.2020.102180
– ident: ref36
  doi: 10.1016/j.ijforecast.2019.04.014
– ident: ref51
  doi: 10.1016/j.cie.2016.09.012
– ident: ref53
  doi: 10.1016/j.pmcj.2008.02.001
– ident: ref50
  doi: 10.1016/j.eswa.2018.03.024
– ident: ref32
  doi: 10.1016/j.eswa.2018.11.019
SSID ssj0014520
Score 2.554283
Snippet COVID-19 pandemic has questioned the way healthcare operations take place globally as the healthcare professionals face an unprecedented task of controlling...
SourceID pubmedcentral
proquest
crossref
pubmed
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 3229
SubjectTerms Black swan event
Corona
COVID-19
COVID-19 (novel corona)
Cycle ratio
Cycle time
data analytics
Data models
Decision making
deep learning
Drainage facilities
Emerging Technologies
Engineering Management
extreme learning machine (ELM)
Health care
long short-term memory (LSTM)
Machine learning
Mathematical analysis
Medical personnel
Medical services
multilayer perceptron
Pandemics
prediction
Predictions
Predictive analytics
Predictive models
Project Management
Resource management
Technology Assessment, Forecasting, Planning and Transfer
time series
Time series analysis
Title Healthcare Operations and Black Swan Event for COVID-19 Pandemic: A Predictive Analytics
URI https://ieeexplore.ieee.org/document/9445568
https://www.ncbi.nlm.nih.gov/pubmed/37954443
https://www.proquest.com/docview/2834309168
https://www.proquest.com/docview/2889589252
https://pubmed.ncbi.nlm.nih.gov/PMC10620955
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB7cPenB92N1lQheBKu2zdOb6IoefIAPvJXmIXqwK66Lf9-ZtFtUvHgrzZCGfJPOJDP5BmAnSIUoc5ugdcoSIsBKSqeyxIrUchXQYoZYxPZWXT3q0wHR5Oy1d2FCCDH5LOzTY4zl-6Eb01HZAXZKhFkd6Cij67tabcSAi4aCMcUFnJt0EpI8NAd3g0vcCGbpPuqzlJPyWI0JijVV_nIvf2dJfjM7Z3P_G_A8zDbuJTuu9WEBpkK1CDPfSAeX4PG8Tfli12-h1oARKyvP4mkeu_0sKzagPEiGHi07uX64OE1Sw27ovPn1xR2xY3bzTgEe-lWySGtCZM_LcH82uDs5T5r6ConjSn0kCJFUpePCGK-Ex90qlyJIz7U0zntnn4JH--VRuix5phx3WlstvFQ5vkvzFehWwyqsAROZI2pDChIKnlpvg0m1lk47iy68tD3YnUx58VbTaBRx-3FoCoSnIHiKBp4eLNFMtnLNJPagP8GoaNbZqEDniOfo8lDzdtuMK4TCHmUVhmOS0UZok4msB6s1pG3fOY2Xc_ym_gF2K0Ds2z9bqpfnyMKNe-mM-PvW_x7uBkxTZfo6Ha0P3Y_3cdiEzsiPt6LifgEgXOme
link.rule.ids 230,315,782,786,798,887,27933,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-QwDLYW9gAcWJ7L8AwSFyQKtM1zbwgGDeIpMSBuVfNAy4EOYhjx97HTTgUrLnurGiuN8jm1EzufAXaCVIgytwlapywhAqykdCpLrEgtVwEtZohFbG_V1YM-6RJNzl57FyaEEJPPwj49xli-H7gRHZUdYKdEmDUBPwVXUtW3tdqYARcNCWOKSzg36TgoeWgO-t1L3Apm6T5qtJTjAlmNEYpVVb5zMP_Nk_xkeE5__d-Q52C2cTDZUa0R8_AjVAsw84l2cBEeem3SF7t-CbUODFlZeRbP89jte1mxLmVCMvRp2fH1_dlJkhp2QyfOz0_uDztiN68U4qGfJYvEJkT3vAR3p93-cS9pKiwkjiv1liBIUpWOC2O8Eh73q1yKID3X0jjvnX0MHi2YR-my5Jly3GlttfBS5fguzZdhshpUYQWYyByRG1KYUPDUehtMqrV02ll04qXtwO54youXmkijiBuQQ1MgPAXBUzTwdGCRZrKVayaxA-tjjIpmpQ0LdI94jk4PNW-3zbhGKPBRVmEwIhlthDaZyDrwu4a07Tun8XKO39RfwG4FiH_7a0v19DfycONuOiMGv9Xvh7sFU73-5UVxcXZ1vgbTVKe-Tk5bh8m311HYgImhH21GJf4AjXHs7w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Healthcare+Operations+and+Black+Swan+Event+for+COVID-19+Pandemic%3A+A+Predictive+Analytics&rft.jtitle=IEEE+transactions+on+engineering+management&rft.au=Devarajan%2C+Jinil+Persis&rft.au=Manimuthu%2C+Arunmozhi&rft.au=Sreedharan%2C+V+Raja&rft.date=2023-09-01&rft.pub=IEEE&rft.issn=0018-9391&rft.volume=70&rft.issue=9&rft.spage=3229&rft.epage=3243&rft_id=info:doi/10.1109%2FTEM.2021.3076603&rft.externalDocID=9445568
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9391&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9391&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9391&client=summon