Healthcare Operations and Black Swan Event for COVID-19 Pandemic: A Predictive Analytics
COVID-19 pandemic has questioned the way healthcare operations take place globally as the healthcare professionals face an unprecedented task of controlling and treating the COVID-19 infected patients with a highly straining and draining facility due to the erratic admissions of infected patients. H...
Saved in:
Published in: | IEEE transactions on engineering management Vol. 70; no. 9; pp. 3229 - 3243 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
IEEE
01-09-2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | COVID-19 pandemic has questioned the way healthcare operations take place globally as the healthcare professionals face an unprecedented task of controlling and treating the COVID-19 infected patients with a highly straining and draining facility due to the erratic admissions of infected patients. However, COVID-19 is considered as a white swan event. Yet, the impact of the COVID-19 pandemic on healthcare operations is highly uncertain and disruptive making it as a black swan event. Therefore, the study explores the impact of the COVID-19 outbreak on healthcare operations and develops machine learning-based forecasting models using time series data to foresee the progression of COVID-19 and further using predictive analytics to better manage healthcare operations. The prediction error of the proposed model is found to be 0.039 for new cases and 0.006 for active COVID-19 cases with respect to mean absolute percentage error. The proposed simulated model further could generate predictive analytics and yielded future recovery rate, resource management ratios, and average cycle time of a patient tested COVID-19 positive. Further, the study will help healthcare professionals to devise better resilience and decision-making for managing uncertainty and disruption in healthcare operations. |
---|---|
AbstractList | COVID-19 pandemic has questioned the way healthcare operations take place globally as the healthcare professionals face an unprecedented task of controlling and treating the COVID-19 infected patients with a highly straining and draining facility due to the erratic admissions of infected patients. However, COVID-19 is considered as a white swan event. Yet, the impact of the COVID-19 pandemic on healthcare operations is highly uncertain and disruptive making it as a black swan event. Therefore, the study explores the impact of the COVID-19 outbreak on healthcare operations and develops machine learning-based forecasting models using time series data to foresee the progression of COVID-19 and further using predictive analytics to better manage healthcare operations. The prediction error of the proposed model is found to be 0.039 for new cases and 0.006 for active COVID-19 cases with respect to mean absolute percentage error. The proposed simulated model further could generate predictive analytics and yielded future recovery rate, resource management ratios, and average cycle time of a patient tested COVID-19 positive. Further, the study will help healthcare professionals to devise better resilience and decision-making for managing uncertainty and disruption in healthcare operations. COVID-19 pandemic has questioned the way healthcare operations take place globally as the healthcare professionals face an unprecedented task of controlling and treating the COVID-19 infected patients with a highly straining and draining facility due to the erratic admissions of infected patients. However, COVID-19 is considered as a white swan event. Yet, the impact of the COVID-19 pandemic on healthcare operations is highly uncertain and disruptive making it as a black swan event. Therefore, the study explores the impact of the COVID-19 outbreak on healthcare operations and develops machine learning-based forecasting models using time series data to foresee the progression of COVID-19 and further using predictive analytics to better manage healthcare operations. The prediction error of the proposed model is found to be 0.039 for new cases and 0.006 for active COVID-19 cases with respect to mean absolute percentage error. The proposed simulated model further could generate predictive analytics and yielded future recovery rate, resource management ratios, and average cycle time of a patient tested COVID-19 positive. Further, the study will help healthcare professionals to devise better resilience and decision-making for managing uncertainty and disruption in healthcare operations.COVID-19 pandemic has questioned the way healthcare operations take place globally as the healthcare professionals face an unprecedented task of controlling and treating the COVID-19 infected patients with a highly straining and draining facility due to the erratic admissions of infected patients. However, COVID-19 is considered as a white swan event. Yet, the impact of the COVID-19 pandemic on healthcare operations is highly uncertain and disruptive making it as a black swan event. Therefore, the study explores the impact of the COVID-19 outbreak on healthcare operations and develops machine learning-based forecasting models using time series data to foresee the progression of COVID-19 and further using predictive analytics to better manage healthcare operations. The prediction error of the proposed model is found to be 0.039 for new cases and 0.006 for active COVID-19 cases with respect to mean absolute percentage error. The proposed simulated model further could generate predictive analytics and yielded future recovery rate, resource management ratios, and average cycle time of a patient tested COVID-19 positive. Further, the study will help healthcare professionals to devise better resilience and decision-making for managing uncertainty and disruption in healthcare operations. |
Author | Sreedharan, V Raja Manimuthu, Arunmozhi Devarajan, Jinil Persis |
AuthorAffiliation | Nanyang Technological University 54761 Singapore 639798 Singapore Operations and Supply Chain Management area National Institute of Industrial Engineering (NITIE) 29529 Mumbai 400087 India BEAR Lab, Rabat Business School Université Internationale de Rabat 450759 Rabat 11103 Morocco |
AuthorAffiliation_xml | – name: Operations and Supply Chain Management area National Institute of Industrial Engineering (NITIE) 29529 Mumbai 400087 India – name: BEAR Lab, Rabat Business School Université Internationale de Rabat 450759 Rabat 11103 Morocco – name: Nanyang Technological University 54761 Singapore 639798 Singapore |
Author_xml | – sequence: 1 givenname: Jinil Persis orcidid: 0000-0003-0087-3592 surname: Devarajan fullname: Devarajan, Jinil Persis email: jinilpersis@gmail.com organization: Operations and Supply Chain Management area, National Institute of Industrial Engineering (NITIE), Mumbai, India – sequence: 2 givenname: Arunmozhi orcidid: 0000-0003-4909-4880 surname: Manimuthu fullname: Manimuthu, Arunmozhi email: arunmozhi.m@ntu.edu.sg organization: Nanyang Technological University, Singapore, Singapore – sequence: 3 givenname: V Raja orcidid: 0000-0003-3601-8002 surname: Sreedharan fullname: Sreedharan, V Raja email: raja.sreedharan@uir.ac.ma organization: BEAR Lab, Rabat Business School, Université Internationale de Rabat, Rabat, Morocco |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37954443$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkd9rUzEUx4NMXDd9FwQJ-OLLrfl5b-LLqLW6waQDp_gW0uTUZd4mNbmt7L83pbWoTyE5n_PNOXzO0ElMERB6TsmYUqLf3M4-jRlhdMxJ17aEP0IjKqVqCBHkBI0IoarRXNNTdFbKfb0KycgTdMo7LYUQfIS-XYLthztnM-D5GrIdQooF2-jxu966H_jzLxvxbAtxwMuU8XT-9ep9QzW-qQisgnuLJ_gmgw9uCFvAk2j7hyG48hQ9Xtq-wLPDeY6-fJjdTi-b6_nHq-nkunGi64ZGiEXbWSek1r6TnnIuWgmtF6rVznu3WIInlPlKWytY54RTaqGkbzte3yg_Rxf73PVmsQLv6qDZ9madw8rmB5NsMP9WYrgz39PWUNIyoqWsCa8PCTn93EAZzCoUB31vI6RNMUwpLZVmklX01X_ofdrkuvKO4oITTVtVKbKnXE6lZFgep6HE7LyZ6s3svJmDt9ry8u8tjg1_RFXgxR4IAHAsayGkrD_-BvX8nGA |
CODEN | IEEMA4 |
CitedBy_id | crossref_primary_10_1080_17517575_2024_2317153 crossref_primary_10_1109_TEM_2022_3151842 crossref_primary_10_1109_TEM_2022_3209879 crossref_primary_10_1109_TEM_2021_3096862 crossref_primary_10_1108_K_09_2022_1348 crossref_primary_10_1109_TEM_2021_3116068 crossref_primary_10_1109_TEM_2022_3147815 crossref_primary_10_1007_s42524_024_3061_7 crossref_primary_10_1080_0954898X_2024_2350579 crossref_primary_10_1002_mde_3691 crossref_primary_10_1109_TEM_2024_3366313 crossref_primary_10_1108_IJQRM_09_2020_0315 crossref_primary_10_1109_TEM_2022_3201440 crossref_primary_10_1108_BIJ_07_2021_0421 crossref_primary_10_1109_TEM_2022_3151636 crossref_primary_10_1007_s10479_022_04875_1 crossref_primary_10_1109_TEM_2022_3187792 |
Cites_doi | 10.1016/j.asoc.2018.08.024 10.1016/j.ijforecast.2019.04.021 10.1080/07408179908969913 10.1016/j.ijinfomgt.2020.102124 10.1016/j.knosys.2019.105006 10.1016/0040-1625(80)90084-0 10.3390/s18124436 10.1016/j.ijinfomgt.2020.102175 10.1109/SmartGridComm.2011.6102379 10.1016/j.techfore.2021.120602 10.1080/09537287.2020.1852623 10.1016/j.ejor.2016.06.052 10.1016/j.eswa.2020.113237 10.1016/j.bj.2020.05.001 10.1016/S1473-3099(13)70204-4 10.1101/2020.04.15.20066712 10.1016/j.techfore.2020.120092 10.25165/j.ijabe.20181104.4475 10.1016/j.ins.2020.12.024 10.1049/iet-net.2018.5053 10.1016/j.eswa.2019.112950 10.1016/j.tre.2020.101922 10.1016/j.ejor.2006.12.004 10.1016/j.eswa.2013.03.025 10.1016/j.neunet.2019.04.014 10.1109/TIE.2017.2733438 10.1016/j.techfore.2019.04.009 10.1016/j.asoc.2020.106181 10.1002/alr.22602 10.1016/j.eswa.2015.02.050 10.1016/j.techfore.2018.01.018 10.1016/j.cie.2019.06.035 10.1016/j.dib.2020.105340 10.1016/j.eswa.2017.04.013 10.1016/j.resourpol.2019.02.017 10.1007/s00521-019-04050-x 10.1016/j.ejor.2015.08.036 10.1109/TIT.2018.2884673 10.1016/j.mjafi.2020.05.001 10.1371/journal.pone.0230405 10.1016/j.techfore.2020.120072 10.1016/j.compag.2019.104878 10.1016/0040-1625(95)00197-2 10.1016/j.chaos.2020.109866 10.1016/j.compag.2018.06.008 10.1109/TEM.2020.3004885 10.1109/TEM.2019.2939398 10.1007/s00170-006-0864-0 10.1016/j.techfore.2017.02.012 10.1016/j.resourpol.2019.02.014 10.1016/j.dsx.2020.05.008 10.1016/j.numecd.2020.05.027 10.1016/j.jeconom.2017.01.008 10.1007/s10479-020-03877-1 10.1109/MDAT.2019.2897925 10.1016/j.scitotenv.2020.138959 10.1016/j.jclepro.2021.126871 10.1109/MDAT.2020.3021029 10.1109/ACCESS.2020.2971591 10.1016/j.compag.2018.10.024 10.1136/svn-2017-000101 10.1056/NEJMp2005630 10.1016/j.asoc.2013.03.008 10.1017/dmp.2020.115 10.1109/TNNLS.2019.2900046 10.1080/00207543.2021.1910361 10.1093/bib/bbx044 10.1080/02640414.2019.1574949 10.1016/j.ijmst.2017.09.001 10.1016/j.ijinfomgt.2020.102184 10.1016/0169-2070(95)00635-4 10.1016/j.iot.2020.100222 10.1016/j.compag.2004.04.003 10.1016/j.chaos.2020.109829 10.1016/j.trc.2019.12.022 10.1109/JIOT.2019.2903245 10.1016/j.imr.2020.100434 10.3390/s19204482 10.1016/j.earlhumdev.2020.105026 10.1038/s41591-020-1132-9 10.1016/j.ijinfomgt.2020.102180 10.1016/j.ijforecast.2019.04.014 10.1016/j.cie.2016.09.012 10.1016/j.pmcj.2008.02.001 10.1016/j.eswa.2018.03.024 10.1016/j.eswa.2018.11.019 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 2021 IEEE |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 – notice: 2021 IEEE |
DBID | 97E RIA RIE NPM AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D 7X8 5PM |
DOI | 10.1109/TEM.2021.3076603 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library Online PubMed CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Civil Engineering Abstracts PubMed |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0040 |
EndPage | 3243 |
ExternalDocumentID | 10_1109_TEM_2021_3076603 37954443 9445568 |
Genre | orig-research Journal Article |
GroupedDBID | -~X .-4 .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ AAYOK ABQJQ ACGFO ACGFS ACGOD ACHQT ACIWK ACNCT ADMHC AENEX AETIX AFOGA AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV AZLTO BEFXN BFFAM BGNUA BKEBE BKOMP BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RIG RNS TAE TN5 VH1 NPM AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D 7X8 5PM |
ID | FETCH-LOGICAL-c477t-44b67ac4599d75d133465e6d4869cddcbfed012dc47aa427c4c88b85d673c4713 |
IEDL.DBID | RIE |
ISSN | 0018-9391 |
IngestDate | Tue Sep 17 21:29:31 EDT 2024 Sat Oct 26 02:04:51 EDT 2024 Thu Oct 10 19:48:07 EDT 2024 Fri Aug 23 00:44:09 EDT 2024 Sat Nov 02 12:22:52 EDT 2024 Mon Nov 04 11:48:18 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | deep learning data analytics long short-term memory (LSTM) multilayer perceptron prediction time series COVID-19 (novel corona) extreme learning machine (ELM) |
Language | English |
License | This article is free to access and download, along with rights for full text and data mining, re-use and analysis. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c477t-44b67ac4599d75d133465e6d4869cddcbfed012dc47aa427c4c88b85d673c4713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3601-8002 0000-0003-4909-4880 0000-0003-0087-3592 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10620955 |
PMID | 37954443 |
PQID | 2834309168 |
PQPubID | 4949 |
PageCount | 15 |
ParticipantIDs | ieee_primary_9445568 pubmed_primary_37954443 proquest_miscellaneous_2889589252 proquest_journals_2834309168 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10620955 crossref_primary_10_1109_TEM_2021_3076603 |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on engineering management |
PublicationTitleAbbrev | TEM |
PublicationTitleAlternate | IEEE Trans Eng Manag |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 Taleb (ref89) 2007 ref17 ref16 ref19 ref18 ref51 ref50 ref91 ref90 ref46 ref45 ref48 ref47 ref42 ref86 ref41 ref85 ref44 ref88 ref43 ref87 ref49 Georgiou (ref15) 2020 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref82 ref81 ref40 ref83 ref80 ref35 ref79 ref34 ref78 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref77 ref32 ref76 Carmona-Bentez (ref28) 2002; 69 ref2 ref1 ref39 ref38 Mkinen (ref84) 2020; 4 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref34 doi: 10.1016/j.asoc.2018.08.024 – ident: ref42 doi: 10.1016/j.ijforecast.2019.04.021 – ident: ref41 doi: 10.1080/07408179908969913 – ident: ref83 doi: 10.1016/j.ijinfomgt.2020.102124 – ident: ref60 doi: 10.1016/j.knosys.2019.105006 – ident: ref27 doi: 10.1016/0040-1625(80)90084-0 – ident: ref63 doi: 10.3390/s18124436 – ident: ref90 doi: 10.1016/j.ijinfomgt.2020.102175 – ident: ref37 doi: 10.1109/SmartGridComm.2011.6102379 – ident: ref18 doi: 10.1016/j.techfore.2021.120602 – ident: ref76 doi: 10.1080/09537287.2020.1852623 – volume: 4 start-page: 1 issue: 1 year: 2020 ident: ref84 article-title: Tackling challenges of the future with new approaches publication-title: CERN IdeaSquare J. Exp. Innov. contributor: fullname: Mkinen – ident: ref80 doi: 10.1016/j.ejor.2016.06.052 – ident: ref23 doi: 10.1016/j.eswa.2020.113237 – ident: ref11 doi: 10.1016/j.bj.2020.05.001 – ident: ref52 doi: 10.1016/S1473-3099(13)70204-4 – year: 2020 ident: ref15 article-title: COVID-19 outbreak in Greece has passed its rising inflection point and stepping into its peak doi: 10.1101/2020.04.15.20066712 contributor: fullname: Georgiou – ident: ref7 doi: 10.1016/j.techfore.2020.120092 – ident: ref47 doi: 10.25165/j.ijabe.20181104.4475 – ident: ref40 doi: 10.1016/j.ins.2020.12.024 – ident: ref78 doi: 10.1049/iet-net.2018.5053 – ident: ref68 doi: 10.1016/j.eswa.2019.112950 – ident: ref8 doi: 10.1016/j.tre.2020.101922 – ident: ref24 doi: 10.1016/j.ejor.2006.12.004 – ident: ref20 doi: 10.1016/j.eswa.2013.03.025 – ident: ref61 doi: 10.1016/j.neunet.2019.04.014 – ident: ref66 doi: 10.1109/TIE.2017.2733438 – ident: ref54 doi: 10.1016/j.techfore.2019.04.009 – ident: ref62 doi: 10.1016/j.asoc.2020.106181 – ident: ref1 doi: 10.1002/alr.22602 – ident: ref58 doi: 10.1016/j.eswa.2015.02.050 – ident: ref69 doi: 10.1016/j.techfore.2018.01.018 – ident: ref71 doi: 10.1016/j.cie.2019.06.035 – ident: ref14 doi: 10.1016/j.dib.2020.105340 – year: 2007 ident: ref89 publication-title: The Black Swan: The Impact of the Highly Improbable contributor: fullname: Taleb – volume: 69 start-page: 71 year: 2002 ident: ref28 article-title: SARIMA damp trend grey forecasting model for airline industry publication-title: Technol. Forecast. Soc. Change contributor: fullname: Carmona-Bentez – ident: ref33 doi: 10.1016/j.eswa.2017.04.013 – ident: ref39 doi: 10.1016/j.resourpol.2019.02.017 – ident: ref59 doi: 10.1007/s00521-019-04050-x – ident: ref72 doi: 10.1016/j.ejor.2015.08.036 – ident: ref31 doi: 10.1109/TIT.2018.2884673 – ident: ref16 doi: 10.1016/j.mjafi.2020.05.001 – ident: ref70 doi: 10.1371/journal.pone.0230405 – ident: ref5 doi: 10.1016/j.techfore.2020.120072 – ident: ref64 doi: 10.1016/j.compag.2019.104878 – ident: ref67 doi: 10.1016/0040-1625(95)00197-2 – ident: ref4 doi: 10.1016/j.chaos.2020.109866 – ident: ref45 doi: 10.1016/j.compag.2018.06.008 – ident: ref81 doi: 10.1109/TEM.2020.3004885 – ident: ref82 doi: 10.1109/TEM.2019.2939398 – ident: ref38 doi: 10.1007/s00170-006-0864-0 – ident: ref43 doi: 10.1016/j.techfore.2017.02.012 – ident: ref55 doi: 10.1016/j.resourpol.2019.02.014 – ident: ref9 doi: 10.1016/j.dsx.2020.05.008 – ident: ref6 doi: 10.1016/j.numecd.2020.05.027 – ident: ref74 doi: 10.1016/j.jeconom.2017.01.008 – ident: ref79 doi: 10.1007/s10479-020-03877-1 – ident: ref88 doi: 10.1109/MDAT.2019.2897925 – ident: ref2 doi: 10.1016/j.scitotenv.2020.138959 – ident: ref75 doi: 10.1016/j.jclepro.2021.126871 – ident: ref85 doi: 10.1109/MDAT.2020.3021029 – ident: ref35 doi: 10.1109/ACCESS.2020.2971591 – ident: ref46 doi: 10.1016/j.compag.2018.10.024 – ident: ref44 doi: 10.1136/svn-2017-000101 – ident: ref22 doi: 10.1056/NEJMp2005630 – ident: ref49 doi: 10.1016/j.asoc.2013.03.008 – ident: ref3 doi: 10.1017/dmp.2020.115 – ident: ref29 doi: 10.1109/TNNLS.2019.2900046 – ident: ref77 doi: 10.1080/00207543.2021.1910361 – ident: ref17 doi: 10.1093/bib/bbx044 – ident: ref57 doi: 10.1080/02640414.2019.1574949 – ident: ref25 doi: 10.1016/j.ijmst.2017.09.001 – ident: ref26 doi: 10.1016/j.ijinfomgt.2020.102184 – ident: ref73 doi: 10.1016/0169-2070(95)00635-4 – ident: ref13 doi: 10.1016/j.iot.2020.100222 – ident: ref86 doi: 10.1109/MDAT.2019.2897925 – ident: ref87 doi: 10.1049/iet-net.2018.5053 – ident: ref56 doi: 10.1016/j.compag.2004.04.003 – ident: ref12 doi: 10.1016/j.chaos.2020.109829 – ident: ref30 doi: 10.1016/j.trc.2019.12.022 – ident: ref65 doi: 10.1109/JIOT.2019.2903245 – ident: ref10 doi: 10.1016/j.imr.2020.100434 – ident: ref21 doi: 10.3390/s19204482 – ident: ref19 doi: 10.1016/j.earlhumdev.2020.105026 – ident: ref48 doi: 10.1038/s41591-020-1132-9 – ident: ref91 doi: 10.1016/j.ijinfomgt.2020.102180 – ident: ref36 doi: 10.1016/j.ijforecast.2019.04.014 – ident: ref51 doi: 10.1016/j.cie.2016.09.012 – ident: ref53 doi: 10.1016/j.pmcj.2008.02.001 – ident: ref50 doi: 10.1016/j.eswa.2018.03.024 – ident: ref32 doi: 10.1016/j.eswa.2018.11.019 |
SSID | ssj0014520 |
Score | 2.554283 |
Snippet | COVID-19 pandemic has questioned the way healthcare operations take place globally as the healthcare professionals face an unprecedented task of controlling... |
SourceID | pubmedcentral proquest crossref pubmed ieee |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 3229 |
SubjectTerms | Black swan event Corona COVID-19 COVID-19 (novel corona) Cycle ratio Cycle time data analytics Data models Decision making deep learning Drainage facilities Emerging Technologies Engineering Management extreme learning machine (ELM) Health care long short-term memory (LSTM) Machine learning Mathematical analysis Medical personnel Medical services multilayer perceptron Pandemics prediction Predictions Predictive analytics Predictive models Project Management Resource management Technology Assessment, Forecasting, Planning and Transfer time series Time series analysis |
Title | Healthcare Operations and Black Swan Event for COVID-19 Pandemic: A Predictive Analytics |
URI | https://ieeexplore.ieee.org/document/9445568 https://www.ncbi.nlm.nih.gov/pubmed/37954443 https://www.proquest.com/docview/2834309168 https://www.proquest.com/docview/2889589252 https://pubmed.ncbi.nlm.nih.gov/PMC10620955 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB7cPenB92N1lQheBKu2zdOb6IoefIAPvJXmIXqwK66Lf9-ZtFtUvHgrzZCGfJPOJDP5BmAnSIUoc5ugdcoSIsBKSqeyxIrUchXQYoZYxPZWXT3q0wHR5Oy1d2FCCDH5LOzTY4zl-6Eb01HZAXZKhFkd6Cij67tabcSAi4aCMcUFnJt0EpI8NAd3g0vcCGbpPuqzlJPyWI0JijVV_nIvf2dJfjM7Z3P_G_A8zDbuJTuu9WEBpkK1CDPfSAeX4PG8Tfli12-h1oARKyvP4mkeu_0sKzagPEiGHi07uX64OE1Sw27ovPn1xR2xY3bzTgEe-lWySGtCZM_LcH82uDs5T5r6ConjSn0kCJFUpePCGK-Ex90qlyJIz7U0zntnn4JH--VRuix5phx3WlstvFQ5vkvzFehWwyqsAROZI2pDChIKnlpvg0m1lk47iy68tD3YnUx58VbTaBRx-3FoCoSnIHiKBp4eLNFMtnLNJPagP8GoaNbZqEDniOfo8lDzdtuMK4TCHmUVhmOS0UZok4msB6s1pG3fOY2Xc_ym_gF2K0Ds2z9bqpfnyMKNe-mM-PvW_x7uBkxTZfo6Ha0P3Y_3cdiEzsiPt6LifgEgXOme |
link.rule.ids | 230,315,782,786,798,887,27933,27934,54767 |
linkProvider | IEEE |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-QwDLYW9gAcWJ7L8AwSFyQKtM1zbwgGDeIpMSBuVfNAy4EOYhjx97HTTgUrLnurGiuN8jm1EzufAXaCVIgytwlapywhAqykdCpLrEgtVwEtZohFbG_V1YM-6RJNzl57FyaEEJPPwj49xli-H7gRHZUdYKdEmDUBPwVXUtW3tdqYARcNCWOKSzg36TgoeWgO-t1L3Apm6T5qtJTjAlmNEYpVVb5zMP_Nk_xkeE5__d-Q52C2cTDZUa0R8_AjVAsw84l2cBEeem3SF7t-CbUODFlZeRbP89jte1mxLmVCMvRp2fH1_dlJkhp2QyfOz0_uDztiN68U4qGfJYvEJkT3vAR3p93-cS9pKiwkjiv1liBIUpWOC2O8Eh73q1yKID3X0jjvnX0MHi2YR-my5Jly3GlttfBS5fguzZdhshpUYQWYyByRG1KYUPDUehtMqrV02ll04qXtwO54youXmkijiBuQQ1MgPAXBUzTwdGCRZrKVayaxA-tjjIpmpQ0LdI94jk4PNW-3zbhGKPBRVmEwIhlthDaZyDrwu4a07Tun8XKO39RfwG4FiH_7a0v19DfycONuOiMGv9Xvh7sFU73-5UVxcXZ1vgbTVKe-Tk5bh8m311HYgImhH21GJf4AjXHs7w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Healthcare+Operations+and+Black+Swan+Event+for+COVID-19+Pandemic%3A+A+Predictive+Analytics&rft.jtitle=IEEE+transactions+on+engineering+management&rft.au=Devarajan%2C+Jinil+Persis&rft.au=Manimuthu%2C+Arunmozhi&rft.au=Sreedharan%2C+V+Raja&rft.date=2023-09-01&rft.pub=IEEE&rft.issn=0018-9391&rft.volume=70&rft.issue=9&rft.spage=3229&rft.epage=3243&rft_id=info:doi/10.1109%2FTEM.2021.3076603&rft.externalDocID=9445568 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9391&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9391&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9391&client=summon |