In-Situ Characterization of Pore Formation Dynamics in Pulsed Wave Laser Powder Bed Fusion

Laser powder bed fusion (LPBF) is an additive manufacturing technology with the capability of printing complex metal parts directly from digital models. Between two available emission modes employed in LPBF printing systems, pulsed wave (PW) emission provides more control over the heat input compare...

Full description

Saved in:
Bibliographic Details
Published in:Materials Vol. 14; no. 11; p. 2936
Main Authors: Hojjatzadeh, S. Mohammad H., Guo, Qilin, Parab, Niranjan D., Qu, Minglei, Escano, Luis I., Fezzaa, Kamel, Everhart, Wes, Sun, Tao, Chen, Lianyi
Format: Journal Article
Language:English
Published: Basel MDPI AG 29-05-2021
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Laser powder bed fusion (LPBF) is an additive manufacturing technology with the capability of printing complex metal parts directly from digital models. Between two available emission modes employed in LPBF printing systems, pulsed wave (PW) emission provides more control over the heat input compared to continuous wave (CW) emission, which is highly beneficial for printing parts with intricate features. However, parts printed with pulsed wave LPBF (PW-LPBF) commonly contain pores, which degrade their mechanical properties. In this study, we reveal pore formation mechanisms during PW-LPBF in real time by using an in-situ high-speed synchrotron x-ray imaging technique. We found that vapor depression collapse proceeds when the laser irradiation stops within one pulse, resulting in occasional pore formation during PW-LPBF. We also revealed that the melt ejection and rapid melt pool solidification during pulsed-wave laser melting resulted in cavity formation and subsequent formation of a pore pattern in the melted track. The pore formation dynamics revealed here may provide guidance on developing pore elimination approaches.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AC02-06CH11357
USDOE
ISSN:1996-1944
1996-1944
DOI:10.3390/ma14112936