Quantification of cobimetinib, cabozantinib, dabrafenib, niraparib, olaparib, vemurafenib, regorafenib and its metabolite regorafenib M2 in human plasma by UPLC–MS/MS

A sensitive and selective ultra‐high performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method for the simultaneous determination of seven oral oncolytics (two PARP inhibitors, i.e. olaparib and niraparib, and five tyrosine kinase inhibitors, i.e. cobimetinib, cabozantinib, dabr...

Full description

Saved in:
Bibliographic Details
Published in:Biomedical chromatography Vol. 34; no. 3; pp. e4758 - n/a
Main Authors: Krens, Stefanie D., Meulen, Eric, Jansman, Frank G.A., Burger, David M., Erp, Nielka P.
Format: Journal Article
Language:English
Published: England John Wiley and Sons Inc 01-03-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A sensitive and selective ultra‐high performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method for the simultaneous determination of seven oral oncolytics (two PARP inhibitors, i.e. olaparib and niraparib, and five tyrosine kinase inhibitors, i.e. cobimetinib, cabozantinib, dabrafenib, vemurafenib and regorafenib, plus its active metabolite regorafenib M2) in EDTA plasma was developed and validated. Stable isotope‐labelled internal standards were used for each analyte. A simple protein precipitation method was performed with acetonitrile. The LC–MS/MS system consisted of an Acquity H‐Class UPLC system, coupled to a Xevo TQ‐S micro tandem mass spectrometer. The compounds were separated on a Waters CORTECS UPLC C18 column (2.1 × 50 mm, 1.6 μm particle size) and eluted with a gradient elution system. The ions were detected in the multiple reaction monitoring mode. The method was validated for cobimetinib, cabozantinib, dabrafenib, niraparib, olaparib, vemurafenib, regorafenib and regorafenib M2 over the ranges 6–1000, 100–5000, 10–4000, 200–2000, 200–20,000, 5000–100,000, 500–10,000 and 500–10,000 μg/L, respectively. Within‐day accuracy values for all analytes ranged from 86.8 to 115.0% with a precision of <10.4%. Between‐day accuracy values ranged between 89.7 and 111.9% with a between‐day precision of <7.4%. The developed method was successfully used for guiding therapy with therapeutic drug monitoring in cancer patients and clinical research programs in our laboratory.
ISSN:0269-3879
1099-0801
DOI:10.1002/bmc.4758