The real- and redshift-space density distribution functions for large-scale structure in the spherical collapse approximation

We use the spherical collapse (SC) approximation to derive expressions for the smoothed redshift-space probability distribution function (PDF), as well as the p-order hierarchical amplitudes Sp, in both real and redshift space. We compare our results with numerical simulations, focusing on the stand...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society Vol. 328; no. 1; pp. 257 - 265
Main Authors: Scherrer, Robert J., Gaztañaga, Enrique
Format: Journal Article
Language:English
Published: Oxford, UK Blackwell Science Ltd 21-11-2001
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We use the spherical collapse (SC) approximation to derive expressions for the smoothed redshift-space probability distribution function (PDF), as well as the p-order hierarchical amplitudes Sp, in both real and redshift space. We compare our results with numerical simulations, focusing on the standard CDM model, where redshift distortions are strongest. We find good agreement between the SC predictions and the numerical PDF in real space even for , where σL is the linearly evolved rms fluctuation on the smoothing scale. In redshift space, reasonable agreement is possible only for . Numerical simulations also yield a simple empirical relation between the real-space PDF and the redshift-space PDF: we find that for , the redshift-space PDF, [Pδ(z)], is, to a good approximation, a simple rescaling of the real-space PDF, P[δ], i.e., whereσ and σ(z) are the real-space and redshift-space rms fluctuations, respectively. This result applies well beyond the validity of linear perturbation theory, and it is a good fit for both the standard CDM model and the ΛCDM model. It breaks down for SCDM at , but provides a good fit to the ΛCDM models for σL as large as 0.8.
AbstractList Abstract We use the spherical collapse (SC) approximation to derive expressions for the smoothed redshift-space probability distribution function (PDF), as well as the p-order hierarchical amplitudes S p , in both real and redshift space. We compare our results with numerical simulations, focusing on the standard CDM model, where redshift distortions are strongest. We find good agreement between the SC predictions and the numerical PDF in real space even for , where σ L is the linearly evolved rms fluctuation on the smoothing scale. In redshift space, reasonable agreement is possible only for . Numerical simulations also yield a simple empirical relation between the real-space PDF and the redshift-space PDF: we find that for , the redshift-space PDF, [P δ (z)], is, to a good approximation, a simple rescaling of the real-space PDF, P[δ], i.e., whereσ and σ (z) are the real-space and redshift-space rms fluctuations, respectively. This result applies well beyond the validity of linear perturbation theory, and it is a good fit for both the standard CDM model and the ΛCDM model. It breaks down for SCDM at , but provides a good fit to the ΛCDM models for σ L as large as 0.8.
We use the spherical collapse (SC) approximation to derive expressions for the smoothed redshift-space pdf, as well as the p-order hierarchical amplitudes S(p), in both real and redshift space. We compare our results with numerical simulations, focusing on the Omega = 1 standard CDM model, where redshift distortions are strongest. We find good agreement between the SC predictions and the numerical pdf in real space even for sigma-L greater than about 1, where sigma-L is the linearly evolved rms fluctuation on the smoothing scale. In redshift space, reasonable agreement is possible only for sigma-L less than about 0.4. Numerical simulations also yield a simple empirical relation between the real-space PDF and the redshift-space pdf. This result applies well beyond the validity of linear perturbation theory, and it is a good fit for both the standard CDM model and the Lambda-CDM model. (Author)
We use the spherical collapse (SC) approximation to derive expressions for the smoothed redshift-space probability distribution function (PDF), as well as the p-order hierarchical amplitudes Sp, in both real and redshift space. We compare our results with numerical simulations, focusing on the standard CDM model, where redshift distortions are strongest. We find good agreement between the SC predictions and the numerical PDF in real space even for , where σL is the linearly evolved rms fluctuation on the smoothing scale. In redshift space, reasonable agreement is possible only for . Numerical simulations also yield a simple empirical relation between the real-space PDF and the redshift-space PDF: we find that for , the redshift-space PDF, [Pδ(z)], is, to a good approximation, a simple rescaling of the real-space PDF, P[δ], i.e., whereσ and σ(z) are the real-space and redshift-space rms fluctuations, respectively. This result applies well beyond the validity of linear perturbation theory, and it is a good fit for both the standard CDM model and the ΛCDM model. It breaks down for SCDM at , but provides a good fit to the ΛCDM models for σL as large as 0.8.
We use the spherical collapse (SC) approximation to derive expressions for the smoothed redshift‐space probability distribution function (PDF), as well as the p‐order hierarchical amplitudes Sp, in both real and redshift space. We compare our results with numerical simulations, focusing on the standard CDM model, where redshift distortions are strongest. We find good agreement between the SC predictions and the numerical PDF in real space even for , where σL is the linearly evolved rms fluctuation on the smoothing scale. In redshift space, reasonable agreement is possible only for . Numerical simulations also yield a simple empirical relation between the real‐space PDF and the redshift‐space PDF: we find that for , the redshift‐space PDF, [Pδ(z)], is, to a good approximation, a simple rescaling of the real‐space PDF, P[δ], i.e., whereσ and σ(z) are the real‐space and redshift‐space rms fluctuations, respectively. This result applies well beyond the validity of linear perturbation theory, and it is a good fit for both the standard CDM model and the ΛCDM model. It breaks down for SCDM at , but provides a good fit to the ΛCDM models for σL as large as 0.8.
Author Gaztañaga, Enrique
Scherrer, Robert J.
Author_xml – sequence: 1
  givenname: Robert J.
  surname: Scherrer
  fullname: Scherrer, Robert J.
  email: scherrer@mps.ohio-state.edu, scherrer@mps.ohio-state.edu
  organization: Department of Physics and Department of Astronomy, Ohio State University, Columbus, OH 43210, USA
– sequence: 2
  givenname: Enrique
  surname: Gaztañaga
  fullname: Gaztañaga, Enrique
  organization: INAOE, Astrofisica, Tonantzintla, Apdo Postal 216 y 51, Puebla 7200, Mexico
BookMark eNqNkU9v1DAQxS1UJLaF7-ATN6d2_HcPHNqqpUhtEVAkxMVynAnrbZoEOxG7B757nabqCaSePNK838yb50N00PUdIIQZLRgV6nhbMK4kMZqxoqSUFVQYqYrdK7R6bJRrpQ7QilK-iN6gw5S2lFLBS7VCf283gCO4lmDX1bmq0yY0I0mD84Br6FIY97gOaYyhmsbQd7iZOj8XCTd9xK2Lv4Ak71rAWTT5cYqAQ4fHPDgNG4gh97Dv29YNCbAbhtjvwr2bR7xFrxvXJnj39B6h7xfnt2eX5Orzx09nJ1fEC60UMd7Aeu0oV9AwUNm64VrzGpyjgvKqFA7AVLoWoCtTSdlILrgUupKac-n5EXq_zM27f0-QRnsfkodsqYN-SrbUlHGpdBaaRehjn1KExg4xe417y6id87ZbO8dq5yjtnLd9zNvuMvphQf-EFvYv5uz1zde5yjxf-H4a_kOTf20lC5V_CHbPnIt3Np-jpb388dOeUm2uL75J-4U_AFXVqQ4
CitedBy_id crossref_primary_10_1051_0004_6361_20078891
crossref_primary_10_1093_mnras_sts027
crossref_primary_10_1093_mnras_stw1084
crossref_primary_10_1088_2041_8205_708_1_L9
crossref_primary_10_1103_PhysRevD_108_103513
crossref_primary_10_1111_j_1365_2966_2008_13038_x
crossref_primary_10_1086_420762
crossref_primary_10_1103_PhysRevD_94_103524
crossref_primary_10_1103_PhysRevD_107_023515
crossref_primary_10_1093_mnras_stw075
crossref_primary_10_1046_j_1365_8711_2002_05110_x
crossref_primary_10_1086_374375
crossref_primary_10_1111_j_1365_2966_2008_13621_x
Cites_doi 10.1086/173541
10.1086/171398
10.1086/307220
10.1086/161913
10.1046/j.1365-8711.1998.02033.x
10.1046/j.1365-8711.1999.02880.x
10.1093/mnras/284.2.425
10.1086/309249
10.1086/175420
10.1086/186927
10.1046/j.1365-8711.1998.02034.x
10.1046/j.1365-8711.2001.03948.x
10.1046/j.1365-8711.1998.02035.x
10.1093/mnras/227.1.1
10.1086/175542
10.1086/308991
10.1093/mnras/290.2.367
ContentType Journal Article
Copyright 2001 RAS 2001
Copyright_xml – notice: 2001 RAS 2001
DBID BSCLL
AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1046/j.1365-8711.2001.04856.x
DatabaseName Istex
CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Technology Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 265
ExternalDocumentID 10_1046_j_1365_8711_2001_04856_x
MNR4856
10.1046/j.1365-8711.2001.04856.x
ark_67375_HXZ_B078MFS5_Q
Genre article
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
2WC
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAHTB
AAIJN
AAJKP
AAKDD
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
ABCQN
ABCQX
ABEJV
ABEML
ABEUO
ABIXL
ABJNI
ABNKS
ABPEJ
ABPTD
ABQLI
ABTAH
ABXVV
ABZBJ
ACBWZ
ACCFJ
ACGFO
ACGFS
ACGOD
ACNCT
ACSCC
ACUFI
ACXQS
ACYRX
ACYTK
ADEYI
ADGZP
ADHKW
ADHZD
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AEWNT
AFBPY
AFEBI
AFFNX
AFFZL
AFIYH
AFOFC
AFXEN
AFZJQ
AGINJ
AGSYK
AHXPO
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
ASPBG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BDRZF
BEFXN
BEYMZ
BFFAM
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BSCLL
BTQHN
BY8
CAG
CDBKE
CO8
COF
D-E
D-F
DAKXR
DCZOG
DILTD
DR2
DU5
D~K
E3Z
EAD
EAP
EBS
EE~
EJD
ESX
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MK4
NGC
NMDNZ
NOMLY
O9-
OCL
ODMLO
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RHF
RNP
RNS
ROL
ROX
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
V8K
VOH
W8V
W99
WH7
WQJ
WRC
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
ZY4
AASNB
AETEA
AAJQQ
ABFSI
ABSAR
ABSMQ
ACBNA
ACFRR
ACUTJ
AGMDO
ASAOO
ATDFG
BFHJK
CXTWN
DFGAJ
E.L
GROUPED_DOAJ
H13
MBTAY
O0~
OHT
UQL
AAYXX
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c4766-8c8e99a036ef1e604383773deaa0403b24aee8b7d4e7b8b55f5343547b57335c3
ISSN 0035-8711
IngestDate Fri Oct 25 09:10:53 EDT 2024
Thu Nov 21 23:48:35 EST 2024
Sat Aug 24 01:19:07 EDT 2024
Wed Sep 11 04:56:27 EDT 2024
Wed Oct 30 09:38:22 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords galaxies: clusters: general
large-scale structure of Universe
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4766-8c8e99a036ef1e604383773deaa0403b24aee8b7d4e7b8b55f5343547b57335c3
Notes ark:/67375/HXZ-B078MFS5-Q
istex:0326782700F2BEDF6B0A22235124A0A66BB18FFE
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://academic.oup.com/mnras/article-pdf/328/1/257/3120438/328-1-257.pdf
PQID 27013567
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_27013567
crossref_primary_10_1046_j_1365_8711_2001_04856_x
wiley_primary_10_1046_j_1365_8711_2001_04856_x_MNR4856
oup_primary_10_1046_j_1365-8711_2001_04856_x
istex_primary_ark_67375_HXZ_B078MFS5_Q
PublicationCentury 2000
PublicationDate 2001-11-21
PublicationDateYYYYMMDD 2001-11-21
PublicationDate_xml – month: 11
  year: 2001
  text: 2001-11-21
  day: 21
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationTitleAbbrev Mon. Not. R. Astron. Soc
PublicationTitleAlternate Mon. Not. R. Astron. Soc
PublicationYear 2001
Publisher Blackwell Science Ltd
Publisher_xml – name: Blackwell Science Ltd
References 1998b; 301
2000; 539
1994; 420
2001; 320
1994; 291
1984; 279
1987; 227
1997; 284
2000; 537
1995; 443
1998a; 301
1998; 301
1995; 442
1997; 290
1995; 298
1980
1995; 274
1995; 296
1993; 412
1999; 517
1992a; 392
1999; 309
Protogeros (10.1046/j.1365-8711.2001.04856.x-BIB20) 1997; 284
Bernardeau (10.1046/j.1365-8711.2001.04856.x-BIB5) 1995; 443
Bouchet (10.1046/j.1365-8711.2001.04856.x-BIB6) 1995; 296
Protogeros (10.1046/j.1365-8711.2001.04856.x-BIB21) 1997; 290
Gaztañaga (10.1046/j.1365-8711.2001.04856.x-BIB11) 1998; 301
Gaztañaga (10.1046/j.1365-8711.2001.04856.x-BIB12) 2000; 539
Hivon (10.1046/j.1365-8711.2001.04856.x-BIB13) 1995; 298
Scoccimarro (10.1046/j.1365-8711.2001.04856.x-BIB22) 1999; 517
Kofman (10.1046/j.1365-8711.2001.04856.x-BIB18) 1994; 420
Watts (10.1046/j.1365-8711.2001.04856.x-BIB23) 2001; 320
Bernardeau (10.1046/j.1365-8711.2001.04856.x-BIB4) 1994; 291
Fosalba (10.1046/j.1365-8711.2001.04856.x-BIB7) 1998; 301
Fry (10.1046/j.1365-8711.2001.04856.x-BIB9) 1984; 279
Hui (10.1046/j.1365-8711.2001.04856.x-BIB14) 2000; 537
Juszkiewicz (10.1046/j.1365-8711.2001.04856.x-BIB16) 1995; 442
Peebles (10.1046/j.1365-8711.2001.04856.x-BIB19) 1980
Juszkiewicz (10.1046/j.1365-8711.2001.04856.x-BIB15) 1993; 412
Bernardeau (10.1046/j.1365-8711.2001.04856.x-BIB2) 1992; 392
Kaiser (10.1046/j.1365-8711.2001.04856.x-BIB17) 1987; 227
Baugh (10.1046/j.1365-8711.2001.04856.x-BIB1) 1995; 274
Gaztañaga (10.1046/j.1365-8711.2001.04856.x-BIB10) 1999; 309
Fosalba (10.1046/j.1365-8711.2001.04856.x-BIB8) 1998; 301
References_xml – volume: 290
  start-page: 367
  year: 1997
  publication-title: MNRAS
– volume: 301
  start-page: 535
  year: 1998b
  publication-title: MNRAS
– volume: 309
  start-page: 895
  year: 1999
  publication-title: MNRAS
– volume: 227
  start-page: 1
  year: 1987
  publication-title: MNRAS
– volume: 517
  start-page: 531
  year: 1999
  publication-title: ApJ
– volume: 412
  start-page: L9
  year: 1993
  publication-title: ApJ
– year: 1980
– volume: 442
  start-page: 39
  year: 1995
  publication-title: ApJ
– volume: 296
  start-page: 575
  year: 1995
  publication-title: A&A
– volume: 291
  start-page: 697
  year: 1994
  publication-title: A&A
– volume: 420
  start-page: 44
  year: 1994
  publication-title: ApJ
– volume: 443
  start-page: 479
  year: 1995
  publication-title: ApJ
– volume: 301
  start-page: 503
  year: 1998a
  publication-title: MNRAS
– volume: 301
  start-page: 524
  year: 1998
  publication-title: MNRAS
– volume: 298
  start-page: 643
  year: 1995
  publication-title: A&A
– volume: 392
  start-page: 1
  year: 1992a
  publication-title: ApJ
– volume: 274
  start-page: 1049
  year: 1995
  publication-title: MNRAS
– volume: 537
  start-page: 12
  year: 2000
  publication-title: ApJ
– volume: 284
  start-page: 425
  year: 1997
  publication-title: MNRAS
– volume: 539
  start-page: 522
  year: 2000
  publication-title: ApJ
– volume: 279
  start-page: 499
  year: 1984
  publication-title: ApJ
– volume: 320
  start-page: 139
  year: 2001
  publication-title: MNRAS
– volume: 291
  start-page: 697
  year: 1994
  ident: 10.1046/j.1365-8711.2001.04856.x-BIB4
  publication-title: A&A
  contributor:
    fullname: Bernardeau
– volume: 420
  start-page: 44
  year: 1994
  ident: 10.1046/j.1365-8711.2001.04856.x-BIB18
  publication-title: ApJ
  doi: 10.1086/173541
  contributor:
    fullname: Kofman
– volume: 392
  start-page: 1
  year: 1992
  ident: 10.1046/j.1365-8711.2001.04856.x-BIB2
  publication-title: ApJ
  doi: 10.1086/171398
  contributor:
    fullname: Bernardeau
– volume: 296
  start-page: 575
  year: 1995
  ident: 10.1046/j.1365-8711.2001.04856.x-BIB6
  publication-title: A&A
  contributor:
    fullname: Bouchet
– volume: 274
  start-page: 1049
  year: 1995
  ident: 10.1046/j.1365-8711.2001.04856.x-BIB1
  publication-title: MNRAS
  contributor:
    fullname: Baugh
– volume: 517
  start-page: 531
  year: 1999
  ident: 10.1046/j.1365-8711.2001.04856.x-BIB22
  publication-title: ApJ
  doi: 10.1086/307220
  contributor:
    fullname: Scoccimarro
– volume: 279
  start-page: 499
  year: 1984
  ident: 10.1046/j.1365-8711.2001.04856.x-BIB9
  publication-title: ApJ
  doi: 10.1086/161913
  contributor:
    fullname: Fry
– volume: 298
  start-page: 643
  year: 1995
  ident: 10.1046/j.1365-8711.2001.04856.x-BIB13
  publication-title: A&A
  contributor:
    fullname: Hivon
– volume: 301
  start-page: 503
  year: 1998
  ident: 10.1046/j.1365-8711.2001.04856.x-BIB7
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.1998.02033.x
  contributor:
    fullname: Fosalba
– volume: 309
  start-page: 895
  year: 1999
  ident: 10.1046/j.1365-8711.2001.04856.x-BIB10
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.1999.02880.x
  contributor:
    fullname: Gaztañaga
– volume: 284
  start-page: 425
  year: 1997
  ident: 10.1046/j.1365-8711.2001.04856.x-BIB20
  publication-title: MNRAS
  doi: 10.1093/mnras/284.2.425
  contributor:
    fullname: Protogeros
– volume: 539
  start-page: 522
  year: 2000
  ident: 10.1046/j.1365-8711.2001.04856.x-BIB12
  publication-title: ApJ
  doi: 10.1086/309249
  contributor:
    fullname: Gaztañaga
– volume: 442
  start-page: 39
  year: 1995
  ident: 10.1046/j.1365-8711.2001.04856.x-BIB16
  publication-title: ApJ
  doi: 10.1086/175420
  contributor:
    fullname: Juszkiewicz
– volume: 412
  start-page: L9
  year: 1993
  ident: 10.1046/j.1365-8711.2001.04856.x-BIB15
  publication-title: ApJ
  doi: 10.1086/186927
  contributor:
    fullname: Juszkiewicz
– volume: 301
  start-page: 524
  year: 1998
  ident: 10.1046/j.1365-8711.2001.04856.x-BIB11
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.1998.02034.x
  contributor:
    fullname: Gaztañaga
– volume: 320
  start-page: 139
  year: 2001
  ident: 10.1046/j.1365-8711.2001.04856.x-BIB23
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2001.03948.x
  contributor:
    fullname: Watts
– year: 1980
  ident: 10.1046/j.1365-8711.2001.04856.x-BIB19
  contributor:
    fullname: Peebles
– volume: 301
  start-page: 535
  year: 1998
  ident: 10.1046/j.1365-8711.2001.04856.x-BIB8
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.1998.02035.x
  contributor:
    fullname: Fosalba
– volume: 227
  start-page: 1
  year: 1987
  ident: 10.1046/j.1365-8711.2001.04856.x-BIB17
  publication-title: MNRAS
  doi: 10.1093/mnras/227.1.1
  contributor:
    fullname: Kaiser
– volume: 443
  start-page: 479
  year: 1995
  ident: 10.1046/j.1365-8711.2001.04856.x-BIB5
  publication-title: ApJ
  doi: 10.1086/175542
  contributor:
    fullname: Bernardeau
– volume: 537
  start-page: 12
  year: 2000
  ident: 10.1046/j.1365-8711.2001.04856.x-BIB14
  publication-title: ApJ
  doi: 10.1086/308991
  contributor:
    fullname: Hui
– volume: 290
  start-page: 367
  year: 1997
  ident: 10.1046/j.1365-8711.2001.04856.x-BIB21
  publication-title: MNRAS
  doi: 10.1093/mnras/290.2.367
  contributor:
    fullname: Protogeros
SSID ssj0004326
Score 1.7819746
Snippet We use the spherical collapse (SC) approximation to derive expressions for the smoothed redshift-space probability distribution function (PDF), as well as the...
Abstract We use the spherical collapse (SC) approximation to derive expressions for the smoothed redshift-space probability distribution function (PDF), as...
We use the spherical collapse (SC) approximation to derive expressions for the smoothed redshift‐space probability distribution function (PDF), as well as the...
We use the spherical collapse (SC) approximation to derive expressions for the smoothed redshift-space pdf, as well as the p-order hierarchical amplitudes...
SourceID proquest
crossref
wiley
oup
istex
SourceType Aggregation Database
Publisher
StartPage 257
SubjectTerms galaxies: clusters: general
large-scale structure of Universe
Title The real- and redshift-space density distribution functions for large-scale structure in the spherical collapse approximation
URI https://api.istex.fr/ark:/67375/HXZ-B078MFS5-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1046%2Fj.1365-8711.2001.04856.x
https://search.proquest.com/docview/27013567
Volume 328
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbW9cIFwQCt_PQBdimZmsSOk2NbOlVInQQbU8UlSmJHqyjJ1DCp44TEP8DfyF_Ce7aTdGxIBYlLlDh10ur7-vz8_Pk9Ql5mAy7TjEtHSZk7LBeRE-YJhuHcnEkWMam3i01PxPE8fDNhk51OXZuzbfuvSEMbYI07Z_8C7eah0ADngDkcAXU4bo07OILLRsVgFORKVucLsLh1KxiSDLdMFVqTITF9rq181cehzujjUIK4RKl42w0gxZy0mHQWlx6sSrLC5AQ21wjw6qJSJln5evG5Rb6uG1UWX86XV_2iRN1dVYsUTBxjWGFovjQ5DKyitF0rwjSSakMQ3n972OiHkq_gB4_9VyM3MbHiSbFaGEV5G9ZwcX-f14Y12vBlbeNalZM25D4HQ27ttDK2Wwv2IlPEpTbuvhfeYLE11SYxth31PVOx4saAMtCZlK0aEF-IIQX3EOweD2qh6WYO76YP37aX9iVmx-_xXod0PTCYYK-7w9H87Kzd4evrwoHNz7aaNLs-f-tbrjlaXbQZ6982ceJcanNGpl2q03vkrp0L0aEh8X2yo4o9sl9T4IoeUH1ugm_VHunNYIZXrvRCENwcL5Fd-uoB-Q68p8j7n99-UGA8rRkP15rr1HKdbnKdNlynwHWquY4dkOW0YTldFBQoShuW05rl9BrLH5IPR5PT8dSxBUacjIkgcMIsVFGUgBOnclcFOm2vEL5USQJjm596LFEqTIVkSqRhynnOfZheMJFiFlGe-Y_IblEWap9Qxn0vVSHLYTxkPFNJCh8MZeSG6cAXvuoRt0YjvjB5ZGKt_2C4VxIRjBFBrArrxhrBeN0jBxq2pkOy-oQ6TMHj6fxjPALvfnZ0wuN3PfIacP3Dc51bnvuiJkAMgwmuECaFKi-r2BMwI-SB6JFA82LrrxpbAj_-145PyJ3WCjwlu4CwekY6lbx8bv8LvwBi_viq
link.rule.ids 315,782,786,27933,27934
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+real%E2%80%90+and+redshift%E2%80%90space+density+distribution+functions+for+large%E2%80%90scale+structure+in+the+spherical+collapse+approximation&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Scherrer%2C+Robert+J.&rft.au=Gazta%C3%B1aga%2C+Enrique&rft.date=2001-11-21&rft.pub=Blackwell+Science+Ltd&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=328&rft.issue=1&rft.spage=257&rft.epage=265&rft_id=info:doi/10.1046%2Fj.1365-8711.2001.04856.x&rft.externalDBID=10.1046%252Fj.1365-8711.2001.04856.x&rft.externalDocID=MNR4856
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon