The real- and redshift-space density distribution functions for large-scale structure in the spherical collapse approximation
We use the spherical collapse (SC) approximation to derive expressions for the smoothed redshift-space probability distribution function (PDF), as well as the p-order hierarchical amplitudes Sp, in both real and redshift space. We compare our results with numerical simulations, focusing on the stand...
Saved in:
Published in: | Monthly notices of the Royal Astronomical Society Vol. 328; no. 1; pp. 257 - 265 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford, UK
Blackwell Science Ltd
21-11-2001
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | We use the spherical collapse (SC) approximation to derive expressions for the smoothed redshift-space probability distribution function (PDF), as well as the p-order hierarchical amplitudes Sp, in both real and redshift space. We compare our results with numerical simulations, focusing on the standard CDM model, where redshift distortions are strongest. We find good agreement between the SC predictions and the numerical PDF in real space even for , where σL is the linearly evolved rms fluctuation on the smoothing scale. In redshift space, reasonable agreement is possible only for . Numerical simulations also yield a simple empirical relation between the real-space PDF and the redshift-space PDF: we find that for , the redshift-space PDF, [Pδ(z)], is, to a good approximation, a simple rescaling of the real-space PDF, P[δ], i.e., whereσ and σ(z) are the real-space and redshift-space rms fluctuations, respectively. This result applies well beyond the validity of linear perturbation theory, and it is a good fit for both the standard CDM model and the ΛCDM model. It breaks down for SCDM at , but provides a good fit to the ΛCDM models for σL as large as 0.8. |
---|---|
AbstractList | Abstract
We use the spherical collapse (SC) approximation to derive expressions for the smoothed redshift-space probability distribution function (PDF), as well as the p-order hierarchical amplitudes S
p
, in both real and redshift space. We compare our results with numerical simulations, focusing on the standard CDM model, where redshift distortions are strongest. We find good agreement between the SC predictions and the numerical PDF in real space even for , where σ
L is the linearly evolved rms fluctuation on the smoothing scale. In redshift space, reasonable agreement is possible only for . Numerical simulations also yield a simple empirical relation between the real-space PDF and the redshift-space PDF: we find that for , the redshift-space PDF, [P
δ
(z)], is, to a good approximation, a simple rescaling of the real-space PDF, P[δ], i.e., whereσ and σ
(z) are the real-space and redshift-space rms fluctuations, respectively. This result applies well beyond the validity of linear perturbation theory, and it is a good fit for both the standard CDM model and the ΛCDM model. It breaks down for SCDM at , but provides a good fit to the ΛCDM models for σ
L as large as 0.8. We use the spherical collapse (SC) approximation to derive expressions for the smoothed redshift-space pdf, as well as the p-order hierarchical amplitudes S(p), in both real and redshift space. We compare our results with numerical simulations, focusing on the Omega = 1 standard CDM model, where redshift distortions are strongest. We find good agreement between the SC predictions and the numerical pdf in real space even for sigma-L greater than about 1, where sigma-L is the linearly evolved rms fluctuation on the smoothing scale. In redshift space, reasonable agreement is possible only for sigma-L less than about 0.4. Numerical simulations also yield a simple empirical relation between the real-space PDF and the redshift-space pdf. This result applies well beyond the validity of linear perturbation theory, and it is a good fit for both the standard CDM model and the Lambda-CDM model. (Author) We use the spherical collapse (SC) approximation to derive expressions for the smoothed redshift-space probability distribution function (PDF), as well as the p-order hierarchical amplitudes Sp, in both real and redshift space. We compare our results with numerical simulations, focusing on the standard CDM model, where redshift distortions are strongest. We find good agreement between the SC predictions and the numerical PDF in real space even for , where σL is the linearly evolved rms fluctuation on the smoothing scale. In redshift space, reasonable agreement is possible only for . Numerical simulations also yield a simple empirical relation between the real-space PDF and the redshift-space PDF: we find that for , the redshift-space PDF, [Pδ(z)], is, to a good approximation, a simple rescaling of the real-space PDF, P[δ], i.e., whereσ and σ(z) are the real-space and redshift-space rms fluctuations, respectively. This result applies well beyond the validity of linear perturbation theory, and it is a good fit for both the standard CDM model and the ΛCDM model. It breaks down for SCDM at , but provides a good fit to the ΛCDM models for σL as large as 0.8. We use the spherical collapse (SC) approximation to derive expressions for the smoothed redshift‐space probability distribution function (PDF), as well as the p‐order hierarchical amplitudes Sp, in both real and redshift space. We compare our results with numerical simulations, focusing on the standard CDM model, where redshift distortions are strongest. We find good agreement between the SC predictions and the numerical PDF in real space even for , where σL is the linearly evolved rms fluctuation on the smoothing scale. In redshift space, reasonable agreement is possible only for . Numerical simulations also yield a simple empirical relation between the real‐space PDF and the redshift‐space PDF: we find that for , the redshift‐space PDF, [Pδ(z)], is, to a good approximation, a simple rescaling of the real‐space PDF, P[δ], i.e., whereσ and σ(z) are the real‐space and redshift‐space rms fluctuations, respectively. This result applies well beyond the validity of linear perturbation theory, and it is a good fit for both the standard CDM model and the ΛCDM model. It breaks down for SCDM at , but provides a good fit to the ΛCDM models for σL as large as 0.8. |
Author | Gaztañaga, Enrique Scherrer, Robert J. |
Author_xml | – sequence: 1 givenname: Robert J. surname: Scherrer fullname: Scherrer, Robert J. email: scherrer@mps.ohio-state.edu, scherrer@mps.ohio-state.edu organization: Department of Physics and Department of Astronomy, Ohio State University, Columbus, OH 43210, USA – sequence: 2 givenname: Enrique surname: Gaztañaga fullname: Gaztañaga, Enrique organization: INAOE, Astrofisica, Tonantzintla, Apdo Postal 216 y 51, Puebla 7200, Mexico |
BookMark | eNqNkU9v1DAQxS1UJLaF7-ATN6d2_HcPHNqqpUhtEVAkxMVynAnrbZoEOxG7B757nabqCaSePNK838yb50N00PUdIIQZLRgV6nhbMK4kMZqxoqSUFVQYqYrdK7R6bJRrpQ7QilK-iN6gw5S2lFLBS7VCf283gCO4lmDX1bmq0yY0I0mD84Br6FIY97gOaYyhmsbQd7iZOj8XCTd9xK2Lv4Ak71rAWTT5cYqAQ4fHPDgNG4gh97Dv29YNCbAbhtjvwr2bR7xFrxvXJnj39B6h7xfnt2eX5Orzx09nJ1fEC60UMd7Aeu0oV9AwUNm64VrzGpyjgvKqFA7AVLoWoCtTSdlILrgUupKac-n5EXq_zM27f0-QRnsfkodsqYN-SrbUlHGpdBaaRehjn1KExg4xe417y6id87ZbO8dq5yjtnLd9zNvuMvphQf-EFvYv5uz1zde5yjxf-H4a_kOTf20lC5V_CHbPnIt3Np-jpb388dOeUm2uL75J-4U_AFXVqQ4 |
CitedBy_id | crossref_primary_10_1051_0004_6361_20078891 crossref_primary_10_1093_mnras_sts027 crossref_primary_10_1093_mnras_stw1084 crossref_primary_10_1088_2041_8205_708_1_L9 crossref_primary_10_1103_PhysRevD_108_103513 crossref_primary_10_1111_j_1365_2966_2008_13038_x crossref_primary_10_1086_420762 crossref_primary_10_1103_PhysRevD_94_103524 crossref_primary_10_1103_PhysRevD_107_023515 crossref_primary_10_1093_mnras_stw075 crossref_primary_10_1046_j_1365_8711_2002_05110_x crossref_primary_10_1086_374375 crossref_primary_10_1111_j_1365_2966_2008_13621_x |
Cites_doi | 10.1086/173541 10.1086/171398 10.1086/307220 10.1086/161913 10.1046/j.1365-8711.1998.02033.x 10.1046/j.1365-8711.1999.02880.x 10.1093/mnras/284.2.425 10.1086/309249 10.1086/175420 10.1086/186927 10.1046/j.1365-8711.1998.02034.x 10.1046/j.1365-8711.2001.03948.x 10.1046/j.1365-8711.1998.02035.x 10.1093/mnras/227.1.1 10.1086/175542 10.1086/308991 10.1093/mnras/290.2.367 |
ContentType | Journal Article |
Copyright | 2001 RAS 2001 |
Copyright_xml | – notice: 2001 RAS 2001 |
DBID | BSCLL AAYXX CITATION 8FD H8D L7M |
DOI | 10.1046/j.1365-8711.2001.04856.x |
DatabaseName | Istex CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Astronomy & Astrophysics |
EISSN | 1365-2966 |
EndPage | 265 |
ExternalDocumentID | 10_1046_j_1365_8711_2001_04856_x MNR4856 10.1046/j.1365-8711.2001.04856.x ark_67375_HXZ_B078MFS5_Q |
Genre | article |
GroupedDBID | -DZ -~X .2P .3N .GA .I3 .Y3 0R~ 10A 123 1OC 1TH 29M 2WC 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8UM AAHHS AAHTB AAIJN AAJKP AAKDD AAMVS AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP ABCQN ABCQX ABEJV ABEML ABEUO ABIXL ABJNI ABNKS ABPEJ ABPTD ABQLI ABTAH ABXVV ABZBJ ACBWZ ACCFJ ACGFO ACGFS ACGOD ACNCT ACSCC ACUFI ACXQS ACYRX ACYTK ADEYI ADGZP ADHKW ADHZD ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZXQ AECKG AEEZP AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AEQDE AETBJ AEWNT AFBPY AFEBI AFFNX AFFZL AFIYH AFOFC AFXEN AFZJQ AGINJ AGSYK AHXPO AIWBW AJAOE AJBDE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT ASPBG AVWKF AXUDD AZFZN AZVOD BAYMD BCRHZ BDRZF BEFXN BEYMZ BFFAM BGNUA BHONS BKEBE BPEOZ BQUQU BSCLL BTQHN BY8 CAG CDBKE CO8 COF D-E D-F DAKXR DCZOG DILTD DR2 DU5 D~K E3Z EAD EAP EBS EE~ EJD ESX F00 F04 F5P F9B FEDTE FLIZI FLUFQ FOEOM FRJ GAUVT GJXCC H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF K48 KBUDW KOP KQ8 KSI KSN L7B LC2 LC3 LH4 LP6 LP7 LW6 M43 MK4 NGC NMDNZ NOMLY O9- OCL ODMLO OIG OJQWA OK1 P2P P2X P4D PAFKI PB- PEELM PQQKQ Q1. Q11 Q5Y QB0 RHF RNP RNS ROL ROX ROZ RUSNO RW1 RX1 RXO TJP TN5 TOX UB1 V8K VOH W8V W99 WH7 WQJ WRC WYUIH X5Q X5S XG1 YAYTL YKOAZ YXANX ZY4 AASNB AETEA AAJQQ ABFSI ABSAR ABSMQ ACBNA ACFRR ACUTJ AGMDO ASAOO ATDFG BFHJK CXTWN DFGAJ E.L GROUPED_DOAJ H13 MBTAY O0~ OHT UQL AAYXX CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c4766-8c8e99a036ef1e604383773deaa0403b24aee8b7d4e7b8b55f5343547b57335c3 |
ISSN | 0035-8711 |
IngestDate | Fri Oct 25 09:10:53 EDT 2024 Thu Nov 21 23:48:35 EST 2024 Sat Aug 24 01:19:07 EDT 2024 Wed Sep 11 04:56:27 EDT 2024 Wed Oct 30 09:38:22 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | galaxies: clusters: general large-scale structure of Universe |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4766-8c8e99a036ef1e604383773deaa0403b24aee8b7d4e7b8b55f5343547b57335c3 |
Notes | ark:/67375/HXZ-B078MFS5-Q istex:0326782700F2BEDF6B0A22235124A0A66BB18FFE ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://academic.oup.com/mnras/article-pdf/328/1/257/3120438/328-1-257.pdf |
PQID | 27013567 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_27013567 crossref_primary_10_1046_j_1365_8711_2001_04856_x wiley_primary_10_1046_j_1365_8711_2001_04856_x_MNR4856 oup_primary_10_1046_j_1365-8711_2001_04856_x istex_primary_ark_67375_HXZ_B078MFS5_Q |
PublicationCentury | 2000 |
PublicationDate | 2001-11-21 |
PublicationDateYYYYMMDD | 2001-11-21 |
PublicationDate_xml | – month: 11 year: 2001 text: 2001-11-21 day: 21 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK |
PublicationTitle | Monthly notices of the Royal Astronomical Society |
PublicationTitleAbbrev | Mon. Not. R. Astron. Soc |
PublicationTitleAlternate | Mon. Not. R. Astron. Soc |
PublicationYear | 2001 |
Publisher | Blackwell Science Ltd |
Publisher_xml | – name: Blackwell Science Ltd |
References | 1998b; 301 2000; 539 1994; 420 2001; 320 1994; 291 1984; 279 1987; 227 1997; 284 2000; 537 1995; 443 1998a; 301 1998; 301 1995; 442 1997; 290 1995; 298 1980 1995; 274 1995; 296 1993; 412 1999; 517 1992a; 392 1999; 309 Protogeros (10.1046/j.1365-8711.2001.04856.x-BIB20) 1997; 284 Bernardeau (10.1046/j.1365-8711.2001.04856.x-BIB5) 1995; 443 Bouchet (10.1046/j.1365-8711.2001.04856.x-BIB6) 1995; 296 Protogeros (10.1046/j.1365-8711.2001.04856.x-BIB21) 1997; 290 Gaztañaga (10.1046/j.1365-8711.2001.04856.x-BIB11) 1998; 301 Gaztañaga (10.1046/j.1365-8711.2001.04856.x-BIB12) 2000; 539 Hivon (10.1046/j.1365-8711.2001.04856.x-BIB13) 1995; 298 Scoccimarro (10.1046/j.1365-8711.2001.04856.x-BIB22) 1999; 517 Kofman (10.1046/j.1365-8711.2001.04856.x-BIB18) 1994; 420 Watts (10.1046/j.1365-8711.2001.04856.x-BIB23) 2001; 320 Bernardeau (10.1046/j.1365-8711.2001.04856.x-BIB4) 1994; 291 Fosalba (10.1046/j.1365-8711.2001.04856.x-BIB7) 1998; 301 Fry (10.1046/j.1365-8711.2001.04856.x-BIB9) 1984; 279 Hui (10.1046/j.1365-8711.2001.04856.x-BIB14) 2000; 537 Juszkiewicz (10.1046/j.1365-8711.2001.04856.x-BIB16) 1995; 442 Peebles (10.1046/j.1365-8711.2001.04856.x-BIB19) 1980 Juszkiewicz (10.1046/j.1365-8711.2001.04856.x-BIB15) 1993; 412 Bernardeau (10.1046/j.1365-8711.2001.04856.x-BIB2) 1992; 392 Kaiser (10.1046/j.1365-8711.2001.04856.x-BIB17) 1987; 227 Baugh (10.1046/j.1365-8711.2001.04856.x-BIB1) 1995; 274 Gaztañaga (10.1046/j.1365-8711.2001.04856.x-BIB10) 1999; 309 Fosalba (10.1046/j.1365-8711.2001.04856.x-BIB8) 1998; 301 |
References_xml | – volume: 290 start-page: 367 year: 1997 publication-title: MNRAS – volume: 301 start-page: 535 year: 1998b publication-title: MNRAS – volume: 309 start-page: 895 year: 1999 publication-title: MNRAS – volume: 227 start-page: 1 year: 1987 publication-title: MNRAS – volume: 517 start-page: 531 year: 1999 publication-title: ApJ – volume: 412 start-page: L9 year: 1993 publication-title: ApJ – year: 1980 – volume: 442 start-page: 39 year: 1995 publication-title: ApJ – volume: 296 start-page: 575 year: 1995 publication-title: A&A – volume: 291 start-page: 697 year: 1994 publication-title: A&A – volume: 420 start-page: 44 year: 1994 publication-title: ApJ – volume: 443 start-page: 479 year: 1995 publication-title: ApJ – volume: 301 start-page: 503 year: 1998a publication-title: MNRAS – volume: 301 start-page: 524 year: 1998 publication-title: MNRAS – volume: 298 start-page: 643 year: 1995 publication-title: A&A – volume: 392 start-page: 1 year: 1992a publication-title: ApJ – volume: 274 start-page: 1049 year: 1995 publication-title: MNRAS – volume: 537 start-page: 12 year: 2000 publication-title: ApJ – volume: 284 start-page: 425 year: 1997 publication-title: MNRAS – volume: 539 start-page: 522 year: 2000 publication-title: ApJ – volume: 279 start-page: 499 year: 1984 publication-title: ApJ – volume: 320 start-page: 139 year: 2001 publication-title: MNRAS – volume: 291 start-page: 697 year: 1994 ident: 10.1046/j.1365-8711.2001.04856.x-BIB4 publication-title: A&A contributor: fullname: Bernardeau – volume: 420 start-page: 44 year: 1994 ident: 10.1046/j.1365-8711.2001.04856.x-BIB18 publication-title: ApJ doi: 10.1086/173541 contributor: fullname: Kofman – volume: 392 start-page: 1 year: 1992 ident: 10.1046/j.1365-8711.2001.04856.x-BIB2 publication-title: ApJ doi: 10.1086/171398 contributor: fullname: Bernardeau – volume: 296 start-page: 575 year: 1995 ident: 10.1046/j.1365-8711.2001.04856.x-BIB6 publication-title: A&A contributor: fullname: Bouchet – volume: 274 start-page: 1049 year: 1995 ident: 10.1046/j.1365-8711.2001.04856.x-BIB1 publication-title: MNRAS contributor: fullname: Baugh – volume: 517 start-page: 531 year: 1999 ident: 10.1046/j.1365-8711.2001.04856.x-BIB22 publication-title: ApJ doi: 10.1086/307220 contributor: fullname: Scoccimarro – volume: 279 start-page: 499 year: 1984 ident: 10.1046/j.1365-8711.2001.04856.x-BIB9 publication-title: ApJ doi: 10.1086/161913 contributor: fullname: Fry – volume: 298 start-page: 643 year: 1995 ident: 10.1046/j.1365-8711.2001.04856.x-BIB13 publication-title: A&A contributor: fullname: Hivon – volume: 301 start-page: 503 year: 1998 ident: 10.1046/j.1365-8711.2001.04856.x-BIB7 publication-title: MNRAS doi: 10.1046/j.1365-8711.1998.02033.x contributor: fullname: Fosalba – volume: 309 start-page: 895 year: 1999 ident: 10.1046/j.1365-8711.2001.04856.x-BIB10 publication-title: MNRAS doi: 10.1046/j.1365-8711.1999.02880.x contributor: fullname: Gaztañaga – volume: 284 start-page: 425 year: 1997 ident: 10.1046/j.1365-8711.2001.04856.x-BIB20 publication-title: MNRAS doi: 10.1093/mnras/284.2.425 contributor: fullname: Protogeros – volume: 539 start-page: 522 year: 2000 ident: 10.1046/j.1365-8711.2001.04856.x-BIB12 publication-title: ApJ doi: 10.1086/309249 contributor: fullname: Gaztañaga – volume: 442 start-page: 39 year: 1995 ident: 10.1046/j.1365-8711.2001.04856.x-BIB16 publication-title: ApJ doi: 10.1086/175420 contributor: fullname: Juszkiewicz – volume: 412 start-page: L9 year: 1993 ident: 10.1046/j.1365-8711.2001.04856.x-BIB15 publication-title: ApJ doi: 10.1086/186927 contributor: fullname: Juszkiewicz – volume: 301 start-page: 524 year: 1998 ident: 10.1046/j.1365-8711.2001.04856.x-BIB11 publication-title: MNRAS doi: 10.1046/j.1365-8711.1998.02034.x contributor: fullname: Gaztañaga – volume: 320 start-page: 139 year: 2001 ident: 10.1046/j.1365-8711.2001.04856.x-BIB23 publication-title: MNRAS doi: 10.1046/j.1365-8711.2001.03948.x contributor: fullname: Watts – year: 1980 ident: 10.1046/j.1365-8711.2001.04856.x-BIB19 contributor: fullname: Peebles – volume: 301 start-page: 535 year: 1998 ident: 10.1046/j.1365-8711.2001.04856.x-BIB8 publication-title: MNRAS doi: 10.1046/j.1365-8711.1998.02035.x contributor: fullname: Fosalba – volume: 227 start-page: 1 year: 1987 ident: 10.1046/j.1365-8711.2001.04856.x-BIB17 publication-title: MNRAS doi: 10.1093/mnras/227.1.1 contributor: fullname: Kaiser – volume: 443 start-page: 479 year: 1995 ident: 10.1046/j.1365-8711.2001.04856.x-BIB5 publication-title: ApJ doi: 10.1086/175542 contributor: fullname: Bernardeau – volume: 537 start-page: 12 year: 2000 ident: 10.1046/j.1365-8711.2001.04856.x-BIB14 publication-title: ApJ doi: 10.1086/308991 contributor: fullname: Hui – volume: 290 start-page: 367 year: 1997 ident: 10.1046/j.1365-8711.2001.04856.x-BIB21 publication-title: MNRAS doi: 10.1093/mnras/290.2.367 contributor: fullname: Protogeros |
SSID | ssj0004326 |
Score | 1.7819746 |
Snippet | We use the spherical collapse (SC) approximation to derive expressions for the smoothed redshift-space probability distribution function (PDF), as well as the... Abstract We use the spherical collapse (SC) approximation to derive expressions for the smoothed redshift-space probability distribution function (PDF), as... We use the spherical collapse (SC) approximation to derive expressions for the smoothed redshift‐space probability distribution function (PDF), as well as the... We use the spherical collapse (SC) approximation to derive expressions for the smoothed redshift-space pdf, as well as the p-order hierarchical amplitudes... |
SourceID | proquest crossref wiley oup istex |
SourceType | Aggregation Database Publisher |
StartPage | 257 |
SubjectTerms | galaxies: clusters: general large-scale structure of Universe |
Title | The real- and redshift-space density distribution functions for large-scale structure in the spherical collapse approximation |
URI | https://api.istex.fr/ark:/67375/HXZ-B078MFS5-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1046%2Fj.1365-8711.2001.04856.x https://search.proquest.com/docview/27013567 |
Volume | 328 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbW9cIFwQCt_PQBdimZmsSOk2NbOlVInQQbU8UlSmJHqyjJ1DCp44TEP8DfyF_Ce7aTdGxIBYlLlDh10ur7-vz8_Pk9Ql5mAy7TjEtHSZk7LBeRE-YJhuHcnEkWMam3i01PxPE8fDNhk51OXZuzbfuvSEMbYI07Z_8C7eah0ADngDkcAXU4bo07OILLRsVgFORKVucLsLh1KxiSDLdMFVqTITF9rq181cehzujjUIK4RKl42w0gxZy0mHQWlx6sSrLC5AQ21wjw6qJSJln5evG5Rb6uG1UWX86XV_2iRN1dVYsUTBxjWGFovjQ5DKyitF0rwjSSakMQ3n972OiHkq_gB4_9VyM3MbHiSbFaGEV5G9ZwcX-f14Y12vBlbeNalZM25D4HQ27ttDK2Wwv2IlPEpTbuvhfeYLE11SYxth31PVOx4saAMtCZlK0aEF-IIQX3EOweD2qh6WYO76YP37aX9iVmx-_xXod0PTCYYK-7w9H87Kzd4evrwoHNz7aaNLs-f-tbrjlaXbQZ6982ceJcanNGpl2q03vkrp0L0aEh8X2yo4o9sl9T4IoeUH1ugm_VHunNYIZXrvRCENwcL5Fd-uoB-Q68p8j7n99-UGA8rRkP15rr1HKdbnKdNlynwHWquY4dkOW0YTldFBQoShuW05rl9BrLH5IPR5PT8dSxBUacjIkgcMIsVFGUgBOnclcFOm2vEL5USQJjm596LFEqTIVkSqRhynnOfZheMJFiFlGe-Y_IblEWap9Qxn0vVSHLYTxkPFNJCh8MZeSG6cAXvuoRt0YjvjB5ZGKt_2C4VxIRjBFBrArrxhrBeN0jBxq2pkOy-oQ6TMHj6fxjPALvfnZ0wuN3PfIacP3Dc51bnvuiJkAMgwmuECaFKi-r2BMwI-SB6JFA82LrrxpbAj_-145PyJ3WCjwlu4CwekY6lbx8bv8LvwBi_viq |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+real%E2%80%90+and+redshift%E2%80%90space+density+distribution+functions+for+large%E2%80%90scale+structure+in+the+spherical+collapse+approximation&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Scherrer%2C+Robert+J.&rft.au=Gazta%C3%B1aga%2C+Enrique&rft.date=2001-11-21&rft.pub=Blackwell+Science+Ltd&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=328&rft.issue=1&rft.spage=257&rft.epage=265&rft_id=info:doi/10.1046%2Fj.1365-8711.2001.04856.x&rft.externalDBID=10.1046%252Fj.1365-8711.2001.04856.x&rft.externalDocID=MNR4856 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon |