Metal–Organic Frameworks Encapsulating Active Nanoparticles as Emerging Composites for Catalysis: Recent Progress and Perspectives
Beyond conventional porous materials, metal–organic frameworks (MOFs) have aroused great interest in the construction of nanocatalysts with the characteristics of catalytically active nanoparticles (NPs) confined into the cavities/channels of MOFs or surrounded by MOFs. The advantages of adopting MO...
Saved in:
Published in: | Advanced materials (Weinheim) Vol. 30; no. 51; pp. e1800702 - n/a |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Germany
Wiley Subscription Services, Inc
01-12-2018
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Beyond conventional porous materials, metal–organic frameworks (MOFs) have aroused great interest in the construction of nanocatalysts with the characteristics of catalytically active nanoparticles (NPs) confined into the cavities/channels of MOFs or surrounded by MOFs. The advantages of adopting MOFs as the encapsulating matrix are multifold: uniform and long‐range ordered cavities can effectively promote the mass transfer and diffusion of substrates and products, while the diverse metal nodes and tunable organic linkers may enable outstanding synergy functions with the encapsulated active NPs. Herein, some key issues related to MOFs for catalysis are discussed. Then, state‐of‐the art progress in the encapsulation of catalytically active NPs by MOFs as well as their synergy functions for enhanced catalytic performance in the fields of thermo‐, photo‐, and electrocatalysis are summarized. Notably, encapsulation‐structured nanocatalysts exhibit distinct advantages over conventional supported catalysts, especially in terms of the catalytic selectivity and stability. Finally, challenges and future developments in MOF‐based encapsulation‐structured nanocatalysts are proposed. The aim is to deliver better insight into the design of well‐defined nanocatalysts with atomically accurate structures and high performance in challenging reactions.
Compared with conventional supported catalysts, controllable encapsulation of catalytically active nanoparticles by porous metal–organic frameworks can exhibit intriguing features, such as uniform catalytic interface, strong interactions, the pore confinement effect, high stability, and outstanding designability, all of which contribute to the design and construction of high‐performance nanocatalysts. |
---|---|
AbstractList | Beyond conventional porous materials, metal-organic frameworks (MOFs) have aroused great interest in the construction of nanocatalysts with the characteristics of catalytically active nanoparticles (NPs) confined into the cavities/channels of MOFs or surrounded by MOFs. The advantages of adopting MOFs as the encapsulating matrix are multifold: uniform and long-range ordered cavities can effectively promote the mass transfer and diffusion of substrates and products, while the diverse metal nodes and tunable organic linkers may enable outstanding synergy functions with the encapsulated active NPs. Herein, some key issues related to MOFs for catalysis are discussed. Then, state-of-the art progress in the encapsulation of catalytically active NPs by MOFs as well as their synergy functions for enhanced catalytic performance in the fields of thermo-, photo-, and electrocatalysis are summarized. Notably, encapsulation-structured nanocatalysts exhibit distinct advantages over conventional supported catalysts, especially in terms of the catalytic selectivity and stability. Finally, challenges and future developments in MOF-based encapsulation-structured nanocatalysts are proposed. The aim is to deliver better insight into the design of well-defined nanocatalysts with atomically accurate structures and high performance in challenging reactions. Abstract Beyond conventional porous materials, metal–organic frameworks (MOFs) have aroused great interest in the construction of nanocatalysts with the characteristics of catalytically active nanoparticles (NPs) confined into the cavities/channels of MOFs or surrounded by MOFs. The advantages of adopting MOFs as the encapsulating matrix are multifold: uniform and long‐range ordered cavities can effectively promote the mass transfer and diffusion of substrates and products, while the diverse metal nodes and tunable organic linkers may enable outstanding synergy functions with the encapsulated active NPs. Herein, some key issues related to MOFs for catalysis are discussed. Then, state‐of‐the art progress in the encapsulation of catalytically active NPs by MOFs as well as their synergy functions for enhanced catalytic performance in the fields of thermo‐, photo‐, and electrocatalysis are summarized. Notably, encapsulation‐structured nanocatalysts exhibit distinct advantages over conventional supported catalysts, especially in terms of the catalytic selectivity and stability. Finally, challenges and future developments in MOF‐based encapsulation‐structured nanocatalysts are proposed. The aim is to deliver better insight into the design of well‐defined nanocatalysts with atomically accurate structures and high performance in challenging reactions. Beyond conventional porous materials, metal–organic frameworks (MOFs) have aroused great interest in the construction of nanocatalysts with the characteristics of catalytically active nanoparticles (NPs) confined into the cavities/channels of MOFs or surrounded by MOFs. The advantages of adopting MOFs as the encapsulating matrix are multifold: uniform and long‐range ordered cavities can effectively promote the mass transfer and diffusion of substrates and products, while the diverse metal nodes and tunable organic linkers may enable outstanding synergy functions with the encapsulated active NPs. Herein, some key issues related to MOFs for catalysis are discussed. Then, state‐of‐the art progress in the encapsulation of catalytically active NPs by MOFs as well as their synergy functions for enhanced catalytic performance in the fields of thermo‐, photo‐, and electrocatalysis are summarized. Notably, encapsulation‐structured nanocatalysts exhibit distinct advantages over conventional supported catalysts, especially in terms of the catalytic selectivity and stability. Finally, challenges and future developments in MOF‐based encapsulation‐structured nanocatalysts are proposed. The aim is to deliver better insight into the design of well‐defined nanocatalysts with atomically accurate structures and high performance in challenging reactions. Compared with conventional supported catalysts, controllable encapsulation of catalytically active nanoparticles by porous metal–organic frameworks can exhibit intriguing features, such as uniform catalytic interface, strong interactions, the pore confinement effect, high stability, and outstanding designability, all of which contribute to the design and construction of high‐performance nanocatalysts. |
Author | Tang, Zhiyong Zhang, Yin Li, Guodong Zhao, Shenlong |
Author_xml | – sequence: 1 givenname: Guodong surname: Li fullname: Li, Guodong organization: National Center for Nanoscience and Technology – sequence: 2 givenname: Shenlong surname: Zhao fullname: Zhao, Shenlong organization: National Center for Nanoscience and Technology – sequence: 3 givenname: Yin surname: Zhang fullname: Zhang, Yin organization: Peking University – sequence: 4 givenname: Zhiyong orcidid: 0000-0003-0610-0064 surname: Tang fullname: Tang, Zhiyong email: zytang@nanoctr.cn organization: University of Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30247789$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFu1DAQhi3Uim4LV47IEhcuWcaO48TcVktLkVpaIThHxp5duSR2sBOqvXHoG_QNeZJ6u22RuHAaafTNp5n5D8meDx4JecVgzgD4O217PefAGoAa-DMyYxVnhQBV7ZEZqLIqlBTNATlM6QoAlAT5nByUwEVdN2pGbs5x1N2f37cXca29M_Qk6h6vQ_yR6LE3ekhTp0fn13RhRvcL6Wftw6Dj6EyHiepM9RjXW2AZ-iEkN-b2KkS61Fm8SS69p1_QoB_pZQzriClPeUsvMaYB753pBdlf6S7hy4d6RL6dHH9dnhZnFx8_LRdnhRG15EWttc7XCItmBVJxZMqCtU3FLXCmmeXCsPyFWtqSN0aaUgpbCsMlk8o2UB6RtzvvEMPPCdPY9i4Z7DrtMUyp5Yyxumzqe_TNP-hVmKLP22WqqoXksiozNd9RJoaUIq7aIbpex03LoN3m027zaZ_yyQOvH7TT9x7tE_4YSAbUDrh2HW7-o2sXH84Xf-V3wUGf5w |
CitedBy_id | crossref_primary_10_1016_j_ccr_2023_215302 crossref_primary_10_1039_D3GC04952C crossref_primary_10_1002_anie_202204108 crossref_primary_10_1039_D2SC05915K crossref_primary_10_1002_adma_202109203 crossref_primary_10_1016_j_mtener_2021_100846 crossref_primary_10_1021_acsabm_4c00314 crossref_primary_10_3390_inorganics7050056 crossref_primary_10_1002_ange_201907002 crossref_primary_10_1002_advs_202205208 crossref_primary_10_1021_acssensors_3c01831 crossref_primary_10_1039_D0NR09064F crossref_primary_10_1007_s12598_024_02767_w crossref_primary_10_1002_adfm_202302573 crossref_primary_10_1093_nsr_nwaa044 crossref_primary_10_6023_A23040146 crossref_primary_10_1002_anie_202002389 crossref_primary_10_1002_ange_202011614 crossref_primary_10_1016_j_jcat_2022_01_031 crossref_primary_10_1021_acsaem_9b00243 crossref_primary_10_1016_j_jcis_2023_11_036 crossref_primary_10_1002_cctc_202001159 crossref_primary_10_1002_cjoc_202100712 crossref_primary_10_1021_acs_analchem_0c03723 crossref_primary_10_1002_smll_202005334 crossref_primary_10_1007_s11426_019_9674_x crossref_primary_10_1016_j_matt_2022_07_014 crossref_primary_10_1021_acsenergylett_1c02241 crossref_primary_10_1002_smll_202305066 crossref_primary_10_1039_C9NR10109H crossref_primary_10_1016_j_apsusc_2022_154641 crossref_primary_10_1021_acsami_9b20781 crossref_primary_10_1021_jacs_3c11446 crossref_primary_10_1016_j_microc_2019_104591 crossref_primary_10_1021_acscatal_1c05922 crossref_primary_10_1016_j_aca_2020_12_066 crossref_primary_10_1039_D0SC04684A crossref_primary_10_1002_eem2_12170 crossref_primary_10_1007_s10562_022_04007_1 crossref_primary_10_1002_aenm_202100514 crossref_primary_10_1016_j_trac_2021_116395 crossref_primary_10_1007_s10311_021_01355_z crossref_primary_10_1002_aenm_202003291 crossref_primary_10_1039_D1TA08741J crossref_primary_10_1016_j_ccr_2021_213924 crossref_primary_10_1002_asia_201900748 crossref_primary_10_1016_j_mtener_2020_100462 crossref_primary_10_1002_chem_202204016 crossref_primary_10_1021_acsami_2c14533 crossref_primary_10_1002_ange_202308089 crossref_primary_10_1002_anie_202311625 crossref_primary_10_1039_D2RA06741B crossref_primary_10_1016_j_cej_2019_123836 crossref_primary_10_1021_acs_energyfuels_3c02515 crossref_primary_10_1021_acs_cgd_0c01028 crossref_primary_10_1002_ange_201906134 crossref_primary_10_4164_sptj_60_698 crossref_primary_10_1039_D3TB01398G crossref_primary_10_1021_acsanm_1c00266 crossref_primary_10_1039_D2CY00540A crossref_primary_10_1021_acscentsci_1c00743 crossref_primary_10_1021_acsanm_1c02204 crossref_primary_10_1039_D1TA04439G crossref_primary_10_1016_j_matt_2021_01_004 crossref_primary_10_1039_D3NJ01457F crossref_primary_10_1002_zaac_202200379 crossref_primary_10_1021_acs_inorgchem_0c02888 crossref_primary_10_1039_C9TA02457C crossref_primary_10_1039_D0NR09174J crossref_primary_10_1002_chem_202203706 crossref_primary_10_1021_acs_analchem_0c00499 crossref_primary_10_1039_D0CS00070A crossref_primary_10_1186_s12951_023_02007_w crossref_primary_10_1016_j_envpol_2022_119690 crossref_primary_10_1002_cphc_202200565 crossref_primary_10_1039_D3NJ03660J crossref_primary_10_3390_encyclopedia1030046 crossref_primary_10_1002_ange_202311241 crossref_primary_10_1016_j_jece_2022_109131 crossref_primary_10_1088_1361_6528_ab79ae crossref_primary_10_1016_j_cej_2021_130230 crossref_primary_10_1016_j_cej_2022_137036 crossref_primary_10_1016_j_jcis_2020_07_121 crossref_primary_10_1016_j_ces_2023_119077 crossref_primary_10_1002_cctc_201900191 crossref_primary_10_3389_fchem_2022_986908 crossref_primary_10_1002_ange_202116396 crossref_primary_10_1021_acs_jpcc_0c08997 crossref_primary_10_1039_D2TA04411K crossref_primary_10_1002_ange_202302161 crossref_primary_10_1021_acscatal_0c00449 crossref_primary_10_1002_adfm_202400767 crossref_primary_10_1002_ange_201900013 crossref_primary_10_1039_D0GC02048F crossref_primary_10_1016_j_ccr_2019_02_031 crossref_primary_10_1039_D3NJ02486E crossref_primary_10_1007_s12039_022_02067_9 crossref_primary_10_1016_j_jcis_2024_06_216 crossref_primary_10_1007_s11426_020_9881_7 crossref_primary_10_1039_C9CC09145A crossref_primary_10_1039_C9SC03916C crossref_primary_10_1002_adma_201902444 crossref_primary_10_1002_adma_201905950 crossref_primary_10_1002_anie_202011614 crossref_primary_10_1021_acssuschemeng_0c03376 crossref_primary_10_1021_acsami_1c17106 crossref_primary_10_1021_jacs_1c03561 crossref_primary_10_1039_D0NR02007A crossref_primary_10_1002_solr_202000454 crossref_primary_10_1007_s10562_022_04044_w crossref_primary_10_1088_2053_1591_ab5475 crossref_primary_10_1093_nsr_nwz147 crossref_primary_10_1002_ange_202206108 crossref_primary_10_3389_fbioe_2023_1251713 crossref_primary_10_1021_acs_analchem_4c00973 crossref_primary_10_1021_jacs_0c02497 crossref_primary_10_1002_cnma_201900776 crossref_primary_10_1021_accountsmr_1c00009 crossref_primary_10_1021_acs_inorgchem_1c00863 crossref_primary_10_1021_acsmaterialslett_1c00309 crossref_primary_10_1002_admi_202102077 crossref_primary_10_1007_s12274_020_3042_z crossref_primary_10_1002_advs_201802373 crossref_primary_10_1002_chem_202203644 crossref_primary_10_1002_adfm_202104162 crossref_primary_10_1002_advs_201802132 crossref_primary_10_1039_C9TA01964B crossref_primary_10_1021_acssuschemeng_1c07977 crossref_primary_10_1002_adma_202001731 crossref_primary_10_1016_j_xcrp_2020_100076 crossref_primary_10_1016_j_ccr_2020_213468 crossref_primary_10_1002_cjoc_202200571 crossref_primary_10_3390_catal10050578 crossref_primary_10_3390_bios12090745 crossref_primary_10_1002_smll_201905889 crossref_primary_10_1002_bio_3790 crossref_primary_10_1021_acs_inorgchem_9b00242 crossref_primary_10_3390_ijms24044228 crossref_primary_10_1016_j_chempr_2020_11_023 crossref_primary_10_1002_anie_202116396 crossref_primary_10_1002_anie_202211216 crossref_primary_10_1039_D2NR04933C crossref_primary_10_1002_smll_202003971 crossref_primary_10_1016_j_cjche_2023_03_002 crossref_primary_10_1016_j_fuel_2024_132231 crossref_primary_10_1039_D3DT01020A crossref_primary_10_1002_aenm_202002138 crossref_primary_10_1007_s40242_022_2250_3 crossref_primary_10_1002_smll_202207611 crossref_primary_10_1039_D1CC01797G crossref_primary_10_1039_C9CC02727K crossref_primary_10_1007_s00216_019_02217_y crossref_primary_10_1039_D2DT00389A crossref_primary_10_1039_D0CS01538E crossref_primary_10_1007_s12274_022_4576_z crossref_primary_10_1021_acs_inorgchem_0c01501 crossref_primary_10_1002_cnma_202000587 crossref_primary_10_1016_j_jelechem_2023_117464 crossref_primary_10_3390_nano9121698 crossref_primary_10_1002_anie_202217565 crossref_primary_10_1039_D0DT03877F crossref_primary_10_1002_cssc_202100851 crossref_primary_10_1002_cssc_202100179 crossref_primary_10_3390_ijms23094949 crossref_primary_10_1021_acs_langmuir_9b03731 crossref_primary_10_1039_D1EN00628B crossref_primary_10_1002_anie_202110585 crossref_primary_10_3390_molecules27196659 crossref_primary_10_1039_D1CY02156G crossref_primary_10_1016_j_ccr_2020_213366 crossref_primary_10_1021_acs_analchem_9b03677 crossref_primary_10_1039_D3NA00213F crossref_primary_10_1039_D1TA02896K crossref_primary_10_1039_D0EE01882A crossref_primary_10_1007_s00604_022_05238_0 crossref_primary_10_1002_aoc_7199 crossref_primary_10_1021_acs_inorgchem_0c00046 crossref_primary_10_1002_smll_201902463 crossref_primary_10_1021_acs_inorgchem_1c01589 crossref_primary_10_1002_aenm_202100346 crossref_primary_10_1002_ange_202217565 crossref_primary_10_1016_j_cattod_2023_01_007 crossref_primary_10_1016_j_jcis_2021_10_180 crossref_primary_10_1038_s41467_021_22084_5 crossref_primary_10_1038_s41467_020_16715_6 crossref_primary_10_1039_C9TA03578H crossref_primary_10_1002_solr_201900449 crossref_primary_10_1021_jacs_0c05909 crossref_primary_10_1002_anie_202104219 crossref_primary_10_1039_D0CS01191F crossref_primary_10_1039_D0SC05721E crossref_primary_10_1016_j_bios_2019_111743 crossref_primary_10_1021_acscatal_2c06369 crossref_primary_10_1002_anie_201906134 crossref_primary_10_1007_s10904_022_02422_w crossref_primary_10_1002_anie_202302161 crossref_primary_10_1002_cjoc_202100659 crossref_primary_10_1021_acs_chemmater_8b04533 crossref_primary_10_1002_ange_202311625 crossref_primary_10_1002_adfm_202104231 crossref_primary_10_1002_adma_202007368 crossref_primary_10_1016_j_ccr_2024_215658 crossref_primary_10_1021_acsami_9b16224 crossref_primary_10_1007_s40843_020_1587_3 crossref_primary_10_1039_D2QM01201D crossref_primary_10_1002_ange_202401443 crossref_primary_10_1016_j_cej_2022_137095 crossref_primary_10_1016_j_apcatb_2023_123401 crossref_primary_10_1039_D3CS00873H crossref_primary_10_1039_D1DT02127C crossref_primary_10_1016_j_ccr_2019_02_001 crossref_primary_10_1039_D1TA02425F crossref_primary_10_1039_D2CE01327D crossref_primary_10_1002_ange_202306726 crossref_primary_10_1016_j_cclet_2020_07_040 crossref_primary_10_1021_acs_langmuir_1c01640 crossref_primary_10_1002_anie_201913453 crossref_primary_10_1016_j_jcis_2019_11_025 crossref_primary_10_1002_solr_201900438 crossref_primary_10_1039_C9NA00719A crossref_primary_10_1016_j_cej_2023_148365 crossref_primary_10_1002_ange_202211216 crossref_primary_10_3390_nano14090808 crossref_primary_10_1002_smll_201906250 crossref_primary_10_1016_j_ccr_2023_215249 crossref_primary_10_1021_acs_nanolett_9b04124 crossref_primary_10_1039_D1SC05983A crossref_primary_10_1002_adma_202000041 crossref_primary_10_1002_asia_202300291 crossref_primary_10_1021_acsami_0c10151 crossref_primary_10_1016_j_cis_2023_103050 crossref_primary_10_1021_jacs_0c02966 crossref_primary_10_1016_j_xcrp_2022_100757 crossref_primary_10_1002_anie_202206108 crossref_primary_10_1016_j_actbio_2022_03_018 crossref_primary_10_1021_acsanm_3c05533 crossref_primary_10_1002_adma_202210669 crossref_primary_10_1007_s11426_021_1095_y crossref_primary_10_1002_adma_202206842 crossref_primary_10_1038_s41929_021_00665_3 crossref_primary_10_1002_chem_202102877 crossref_primary_10_1039_D1CC03059K crossref_primary_10_1016_j_inoche_2022_109577 crossref_primary_10_1021_acsaem_2c01153 crossref_primary_10_1016_j_mtchem_2020_100343 crossref_primary_10_1021_acs_inorgchem_1c03425 crossref_primary_10_1007_s40242_022_2002_4 crossref_primary_10_1021_acsami_9b11578 crossref_primary_10_1021_acs_inorgchem_0c00625 crossref_primary_10_3390_polym12102265 crossref_primary_10_1021_acs_inorgchem_3c01874 crossref_primary_10_1039_D1CY02024B crossref_primary_10_1038_s41467_019_12885_0 crossref_primary_10_1021_acsanm_3c01842 crossref_primary_10_1016_j_mseb_2023_116385 crossref_primary_10_1002_ange_202204108 crossref_primary_10_1002_anie_201900013 crossref_primary_10_1002_adma_202101216 crossref_primary_10_1002_smll_202106587 crossref_primary_10_1039_D0SE00095G crossref_primary_10_1021_acs_inorgchem_9b02114 crossref_primary_10_1002_ange_202002389 crossref_primary_10_1002_cctc_202100425 crossref_primary_10_3390_min10100918 crossref_primary_10_1016_j_matt_2019_05_018 crossref_primary_10_1002_aesr_202100055 crossref_primary_10_1021_jacs_2c06720 crossref_primary_10_1002_slct_202101471 crossref_primary_10_1038_s41467_021_24571_1 crossref_primary_10_1039_C8SC05441J crossref_primary_10_1002_chem_202003743 crossref_primary_10_1002_adom_202200463 crossref_primary_10_1016_j_cplett_2021_138749 crossref_primary_10_3390_bios13040435 crossref_primary_10_1002_anie_201910309 crossref_primary_10_1002_anie_202311241 crossref_primary_10_1021_acs_jpcc_0c07262 crossref_primary_10_1016_j_ccr_2019_03_005 crossref_primary_10_1021_acs_accounts_9b00609 crossref_primary_10_1039_C9CP05380H crossref_primary_10_1038_s41467_023_35981_8 crossref_primary_10_1002_anie_202401443 crossref_primary_10_1021_acscatal_0c00177 crossref_primary_10_1016_j_inoche_2023_111446 crossref_primary_10_1016_j_cej_2022_134975 crossref_primary_10_1039_D1NJ05487B crossref_primary_10_1002_anie_202306726 crossref_primary_10_1002_jccs_202300115 crossref_primary_10_1021_acsami_0c15340 crossref_primary_10_1002_anie_202308089 crossref_primary_10_1016_j_matt_2023_12_010 crossref_primary_10_1002_ange_201913453 crossref_primary_10_1002_anie_202008189 crossref_primary_10_1016_j_cej_2023_146154 crossref_primary_10_1007_s12274_020_2693_0 crossref_primary_10_1021_jacs_2c09136 crossref_primary_10_1021_jacs_2c10801 crossref_primary_10_1016_j_mtener_2020_100419 crossref_primary_10_1002_smsc_202100015 crossref_primary_10_3390_nano12234263 crossref_primary_10_1016_j_seppur_2024_127090 crossref_primary_10_1021_acsanm_3c00499 crossref_primary_10_1016_j_ccr_2022_214761 crossref_primary_10_1021_acssuschemeng_0c00836 crossref_primary_10_1039_D2CC05686K crossref_primary_10_3390_pharmaceutics14122641 crossref_primary_10_1039_C9CC05708K crossref_primary_10_1016_j_cej_2022_140864 crossref_primary_10_1016_j_cej_2022_140623 crossref_primary_10_1039_D2SC04223A crossref_primary_10_1002_smll_202107459 crossref_primary_10_1016_j_pmatsci_2024_101335 crossref_primary_10_1002_chem_202400360 crossref_primary_10_1002_cplu_202200396 crossref_primary_10_1002_ange_202008189 crossref_primary_10_1007_s10562_020_03277_x crossref_primary_10_1039_D1NR03006J crossref_primary_10_1007_s12274_020_3144_7 crossref_primary_10_1016_j_crcon_2023_100211 crossref_primary_10_1002_smll_202300916 crossref_primary_10_1016_j_jece_2024_112835 crossref_primary_10_1039_C9CY01690B crossref_primary_10_1039_D0CC00566E crossref_primary_10_3389_fchem_2021_673738 crossref_primary_10_1002_adfm_202007624 crossref_primary_10_1002_ange_201910309 crossref_primary_10_1039_D0QI01351J crossref_primary_10_1002_ange_202110585 crossref_primary_10_1039_D0QM00040J crossref_primary_10_1039_D1QM00242B crossref_primary_10_1039_D1QI00516B crossref_primary_10_1126_sciadv_abb2695 crossref_primary_10_1007_s11696_022_02193_1 crossref_primary_10_1021_acs_chemmater_0c03007 crossref_primary_10_1021_acsanm_1c03332 crossref_primary_10_1002_anie_201907002 crossref_primary_10_1016_j_mtener_2020_100437 crossref_primary_10_1016_j_ijhydene_2023_05_247 crossref_primary_10_1039_D0TA02033H crossref_primary_10_3390_molecules24173050 crossref_primary_10_1021_acsaem_1c02175 crossref_primary_10_1002_adfm_202301013 crossref_primary_10_1002_cssc_201902272 crossref_primary_10_1007_s10853_019_03604_7 crossref_primary_10_1007_s10311_020_01119_1 crossref_primary_10_1002_slct_202303384 crossref_primary_10_1007_s11426_022_1295_3 crossref_primary_10_1016_j_seppur_2024_128395 crossref_primary_10_1039_C9CY01745C crossref_primary_10_1039_D0TA08094B crossref_primary_10_1016_j_addr_2023_114730 crossref_primary_10_1016_j_cej_2021_129201 crossref_primary_10_1039_C9CP05273A crossref_primary_10_1016_j_cclet_2019_09_054 crossref_primary_10_1021_acs_organomet_9b00286 crossref_primary_10_1002_ange_202104219 |
Cites_doi | 10.1126/science.1181761 10.1039/C7CE00398F 10.1038/nchem.1272 10.1021/ja903726m 10.1002/chem.200800980 10.1126/science.1116275 10.1021/jacs.5b13335 10.1039/C3CS60378D 10.1021/acs.chemmater.7b01636 10.1002/adma.201800643 10.1039/c3cy00910f 10.1038/nature06552 10.1021/acs.inorgchem.6b00911 10.1021/ja410684q 10.1039/C5CS00307E 10.1039/C7DT01351E 10.1021/acs.inorgchem.5b02973 10.1021/jacs.7b00106 10.1021/jacs.7b09943 10.1021/acscatal.6b03386 10.1002/chem.201505141 10.1039/C5GC01333J 10.1002/adma.201703663 10.1002/anie.201603990 10.1002/anie.201801289 10.1021/jacs.7b00058 10.1126/science.1246738 10.1038/nmat4030 10.1021/ja304693r 10.1002/adma.201705112 10.1021/jacs.7b02272 10.1021/ja407176p 10.1039/C3CS60472A 10.1021/ja403330m 10.1002/anie.200803387 10.1021/jp402154q 10.1039/C5CC03102H 10.1021/cs5012662 10.1016/j.electacta.2016.03.092 10.1039/C5TA00030K 10.1039/C6CC00805D 10.1038/nature19763 10.1038/nchem.2691 10.1021/ja411468e 10.1039/C6CC03096C 10.1021/cm4034319 10.1021/acs.inorgchem.8b00098 10.1039/C5SC04572J 10.1021/ja0770983 10.1002/adma.201702891 10.1039/C4CC04458D 10.1021/cs400959k 10.1002/anie.201709558 10.1021/jacs.6b11027 10.1039/b922061e 10.1021/ja3043905 10.1002/anie.201307340 10.1002/smtd.201700187 10.1039/C1SC00394A 10.1002/anie.201510655 10.1039/C1CS15055C 10.1021/jp803620v 10.1021/acscatal.7b02581 10.1039/C6CS00724D 10.1021/jacs.7b02186 10.1021/cs501169t 10.1002/smll.201401875 10.1002/adma.201405752 10.1002/anie.201600497 10.1039/C4CE00032C 10.1039/C7TA02611K 10.1039/C4CC09797A 10.1038/nenergy.2015.6 10.1002/chem.201701460 10.1039/C4TA04311A 10.1039/C0DT01065K 10.1039/c3sc00032j 10.1038/srep30651 10.1039/C6CC00730A 10.1039/C7CS00033B 10.1002/advs.201600371 10.1039/C6MH00484A 10.1021/nn5027092 10.1002/adma.201705634 10.1002/anie.201308589 10.1021/ja00429a030 10.1039/C5CC01697E 10.1021/acs.jpcc.6b02818 10.1021/ja306869j 10.1021/jacs.5b08773 10.1093/nsr/nwx013 10.1039/C5NR00361J 10.1021/acsnano.5b01138 10.1021/acscatal.8b00505 10.1002/anie.201800817 10.1039/C7DT00082K 10.1021/ja4093055 10.1021/cs501953d 10.1021/acs.chemrev.6b00346 10.1002/anie.201406484 10.1021/ja308786r 10.1002/anie.200454250 10.1002/adma.201701139 10.1038/46248 10.1126/science.1217544 10.1126/science.283.5405.1148 10.1021/ja405086e 10.1039/c2cp41099k 10.1002/chem.201000053 10.1002/anie.201801588 10.1016/j.ces.2014.08.052 10.1002/aic.15356 10.1039/C5CP06779K 10.1002/chem.201605473 10.1021/acscatal.6b01293 10.1002/anie.201701604 10.1021/cm101238m 10.1002/adma.201405583 10.1002/adma.201201715 10.1002/anie.201209903 10.1021/jacs.8b02710 10.1039/C5EE00762C 10.1002/chem.201103433 10.1021/acs.inorgchem.8b00282 10.1039/C5TA04675K 10.1039/C5CC00686D 10.1039/C6CS00537C 10.1039/C5CS00837A 10.1002/adma.201400620 10.1038/ncomms10942 10.1039/C6TA05098K 10.1021/ja502765n 10.1039/C7NJ00709D 10.1021/jacs.8b00605 10.1021/ja8024092 10.1002/anie.200462515 10.1002/chem.200601003 10.1039/C7CY01653K 10.1039/C4SC02362E 10.1126/science.1240148 10.1126/science.1192160 10.1021/cr5001892 10.1021/jacs.7b11364 10.1021/ja512437u 10.1039/C7CC06530B 10.1021/acs.inorgchem.6b00050 10.1002/anie.201711920 10.1038/nmat4766 10.1021/jacs.5b02688 10.1021/cs3005874 10.1039/C7QI00577F 10.1039/C7TA01070B 10.1039/c4cc00785a 10.1021/acs.jpcc.6b06710 10.1039/C6CE00733C 10.1039/C4CS00003J 10.1002/ange.201000863 10.1021/ic400048g 10.1021/ja00146a033 10.1039/C5SC02925B 10.1039/C4CS00230J 10.1002/smll.201601873 10.1021/ja300539p 10.1002/chem.200903526 10.1021/ja405350u 10.1039/C6CC09270E 10.1021/jp105666f 10.1021/acsami.7b17389 10.1021/ja8057953 10.1039/C5TA02860D 10.1021/ja3079219 10.1021/jacs.5b08212 10.1021/jacs.8b02638 10.1021/ja00160a038 10.1021/ja305004a 10.1021/ja308801n 10.1039/C7CC06166H 10.1002/anie.201802661 10.1002/adfm.200801439 10.1007/s12274-014-0501-4 10.1021/jacs.5b03540 10.1039/C5MH00125K 10.1021/ja1099006 10.1126/science.1230444 10.1002/adfm.201702067 10.1002/anie.201506219 10.1002/anie.201703675 10.1038/nmeth.2211 10.1039/C4CS00395K 10.1039/C4CS00103F 10.1021/acsami.7b11150 10.1038/nenergy.2016.184 10.1021/nn5072446 10.1021/acs.inorgchem.6b02855 10.1021/ic9812095 10.1002/anie.201504242 10.1002/anie.201600431 10.1021/jacs.5b05926 10.1126/science.1220131 10.1039/C7TA00437K 10.1021/jacs.8b03517 10.1126/sciadv.1701162 10.1039/C3NR06787D 10.1039/C7CC05927B 10.1021/acscatal.6b00397 10.1038/s41560-017-0044-5 10.1039/b807080f 10.1002/anie.201711725 10.1021/ja512951e 10.1039/C2CS35320B 10.1039/c3ta12894f 10.1016/j.nantod.2009.10.008 10.1126/science.aao3403 10.1021/acsami.5b00682 10.1146/annurev.physchem.58.032806.104607 10.1021/nl503007h 10.1021/ja00082a055 10.1039/C6RA00463F 10.1039/C4CC04387A 10.1021/acs.nanolett.6b03637 10.1021/jacs.8b01601 10.1038/ncomms14429 10.1039/C8CC00130H 10.1002/anie.201608597 10.1021/ja5048522 10.1002/cctc.201601653 10.1002/anie.201800320 10.1039/C4CC06568A 10.1021/acscatal.6b02923 10.1038/ncomms9248 10.1039/C2CS35355E 10.1021/acscatal.5b01949 10.1021/ja906198y 10.1039/C6CE00612D 10.1039/B618320B 10.1039/C4CP04162C 10.1039/b802423p 10.1021/acs.chemrev.5b00221 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | NPM AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201800702 |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adma_201800702 30247789 ADMA201800702 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Frontier Science Key Project of Chinese Academy of Sciences funderid: QYZDJ‐SSW‐SLH038 – fundername: National Natural Science Foundation of China funderid: 21721002; 21475029; 21722102; 51672053; 21303029 – fundername: CAS‐CSIRO Cooperative Research Program funderid: GJHZ1503 – fundername: “Strategic Priority Research Program” of the Chinese Academy of Sciences funderid: XDA09040100 – fundername: Beijing Natural Science Foundation funderid: 2182087 – fundername: National Research Fund for Fundamental Key Project funderid: 2014CB931801; 2016YFA0200700 – fundername: Youth Innovation Promotion Association CAS funderid: 2016036 – fundername: Beijing Natural Science Foundation grantid: 2182087 – fundername: "Strategic Priority Research Program" of the Chinese Academy of Sciences grantid: XDA09040100 – fundername: National Natural Science Foundation of China grantid: 21303029 – fundername: National Natural Science Foundation of China grantid: 51672053 – fundername: Youth Innovation Promotion Association CAS grantid: 2016036 – fundername: National Research Fund for Fundamental Key Project grantid: 2014CB931801 – fundername: CAS-CSIRO Cooperative Research Program grantid: GJHZ1503 – fundername: National Natural Science Foundation of China grantid: 21722102 – fundername: Frontier Science Key Project of Chinese Academy of Sciences grantid: QYZDJ-SSW-SLH038 – fundername: National Natural Science Foundation of China grantid: 21721002 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAYOK ABEML ABTAH ACBWZ ACSCC AFFNX ASPBG AVWKF AZFZN FEDTE FOJGT HF~ HVGLF M6K NDZJH NPM PALCI RIWAO RJQFR SAMSI WTY ZY4 AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c4762-7aaa9644decf0692e19d0dd852d021a1d24c170276d328c6c364d34c26169d803 |
IEDL.DBID | 33P |
ISSN | 0935-9648 |
IngestDate | Fri Aug 16 05:02:38 EDT 2024 Thu Oct 10 16:00:13 EDT 2024 Thu Sep 26 15:57:06 EDT 2024 Sat Sep 28 08:37:54 EDT 2024 Sat Aug 24 00:54:46 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 51 |
Keywords | encapsulation nanocomposite nanoparticle heterogeneous catalysis metal-organic frameworks |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4762-7aaa9644decf0692e19d0dd852d021a1d24c170276d328c6c364d34c26169d803 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ORCID | 0000-0003-0610-0064 |
PMID | 30247789 |
PQID | 2157462653 |
PQPubID | 2045203 |
PageCount | 43 |
ParticipantIDs | proquest_miscellaneous_2111738780 proquest_journals_2157462653 crossref_primary_10_1002_adma_201800702 pubmed_primary_30247789 wiley_primary_10_1002_adma_201800702_ADMA201800702 |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 16 2013; 4 2013; 1 2014; 26 2008; 37 1999; 283 2012; 18 2012; 14 2014; 136 2010; 22 2018; 8 2018; 3 2012; 134 2018; 5 2015; 137 2010; 114 2013; 117 2013; 52 2014; 16 2014; 14 2014; 13 2018; 30 2008; 112 2012; 24 2009; 19 2016; 45 2004; 43 2010; 329 2010; 327 2015; 51 2015; 124 2015; 54 2016; 200 2013; 341 2016; 18 2016; 16 2007; 13 2011; 133 2014; 43 2017; 139 2016; 12 2016; 4 2016; 6 2017; 53 2016; 7 2016; 1 2010; 46 2015; 115 2018; 359 1999; 38 2017; 56 1990; 112 2018; 10 2008; 130 2012; 41 2016; 22 2017; 5 2017; 7 2017; 41 2017; 8 2017; 1 2017; 3 2017; 4 2017; 46 2012; 326 1999; 402 2017; 9 2009; 48 2014; 4 2014; 2 2015; 44 2005; 309 2016; 116 2012; 335 2014; 8 2014; 50 2014; 7 2014; 6 2014; 53 2015; 2 1994; 116 2015; 17 2015; 6 2015; 5 2018; 140 2015; 3 2017; 27 2013; 42 2011; 40 2015; 11 2017; 23 1995; 117 2008; 14 2010; 122 2016; 52 2017; 29 2009; 131 2015; 9 2015; 8 2015; 7 2005; 44 2016; 120 2014; 114 2007; 58 2016; 55 1976; 98 2012; 2 2012; 3 2015; 27 2016; 539 2017; 16 2016; 62 2013; 135 2017; 19 2016; 138 2009; 4 2008; 451 2018; 54 2012; 4 2009; 38 2014; 343 2018; 57 2012; 9 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_203_1 e_1_2_8_226_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_178_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_193_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_230_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_238_1 e_1_2_8_215_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_189_1 e_1_2_8_91_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_181_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_30_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_227_1 e_1_2_8_204_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_179_1 e_1_2_8_110_1 e_1_2_8_171_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_194_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_156_1 e_1_2_8_231_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_216_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_106_1 e_1_2_8_182_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_167_1 e_1_2_8_28_1 e_1_2_8_220_1 e_1_2_8_228_1 e_1_2_8_205_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_172_1 e_1_2_8_195_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 e_1_2_8_232_1 e_1_2_8_217_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_183_1 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_93_1 e_1_2_8_221_1 e_1_2_8_27_1 e_1_2_8_229_1 e_1_2_8_206_1 e_1_2_8_80_1 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_65_1 e_1_2_8_173_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_196_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_210_1 e_1_2_8_16_1 e_1_2_8_218_1 e_1_2_8_233_1 e_1_2_8_92_1 e_1_2_8_100_1 e_1_2_8_161_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_184_1 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_146_1 e_1_2_8_68_1 e_1_2_8_222_1 e_1_2_8_207_1 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_174_1 e_1_2_8_197_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_57_1 e_1_2_8_211_1 e_1_2_8_234_1 e_1_2_8_95_1 e_1_2_8_219_1 e_1_2_8_162_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_185_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_200_1 e_1_2_8_223_1 e_1_2_8_152_1 e_1_2_8_208_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_137_1 e_1_2_8_175_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_198_1 e_1_2_8_18_1 e_1_2_8_79_1 e_1_2_8_212_1 e_1_2_8_235_1 e_1_2_8_94_1 e_1_2_8_163_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_186_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_224_1 e_1_2_8_201_1 e_1_2_8_3_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_209_1 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_176_1 e_1_2_8_199_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_190_1 e_1_2_8_213_1 e_1_2_8_236_1 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_187_1 e_1_2_8_46_1 e_1_2_8_69_1 e_1_2_8_180_1 e_1_2_8_202_1 e_1_2_8_225_1 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_192_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_177_1 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_191_1 e_1_2_8_214_1 e_1_2_8_237_1 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_142_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_188_1 |
References_xml | – volume: 55 start-page: 3058 year: 2016 publication-title: Inorg. Chem. – volume: 117 start-page: 10401 year: 1995 publication-title: J. Am. Chem. Soc. – volume: 131 start-page: 14261 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 42 start-page: 1807 year: 2013 publication-title: Chem. Soc. Rev. – volume: 134 start-page: 14345 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 17881 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 112 start-page: 14090 year: 2008 publication-title: J. Phys. Chem. C – volume: 57 start-page: 3493 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 57 start-page: 1918 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 52 start-page: 8957 year: 2016 publication-title: Chem. Commun. – volume: 53 start-page: 10026 year: 2017 publication-title: Chem. Commun. – volume: 17 start-page: 117 year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 50 start-page: 12800 year: 2014 publication-title: Chem. Commun. – volume: 136 start-page: 8859 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 4254 year: 2014 publication-title: ACS Catal. – volume: 3 start-page: 15259 year: 2015 publication-title: J. Mater. Chem. A – volume: 137 start-page: 7169 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 10595 year: 2012 publication-title: Chem. Eur. J. – volume: 1 start-page: 13252 year: 2013 publication-title: J. Mater. Chem. A – volume: 27 start-page: 1702067 year: 2017 publication-title: Adv. Funct. Mater. – volume: 53 start-page: 10851 year: 2017 publication-title: Chem. Commun. – volume: 140 start-page: 6622 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 2142 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 55 start-page: 9389 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 52 start-page: 4011 year: 2013 publication-title: Inorg. Chem. – volume: 50 start-page: 14752 year: 2014 publication-title: Chem. Commun. – volume: 140 start-page: 1077 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 815 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 57 start-page: 5708 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 4 start-page: 345 year: 2017 publication-title: Mater. Horiz. – volume: 114 start-page: 13362 year: 2010 publication-title: J. Phys. Chem. C – volume: 55 start-page: 3566 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 98 start-page: 3916 year: 1976 publication-title: J. Am. Chem. Soc. – volume: 117 start-page: 11302 year: 2013 publication-title: J. Phys. Chem. C – volume: 16 start-page: 5902 year: 2010 publication-title: Chem. Eur. J. – volume: 140 start-page: 3871 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 5979 year: 2014 publication-title: Nano Lett. – volume: 56 start-page: 3414 year: 2017 publication-title: Inorg. Chem. – volume: 136 start-page: 2464 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 4409 year: 2014 publication-title: ACS Catal. – volume: 56 start-page: 5512 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 402 start-page: 276 year: 1999 publication-title: Nature – volume: 16 start-page: 11133 year: 2010 publication-title: Chem. Eur. J. – volume: 22 start-page: 4120 year: 2010 publication-title: Chem. Mater. – volume: 8 start-page: 5542 year: 2018 publication-title: ACS Catal. – volume: 19 start-page: 4126 year: 2017 publication-title: CrystEngComm – volume: 51 start-page: 9880 year: 2015 publication-title: Chem. Commun. – volume: 57 start-page: 5095 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 30 start-page: 1800643 year: 2018 publication-title: Adv. Mater. – volume: 57 start-page: 6834 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 6951 year: 2015 publication-title: ACS Nano – volume: 3 start-page: e1701162 year: 2017 publication-title: Sci. Adv. – volume: 30 start-page: 1705112 year: 2018 publication-title: Adv. Mater. – volume: 43 start-page: 6285 year: 2004 publication-title: Angew. Chem., Int. Ed. – volume: 135 start-page: 10942 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 5262 year: 2016 publication-title: CrystEngComm – volume: 44 start-page: 6237 year: 2005 publication-title: Angew. Chem., Int. Ed. – volume: 48 start-page: 650 year: 2009 publication-title: Angew. Chem., Int. Ed. – volume: 5 start-page: 2062 year: 2015 publication-title: ACS Catal. – volume: 133 start-page: 1304 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 494 year: 2009 publication-title: Nano Today – volume: 341 start-page: 771 year: 2013 publication-title: Science – volume: 1 start-page: 16184 year: 2016 publication-title: Nat. Energy – volume: 115 start-page: 6966 year: 2015 publication-title: Chem. Rev. – volume: 38 start-page: 144 year: 1999 publication-title: Inorg. Chem. – volume: 51 start-page: 5735 year: 2015 publication-title: Chem. Commun. – volume: 283 start-page: 1148 year: 1999 publication-title: Science – volume: 29 start-page: 1703663 year: 2017 publication-title: Adv. Mater. – volume: 7 start-page: 2896 year: 2017 publication-title: ACS Catal. – volume: 120 start-page: 19744 year: 2016 publication-title: J. Phys. Chem. C – volume: 16 start-page: 4919 year: 2014 publication-title: CrystEngComm – volume: 45 start-page: 2327 year: 2016 publication-title: Chem. Soc. Rev. – volume: 140 start-page: 5326 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 2199 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 15240 year: 2016 publication-title: J. Mater. Chem. A – volume: 14 start-page: 8456 year: 2008 publication-title: Chem. Eur. J. – volume: 57 start-page: 1103 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 51 start-page: 5199 year: 2015 publication-title: Chem. Commun. – volume: 10 start-page: 9332 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 134 start-page: 13926 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 2645 year: 2015 publication-title: Chem. Commun. – volume: 50 start-page: 5899 year: 2014 publication-title: Chem. Commun. – volume: 9 start-page: 35010 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 140 start-page: 6231 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 30651 year: 2016 publication-title: Sci. Rep. – volume: 139 start-page: 3834 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 58 start-page: 267 year: 2007 publication-title: Annu. Rev. Phys. Chem. – volume: 139 start-page: 8222 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 130 start-page: 14 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 112 start-page: 1546 year: 1990 publication-title: J. Am. Chem. Soc. – volume: 451 start-page: 671 year: 2008 publication-title: Nature – volume: 2 start-page: 20588 year: 2014 publication-title: J. Mater. Chem. A – volume: 46 start-page: 8415 year: 2017 publication-title: Dalton Trans. – volume: 359 start-page: 206 year: 2018 publication-title: Science – volume: 335 start-page: 1606 year: 2012 publication-title: Science – volume: 26 start-page: 4056 year: 2014 publication-title: Adv. Mater. – volume: 37 start-page: 191 year: 2008 publication-title: Chem. Soc. Rev. – volume: 3 start-page: 30 year: 2018 publication-title: Nat. Energy – volume: 27 start-page: 2923 year: 2015 publication-title: Adv. Mater. – volume: 30 start-page: 1705634 year: 2018 publication-title: Adv. Mater. – volume: 57 start-page: 5030 year: 2018 publication-title: Inorg. Chem. – volume: 1 start-page: 1700187 year: 2017 publication-title: Small Methods – volume: 135 start-page: 10210 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 116 start-page: 1151 year: 1994 publication-title: J. Am. Chem. Soc. – volume: 200 start-page: 276 year: 2016 publication-title: Electrochim. Acta – volume: 52 start-page: 5190 year: 2016 publication-title: Chem. Commun. – volume: 137 start-page: 14129 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 6448 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 43 start-page: 7520 year: 2014 publication-title: Chem. Soc. Rev. – volume: 5 start-page: 11854 year: 2017 publication-title: J. Mater. Chem. A – volume: 18 start-page: 4635 year: 2016 publication-title: Phys. Chem. Chem. Phys. – volume: 29 start-page: 1701139 year: 2017 publication-title: Adv. Mater. – volume: 9 start-page: 1189 year: 2012 publication-title: Nat. Methods – volume: 38 start-page: 1430 year: 2009 publication-title: Chem. Soc. Rev. – volume: 14 start-page: 13120 year: 2012 publication-title: Phys. Chem. Chem. Phys. – volume: 52 start-page: 7161 year: 2016 publication-title: Chem. Commun. – volume: 7 start-page: 997 year: 2017 publication-title: ACS Catal. – volume: 8 start-page: 7451 year: 2014 publication-title: ACS Nano – volume: 4 start-page: 296 year: 2017 publication-title: Nat. Sci. Rev. – volume: 11 start-page: 71 year: 2015 publication-title: Small – volume: 139 start-page: 356 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 4774 year: 2017 publication-title: Chem. Soc. Rev. – volume: 16 start-page: 220 year: 2017 publication-title: Nat. Mater. – volume: 7 start-page: 1364 year: 2014 publication-title: Nano Res. – volume: 29 start-page: 6336 year: 2017 publication-title: Chem. Mater. – volume: 7 start-page: 4893 year: 2017 publication-title: Catal. Sci. Technol. – volume: 53 start-page: 12517 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 309 start-page: 2040 year: 2005 publication-title: Science – volume: 16 start-page: 7645 year: 2016 publication-title: Nano Lett. – volume: 5 start-page: 7833 year: 2017 publication-title: J. Mater. Chem. A – volume: 22 start-page: 8012 year: 2016 publication-title: Chem. Eur. J. – volume: 19 start-page: 189 year: 2009 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 802 year: 2014 publication-title: Nat. Mater. – volume: 539 start-page: 76 year: 2016 publication-title: Nature – volume: 5 start-page: 6852 year: 2015 publication-title: ACS Catal. – volume: 53 start-page: 1184 year: 2017 publication-title: Chem. Commun. – volume: 6 start-page: 29182 year: 2016 publication-title: RSC Adv. – volume: 135 start-page: 16997 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 122 start-page: 5476 year: 2010 publication-title: Angew. Chem. – volume: 18 start-page: 3524 year: 2016 publication-title: CrystEngComm – volume: 137 start-page: 13440 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 2280 year: 2010 publication-title: Chem. Commun. – volume: 134 start-page: 12780 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 43 start-page: 5561 year: 2014 publication-title: Chem. Soc. Rev. – volume: 5 start-page: 29 year: 2018 publication-title: Inorg. Chem. Front. – volume: 13 start-page: 5106 year: 2007 publication-title: Chem. Eur. J. – volume: 114 start-page: 9919 year: 2014 publication-title: Chem. Rev. – volume: 7 start-page: 3062 year: 2016 publication-title: Chem. Sci. – volume: 57 start-page: 5379 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 52 start-page: 3741 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 23 start-page: 11189 year: 2017 publication-title: Chem. Eur. J. – volume: 131 start-page: 10857 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 55 start-page: 6411 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 134 start-page: 12807 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 10561 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 10942 year: 2016 publication-title: Nat. Commun. – volume: 130 start-page: 7848 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 3461 year: 2016 publication-title: ACS Catal. – volume: 135 start-page: 16356 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 1738 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 1119 year: 2014 publication-title: Chem. Mater. – volume: 46 start-page: 3134 year: 2017 publication-title: Chem. Soc. Rev. – volume: 40 start-page: 2218 year: 2011 publication-title: Dalton Trans. – volume: 124 start-page: 45 year: 2015 publication-title: Chem. Eng. Sci. – volume: 12 start-page: 5702 year: 2016 publication-title: Small – volume: 44 start-page: 228 year: 2015 publication-title: Chem. Soc. Rev. – volume: 55 start-page: 3685 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 5 start-page: 12498 year: 2017 publication-title: J. Mater. Chem. A – volume: 4 start-page: 795 year: 2014 publication-title: Catal. Sci. Technol. – volume: 46 start-page: 4614 year: 2017 publication-title: Chem. Soc. Rev. – volume: 41 start-page: 1088 year: 2012 publication-title: Chem. Soc. Rev. – volume: 341 start-page: 1230444 year: 2013 publication-title: Science – volume: 3 start-page: 20607 year: 2015 publication-title: J. Mater. Chem. A – volume: 6 start-page: 1035 year: 2015 publication-title: Chem. Sci. – volume: 3 start-page: 126 year: 2012 publication-title: Chem. Sci. – volume: 137 start-page: 9547 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 18082 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 3184 year: 2017 publication-title: Chem. Eur. J. – volume: 4 start-page: 310 year: 2012 publication-title: Nat. Chem. – volume: 7 start-page: 6949 year: 2017 publication-title: ACS Catal. – volume: 53 start-page: 12361 year: 2017 publication-title: Chem. Commun. – volume: 41 start-page: 5846 year: 2017 publication-title: New J. Chem. – volume: 43 start-page: 5468 year: 2014 publication-title: Chem. Soc. Rev. – volume: 137 start-page: 1774 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 3273 year: 2015 publication-title: Adv. Mater. – volume: 135 start-page: 14488 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 44 start-page: 6804 year: 2015 publication-title: Chem. Soc. Rev. – volume: 4 start-page: 2054 year: 2013 publication-title: Chem. Sci. – volume: 140 start-page: 6383 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 38 start-page: 1450 year: 2009 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 5359 year: 2016 publication-title: ACS Catal. – volume: 4 start-page: 1600371 year: 2017 publication-title: Adv. Sci. – volume: 134 start-page: 18790 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 55 start-page: 3558 year: 2016 publication-title: Inorg. Chem. – volume: 54 start-page: 10889 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 14429 year: 2017 publication-title: Nat. Commun. – volume: 8 start-page: 1837 year: 2015 publication-title: Energy Environ. Sci. – volume: 6 start-page: 3995 year: 2014 publication-title: Nanoscale – volume: 17 start-page: 4178 year: 2015 publication-title: Green Chem. – volume: 56 start-page: 16510 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 7 start-page: 228 year: 2016 publication-title: Chem. Sci. – volume: 120 start-page: 12539 year: 2016 publication-title: J. Phys. Chem. C – volume: 1 start-page: 15006 year: 2016 publication-title: Nat. Energy – volume: 7 start-page: 8115 year: 2015 publication-title: Nanoscale – volume: 42 start-page: 2568 year: 2013 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 8248 year: 2015 publication-title: Nat. Commun. – volume: 29 start-page: 1702891 year: 2017 publication-title: Adv. Mater. – volume: 4 start-page: 361 year: 2013 publication-title: ACS Catal. – volume: 9 start-page: 3044 year: 2015 publication-title: ACS Nano – volume: 9 start-page: 11 year: 2017 publication-title: Nat. Chem. – volume: 44 start-page: 6774 year: 2015 publication-title: Chem. Soc. Rev. – volume: 7 start-page: 9507 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 139 start-page: 5397 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 56 start-page: 9704 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 3 start-page: 8028 year: 2015 publication-title: J. Mater. Chem. A – volume: 326 start-page: 1018 year: 2012 publication-title: Science – volume: 327 start-page: 846 year: 2010 publication-title: Science – volume: 54 start-page: 2498 year: 2018 publication-title: Chem. Commun. – volume: 57 start-page: 4109 year: 2018 publication-title: Inorg. Chem. – volume: 24 start-page: 4473 year: 2012 publication-title: Adv. Mater. – volume: 137 start-page: 7810 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 55 start-page: 7301 year: 2016 publication-title: Inorg. Chem. – volume: 55 start-page: 14310 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 55 start-page: 7379 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 343 start-page: 66 year: 2014 publication-title: Science – volume: 130 start-page: 13850 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 10419 year: 2015 publication-title: Chem. Commun. – volume: 2 start-page: 606 year: 2015 publication-title: Mater. Horiz. – volume: 2 start-page: 2630 year: 2012 publication-title: ACS Catal. – volume: 9 start-page: 1337 year: 2017 publication-title: ChemCatChem – volume: 140 start-page: 856 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 2751 year: 2017 publication-title: Dalton Trans. – volume: 329 start-page: 424 year: 2010 publication-title: Science – volume: 43 start-page: 5982 year: 2014 publication-title: Chem. Soc. Rev. – volume: 53 start-page: 429 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 62 start-page: 4403 year: 2016 publication-title: AIChE J. – volume: 116 start-page: 12466 year: 2016 publication-title: Chem. Rev. – volume: 134 start-page: 7211 year: 2012 publication-title: J. Am. Chem. Soc. – ident: e_1_2_8_15_1 doi: 10.1126/science.1181761 – ident: e_1_2_8_103_1 doi: 10.1039/C7CE00398F – ident: e_1_2_8_172_1 doi: 10.1038/nchem.1272 – ident: e_1_2_8_104_1 doi: 10.1021/ja903726m – ident: e_1_2_8_72_1 doi: 10.1002/chem.200800980 – ident: e_1_2_8_83_1 doi: 10.1126/science.1116275 – ident: e_1_2_8_29_1 doi: 10.1021/jacs.5b13335 – ident: e_1_2_8_95_1 doi: 10.1039/C3CS60378D – ident: e_1_2_8_184_1 doi: 10.1021/acs.chemmater.7b01636 – ident: e_1_2_8_171_1 doi: 10.1002/adma.201800643 – ident: e_1_2_8_193_1 doi: 10.1039/c3cy00910f – ident: e_1_2_8_17_1 doi: 10.1038/nature06552 – ident: e_1_2_8_66_1 doi: 10.1021/acs.inorgchem.6b00911 – ident: e_1_2_8_126_1 doi: 10.1021/ja410684q – ident: e_1_2_8_37_1 doi: 10.1039/C5CS00307E – ident: e_1_2_8_26_1 doi: 10.1039/C7DT01351E – ident: e_1_2_8_65_1 doi: 10.1021/acs.inorgchem.5b02973 – ident: e_1_2_8_109_1 doi: 10.1021/jacs.7b00106 – ident: e_1_2_8_118_1 doi: 10.1021/jacs.7b09943 – ident: e_1_2_8_69_1 doi: 10.1021/acscatal.6b03386 – ident: e_1_2_8_43_1 doi: 10.1002/chem.201505141 – ident: e_1_2_8_31_1 doi: 10.1039/C5GC01333J – ident: e_1_2_8_34_1 doi: 10.1002/adma.201703663 – ident: e_1_2_8_215_1 doi: 10.1002/anie.201603990 – ident: e_1_2_8_176_1 doi: 10.1002/anie.201801289 – ident: e_1_2_8_158_1 doi: 10.1021/jacs.7b00058 – ident: e_1_2_8_141_1 doi: 10.1126/science.1246738 – ident: e_1_2_8_160_1 doi: 10.1038/nmat4030 – ident: e_1_2_8_147_1 doi: 10.1021/ja304693r – ident: e_1_2_8_219_1 doi: 10.1002/adma.201705112 – ident: e_1_2_8_14_1 doi: 10.1021/jacs.7b02272 – ident: e_1_2_8_115_1 doi: 10.1021/ja407176p – ident: e_1_2_8_54_1 doi: 10.1039/C3CS60472A – ident: e_1_2_8_155_1 doi: 10.1021/ja403330m – ident: e_1_2_8_7_1 doi: 10.1002/anie.200803387 – ident: e_1_2_8_8_1 doi: 10.1021/jp402154q – ident: e_1_2_8_152_1 doi: 10.1039/C5CC03102H – ident: e_1_2_8_67_1 doi: 10.1021/cs5012662 – ident: e_1_2_8_231_1 doi: 10.1016/j.electacta.2016.03.092 – ident: e_1_2_8_236_1 doi: 10.1039/C5TA00030K – ident: e_1_2_8_133_1 doi: 10.1039/C6CC00805D – ident: e_1_2_8_175_1 doi: 10.1038/nature19763 – ident: e_1_2_8_40_1 doi: 10.1038/nchem.2691 – ident: e_1_2_8_163_1 doi: 10.1021/ja411468e – ident: e_1_2_8_190_1 doi: 10.1039/C6CC03096C – ident: e_1_2_8_181_1 doi: 10.1021/cm4034319 – ident: e_1_2_8_211_1 doi: 10.1021/acs.inorgchem.8b00098 – ident: e_1_2_8_125_1 doi: 10.1039/C5SC04572J – ident: e_1_2_8_137_1 doi: 10.1021/ja0770983 – ident: e_1_2_8_202_1 doi: 10.1002/adma.201702891 – ident: e_1_2_8_36_1 doi: 10.1039/C4CC04458D – ident: e_1_2_8_56_1 doi: 10.1021/cs400959k – ident: e_1_2_8_146_1 doi: 10.1002/anie.201709558 – ident: e_1_2_8_222_1 doi: 10.1021/jacs.6b11027 – ident: e_1_2_8_237_1 doi: 10.1039/b922061e – ident: e_1_2_8_151_1 doi: 10.1021/ja3043905 – ident: e_1_2_8_78_1 doi: 10.1002/anie.201307340 – ident: e_1_2_8_131_1 doi: 10.1002/smtd.201700187 – ident: e_1_2_8_84_1 doi: 10.1039/C1SC00394A – ident: e_1_2_8_224_1 doi: 10.1002/anie.201510655 – ident: e_1_2_8_44_1 doi: 10.1039/C1CS15055C – ident: e_1_2_8_117_1 doi: 10.1021/jp803620v – ident: e_1_2_8_208_1 doi: 10.1021/acscatal.7b02581 – ident: e_1_2_8_68_1 doi: 10.1039/C6CS00724D – ident: e_1_2_8_105_1 doi: 10.1021/jacs.7b02186 – ident: e_1_2_8_110_1 doi: 10.1021/cs501169t – ident: e_1_2_8_154_1 doi: 10.1002/smll.201401875 – ident: e_1_2_8_174_1 doi: 10.1002/adma.201405752 – ident: e_1_2_8_197_1 doi: 10.1002/anie.201600497 – ident: e_1_2_8_119_1 doi: 10.1039/C4CE00032C – ident: e_1_2_8_205_1 doi: 10.1039/C7TA02611K – ident: e_1_2_8_122_1 doi: 10.1039/C4CC09797A – ident: e_1_2_8_75_1 doi: 10.1038/nenergy.2015.6 – ident: e_1_2_8_114_1 doi: 10.1002/chem.201701460 – ident: e_1_2_8_148_1 doi: 10.1039/C4TA04311A – ident: e_1_2_8_136_1 doi: 10.1039/C0DT01065K – ident: e_1_2_8_225_1 doi: 10.1039/c3sc00032j – ident: e_1_2_8_70_1 doi: 10.1038/srep30651 – ident: e_1_2_8_204_1 doi: 10.1039/C6CC00730A – ident: e_1_2_8_38_1 doi: 10.1039/C7CS00033B – ident: e_1_2_8_102_1 doi: 10.1002/advs.201600371 – ident: e_1_2_8_39_1 doi: 10.1039/C6MH00484A – ident: e_1_2_8_135_1 doi: 10.1021/nn5027092 – ident: e_1_2_8_99_1 doi: 10.1002/adma.201705634 – ident: e_1_2_8_22_1 doi: 10.1002/anie.201308589 – ident: e_1_2_8_140_1 doi: 10.1021/ja00429a030 – ident: e_1_2_8_212_1 doi: 10.1039/C5CC01697E – ident: e_1_2_8_59_1 doi: 10.1021/acs.jpcc.6b02818 – ident: e_1_2_8_180_1 doi: 10.1021/ja306869j – ident: e_1_2_8_124_1 doi: 10.1021/jacs.5b08773 – ident: e_1_2_8_5_1 doi: 10.1093/nsr/nwx013 – ident: e_1_2_8_169_1 doi: 10.1039/C5NR00361J – ident: e_1_2_8_166_1 doi: 10.1021/acsnano.5b01138 – ident: e_1_2_8_42_1 doi: 10.1021/acscatal.8b00505 – ident: e_1_2_8_220_1 doi: 10.1002/anie.201800817 – ident: e_1_2_8_209_1 doi: 10.1039/C7DT00082K – ident: e_1_2_8_64_1 doi: 10.1021/ja4093055 – ident: e_1_2_8_150_1 doi: 10.1021/cs501953d – ident: e_1_2_8_35_1 doi: 10.1021/acs.chemrev.6b00346 – ident: e_1_2_8_24_1 doi: 10.1002/anie.201406484 – ident: e_1_2_8_86_1 doi: 10.1021/ja308786r – ident: e_1_2_8_6_1 doi: 10.1002/anie.200454250 – ident: e_1_2_8_18_1 doi: 10.1002/adma.201701139 – ident: e_1_2_8_73_1 doi: 10.1038/46248 – ident: e_1_2_8_41_1 doi: 10.1126/science.1217544 – ident: e_1_2_8_74_1 doi: 10.1126/science.283.5405.1148 – ident: e_1_2_8_112_1 doi: 10.1021/ja405086e – ident: e_1_2_8_128_1 doi: 10.1039/c2cp41099k – ident: e_1_2_8_79_1 doi: 10.1002/chem.201000053 – ident: e_1_2_8_179_1 doi: 10.1002/anie.201801588 – ident: e_1_2_8_92_1 doi: 10.1016/j.ces.2014.08.052 – ident: e_1_2_8_32_1 doi: 10.1002/aic.15356 – ident: e_1_2_8_233_1 doi: 10.1039/C5CP06779K – ident: e_1_2_8_207_1 doi: 10.1002/chem.201605473 – ident: e_1_2_8_218_1 doi: 10.1021/acscatal.6b01293 – ident: e_1_2_8_183_1 doi: 10.1002/anie.201701604 – ident: e_1_2_8_138_1 doi: 10.1021/cm101238m – ident: e_1_2_8_164_1 doi: 10.1002/adma.201405583 – ident: e_1_2_8_16_1 doi: 10.1002/adma.201201715 – ident: e_1_2_8_187_1 doi: 10.1002/anie.201209903 – ident: e_1_2_8_51_1 doi: 10.1021/jacs.8b02710 – ident: e_1_2_8_76_1 doi: 10.1039/C5EE00762C – ident: e_1_2_8_134_1 doi: 10.1002/chem.201103433 – ident: e_1_2_8_53_1 doi: 10.1021/acs.inorgchem.8b00282 – ident: e_1_2_8_157_1 doi: 10.1039/C5TA04675K – ident: e_1_2_8_203_1 doi: 10.1039/C5CC00686D – ident: e_1_2_8_71_1 doi: 10.1039/C6CS00537C – ident: e_1_2_8_91_1 doi: 10.1039/C5CS00837A – ident: e_1_2_8_173_1 doi: 10.1002/adma.201400620 – ident: e_1_2_8_228_1 doi: 10.1038/ncomms10942 – ident: e_1_2_8_20_1 doi: 10.1039/C6TA05098K – ident: e_1_2_8_139_1 doi: 10.1021/ja502765n – ident: e_1_2_8_194_1 doi: 10.1039/C7NJ00709D – ident: e_1_2_8_129_1 doi: 10.1021/jacs.8b00605 – ident: e_1_2_8_80_1 doi: 10.1021/ja8024092 – ident: e_1_2_8_55_1 doi: 10.1002/anie.200462515 – ident: e_1_2_8_97_1 doi: 10.1002/chem.200601003 – ident: e_1_2_8_101_1 doi: 10.1039/C7CY01653K – ident: e_1_2_8_210_1 doi: 10.1039/C4SC02362E – ident: e_1_2_8_19_1 doi: 10.1126/science.1240148 – ident: e_1_2_8_12_1 doi: 10.1126/science.1192160 – ident: e_1_2_8_93_1 doi: 10.1021/cr5001892 – ident: e_1_2_8_132_1 doi: 10.1021/jacs.7b11364 – ident: e_1_2_8_143_1 doi: 10.1021/ja512437u – ident: e_1_2_8_156_1 doi: 10.1039/C7CC06530B – ident: e_1_2_8_28_1 doi: 10.1021/acs.inorgchem.6b00050 – ident: e_1_2_8_235_1 doi: 10.1002/anie.201711920 – ident: e_1_2_8_142_1 doi: 10.1038/nmat4766 – ident: e_1_2_8_234_1 doi: 10.1021/jacs.5b02688 – ident: e_1_2_8_98_1 doi: 10.1021/cs3005874 – ident: e_1_2_8_62_1 doi: 10.1039/C7QI00577F – ident: e_1_2_8_213_1 doi: 10.1039/C7TA01070B – ident: e_1_2_8_201_1 doi: 10.1039/c4cc00785a – ident: e_1_2_8_153_1 doi: 10.1021/acs.jpcc.6b06710 – ident: e_1_2_8_168_1 doi: 10.1039/C6CE00733C – ident: e_1_2_8_9_1 doi: 10.1039/C4CS00003J – ident: e_1_2_8_227_1 doi: 10.1002/ange.201000863 – ident: e_1_2_8_87_1 doi: 10.1021/ic400048g – ident: e_1_2_8_3_1 doi: 10.1021/ja00146a033 – ident: e_1_2_8_200_1 doi: 10.1039/C5SC02925B – ident: e_1_2_8_81_1 doi: 10.1039/C4CS00230J – ident: e_1_2_8_178_1 doi: 10.1002/smll.201601873 – ident: e_1_2_8_159_1 doi: 10.1021/ja300539p – ident: e_1_2_8_107_1 doi: 10.1002/chem.200903526 – ident: e_1_2_8_116_1 doi: 10.1021/ja405350u – ident: e_1_2_8_198_1 doi: 10.1039/C6CC09270E – ident: e_1_2_8_58_1 doi: 10.1021/jp105666f – ident: e_1_2_8_61_1 doi: 10.1021/acsami.7b17389 – ident: e_1_2_8_77_1 doi: 10.1021/ja8057953 – ident: e_1_2_8_189_1 doi: 10.1039/C5TA02860D – ident: e_1_2_8_85_1 doi: 10.1021/ja3079219 – ident: e_1_2_8_229_1 doi: 10.1021/jacs.5b08212 – ident: e_1_2_8_130_1 doi: 10.1021/jacs.8b02638 – ident: e_1_2_8_1_1 doi: 10.1021/ja00160a038 – ident: e_1_2_8_57_1 doi: 10.1021/ja305004a – ident: e_1_2_8_10_1 doi: 10.1021/ja308801n – ident: e_1_2_8_30_1 doi: 10.1039/C7CC06166H – ident: e_1_2_8_50_1 doi: 10.1002/anie.201802661 – ident: e_1_2_8_161_1 doi: 10.1002/adfm.200801439 – ident: e_1_2_8_60_1 doi: 10.1007/s12274-014-0501-4 – ident: e_1_2_8_195_1 doi: 10.1021/jacs.5b03540 – ident: e_1_2_8_199_1 doi: 10.1039/C5MH00125K – ident: e_1_2_8_63_1 doi: 10.1021/ja1099006 – ident: e_1_2_8_4_1 doi: 10.1126/science.1230444 – ident: e_1_2_8_232_1 doi: 10.1002/adfm.201702067 – ident: e_1_2_8_127_1 doi: 10.1002/anie.201506219 – ident: e_1_2_8_49_1 doi: 10.1002/anie.201703675 – ident: e_1_2_8_223_1 doi: 10.1038/nmeth.2211 – ident: e_1_2_8_52_1 doi: 10.1039/C4CS00395K – ident: e_1_2_8_100_1 doi: 10.1039/C4CS00103F – ident: e_1_2_8_214_1 doi: 10.1021/acsami.7b11150 – ident: e_1_2_8_230_1 doi: 10.1038/nenergy.2016.184 – ident: e_1_2_8_149_1 doi: 10.1021/nn5072446 – ident: e_1_2_8_192_1 doi: 10.1021/acs.inorgchem.6b02855 – ident: e_1_2_8_145_1 doi: 10.1021/ic9812095 – ident: e_1_2_8_23_1 doi: 10.1002/anie.201504242 – ident: e_1_2_8_121_1 doi: 10.1002/anie.201600431 – ident: e_1_2_8_96_1 doi: 10.1021/jacs.5b05926 – ident: e_1_2_8_13_1 doi: 10.1126/science.1220131 – ident: e_1_2_8_106_1 doi: 10.1039/C7TA00437K – ident: e_1_2_8_90_1 doi: 10.1021/jacs.8b03517 – ident: e_1_2_8_113_1 doi: 10.1126/sciadv.1701162 – ident: e_1_2_8_162_1 doi: 10.1039/C3NR06787D – ident: e_1_2_8_25_1 doi: 10.1039/C7CC05927B – ident: e_1_2_8_196_1 doi: 10.1021/acscatal.6b00397 – ident: e_1_2_8_144_1 doi: 10.1038/s41560-017-0044-5 – ident: e_1_2_8_48_1 doi: 10.1039/b807080f – ident: e_1_2_8_216_1 doi: 10.1002/anie.201711725 – ident: e_1_2_8_182_1 doi: 10.1021/ja512951e – ident: e_1_2_8_191_1 doi: 10.1039/C2CS35320B – ident: e_1_2_8_185_1 doi: 10.1039/c3ta12894f – ident: e_1_2_8_177_1 doi: 10.1016/j.nantod.2009.10.008 – ident: e_1_2_8_88_1 doi: 10.1126/science.aao3403 – ident: e_1_2_8_108_1 doi: 10.1021/acsami.5b00682 – ident: e_1_2_8_221_1 doi: 10.1146/annurev.physchem.58.032806.104607 – ident: e_1_2_8_170_1 doi: 10.1021/nl503007h – ident: e_1_2_8_2_1 doi: 10.1021/ja00082a055 – ident: e_1_2_8_21_1 doi: 10.1039/C6RA00463F – ident: e_1_2_8_33_1 doi: 10.1039/C4CC04387A – ident: e_1_2_8_165_1 doi: 10.1021/acs.nanolett.6b03637 – ident: e_1_2_8_206_1 doi: 10.1021/jacs.8b01601 – ident: e_1_2_8_238_1 doi: 10.1038/ncomms14429 – ident: e_1_2_8_47_1 doi: 10.1039/C8CC00130H – ident: e_1_2_8_123_1 doi: 10.1002/anie.201608597 – ident: e_1_2_8_167_1 doi: 10.1021/ja5048522 – ident: e_1_2_8_27_1 doi: 10.1002/cctc.201601653 – ident: e_1_2_8_217_1 doi: 10.1002/anie.201800320 – ident: e_1_2_8_188_1 doi: 10.1039/C4CC06568A – ident: e_1_2_8_89_1 doi: 10.1021/acscatal.6b02923 – ident: e_1_2_8_186_1 doi: 10.1038/ncomms9248 – ident: e_1_2_8_94_1 doi: 10.1039/C2CS35355E – ident: e_1_2_8_111_1 doi: 10.1021/acscatal.5b01949 – ident: e_1_2_8_82_1 doi: 10.1021/ja906198y – ident: e_1_2_8_45_1 doi: 10.1039/C6CE00612D – ident: e_1_2_8_226_1 doi: 10.1039/B618320B – ident: e_1_2_8_120_1 doi: 10.1039/C4CP04162C – ident: e_1_2_8_11_1 doi: 10.1039/b802423p – ident: e_1_2_8_46_1 doi: 10.1021/acs.chemrev.5b00221 |
SSID | ssj0009606 |
Score | 2.7095628 |
SecondaryResourceType | review_article |
Snippet | Beyond conventional porous materials, metal–organic frameworks (MOFs) have aroused great interest in the construction of nanocatalysts with the characteristics... Beyond conventional porous materials, metal-organic frameworks (MOFs) have aroused great interest in the construction of nanocatalysts with the characteristics... Abstract Beyond conventional porous materials, metal–organic frameworks (MOFs) have aroused great interest in the construction of nanocatalysts with the... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e1800702 |
SubjectTerms | Catalysis Encapsulation heterogeneous catalysis Holes Mass transfer Metal-organic frameworks nanocomposite nanoparticle Nanoparticles Porous materials Selectivity Substrates |
Title | Metal–Organic Frameworks Encapsulating Active Nanoparticles as Emerging Composites for Catalysis: Recent Progress and Perspectives |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201800702 https://www.ncbi.nlm.nih.gov/pubmed/30247789 https://www.proquest.com/docview/2157462653 https://search.proquest.com/docview/2111738780 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29btswED6kmdKhaZO2UeoGLFCgkxBKpPiTzXBseHFgIC2QTaBIuptSRPHeoW-QN8yT5E6y5BodCiSbfkiI4vGO35F3HwG-GqGcLmKeIlZWqfTVKrWBzjcJyvHMocuxIkdxfq2vbszllGhyhiz-jh9iWHAjzWjtNSm4q5rzLWmoCy1vUGaIsYaMMFE3UQ6HWG5Zd1V7uCZt9qVWSdOzNvL8fLf67qz0D9TcRa7t1DM7fHmj38KbDexk426cvIO9WB_B67_ICI_hzyIiEH_8_dClZ3o26-O2GjatvUN3muLm6p9s3NpIhoYZPe5NYB1zWIpSOakAGRkKBsPHiInZhJaIiPnkgiFKxVmOLSkqDG0sc3Vgy22-Z_Mefsym3yfzdHNGQ-ol2tFUO-ewZ2WIfsWVzWNmAw_BFHlA9OCykEuf4a9qFURuvPJCySCkR8dN2WC4-AD79W0dT4B5RH_BRi5dVLLSldXeclsVPGhBJPgJfOtlVP7qqDjKjnQ5L6lfy6FfExj1Iiw3KtmUiG20RPetEAl8GV6jMtEOiavj7ZrKZJkWRhuewMdO9MOnBKIZrY1NIG8l_J82lOPLxXi4O31OpU9wQNdd8MwI9u_v1vEzvGrC-qwd5k_YfPxW |
link.rule.ids | 315,783,787,1409,27936,27937,46067,46491 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTtwwEB7xc6g40JZCCdDiSpU4RTix1z-9RbCrRbBopVKpt8hre7mFimXvHHiDvmGfhJlkk2XVQyXUYxJbSTye8Tfjmc8AX41QTvdiniJWVqn0k2lqA51vEpTjmUOXY0qO4vC7vv5pzvtEk1O0tTANP0QXcCPNqO01KTgFpE-XrKEu1MRBmSHKGrTCm1JJS7opxHjJu6vq4zVpuy-1SpqWt5Hnp6v9V9elv8DmKnatF5_B2__w2e9ge4E8WdFMlfewFqsd2HrBR_gBnkYRsfifx99NhaZngzZ1a8b6lXfoUVPqXHXLitpMMrTN6HQvcuuYw1ZUzUkNyM5QPhjeRljMzihKROQn3xgCVVzo2JgSw9DMMlcFNl6WfM524cegf3M2TBfHNKReoilNtXMOh1aG6Kdc2TxmNvAQTC8PCCBcFnLpM_xVrYLIjVdeKBmE9Oi7KRsMF3uwUd1VcR-YRwAYbOTSRSUnemK1t9xOejxoQTz4CZy0Qip_NWwcZcO7nJc0rmU3rgkctTIsF1o5KxHeaIkeXE8k8KV7jPpEmySuindzapNlWhhteAIfG9l3rxIIaLQ2NoG8FvE_vqEszkdFd3Xwmk7H8GZ4M7oqry6uLw8ppsCzJpfmCDYe7ufxE6zPwvxzPeefAbl3AHw |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhMxEB5BkBA9FChQFgp1JSROq3rXjn-4RU2iINoqEiBxWzkep7dtRZp7D7xB37BP0pndZEPEAQmO67XlXY9n_I098xngg1Mm2H4qc8LKJtdxNs898v0maIIsArkcc3YUJ1_t-Q83HDFNTpfF3_JDdBturBmNvWYFv8L58YY0NGDDG1Q4ZqwhI_xIU2_sfik13dDumuZ2TT7ty73Rbk3bKMvj7fbby9IfWHMbujZrz_jp_3_1M9hd4U4xaCfKc3iQ6j3Y-Y2N8AX8OkuExO9ubtv8zCjG68CthRjVMZA_zYFz9YUYNEZSkGUml3sVWScC1eJcTq7AVoajwaiYQLE44T0ipj75JAim0jInphwWRkZWhBrFdJPwuXgJ38ejbyeTfHVJQx41GdLchhBoZDWmOJfGl6nwKBFdv0SCD6HAUseCftUaVKWLJiqjUelInpvx6KR6Bb36sk6vQUSCf-iT1CEZPbMzb6OXftaXaBWz4GfwcS2j6qrl4qha1uWy4nGtunHN4GAtwmqlk4uKwI3V5L_1VQZH3WvSJj4iCXW6XHKdorDKWScz2G9F33WlCM5Y63wGZSPhv3xDNRieDbqnN__S6BAeT4fj6vTz-Ze38ISL20CaA-hd_1ymd_Bwgcv3zYy_B68f_yY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal%E2%80%93Organic+Frameworks+Encapsulating+Active+Nanoparticles+as+Emerging+Composites+for+Catalysis%3A+Recent+Progress+and+Perspectives&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Li%2C+Guodong&rft.au=Zhao%2C+Shenlong&rft.au=Zhang%2C+Yin&rft.au=Tang%2C+Zhiyong&rft.date=2018-12-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=51&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201800702&rft.externalDBID=10.1002%252Fadma.201800702&rft.externalDocID=ADMA201800702 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |