Metal–Organic Frameworks Encapsulating Active Nanoparticles as Emerging Composites for Catalysis: Recent Progress and Perspectives

Beyond conventional porous materials, metal–organic frameworks (MOFs) have aroused great interest in the construction of nanocatalysts with the characteristics of catalytically active nanoparticles (NPs) confined into the cavities/channels of MOFs or surrounded by MOFs. The advantages of adopting MO...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) Vol. 30; no. 51; pp. e1800702 - n/a
Main Authors: Li, Guodong, Zhao, Shenlong, Zhang, Yin, Tang, Zhiyong
Format: Journal Article
Language:English
Published: Germany Wiley Subscription Services, Inc 01-12-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Beyond conventional porous materials, metal–organic frameworks (MOFs) have aroused great interest in the construction of nanocatalysts with the characteristics of catalytically active nanoparticles (NPs) confined into the cavities/channels of MOFs or surrounded by MOFs. The advantages of adopting MOFs as the encapsulating matrix are multifold: uniform and long‐range ordered cavities can effectively promote the mass transfer and diffusion of substrates and products, while the diverse metal nodes and tunable organic linkers may enable outstanding synergy functions with the encapsulated active NPs. Herein, some key issues related to MOFs for catalysis are discussed. Then, state‐of‐the art progress in the encapsulation of catalytically active NPs by MOFs as well as their synergy functions for enhanced catalytic performance in the fields of thermo‐, photo‐, and electrocatalysis are summarized. Notably, encapsulation‐structured nanocatalysts exhibit distinct advantages over conventional supported catalysts, especially in terms of the catalytic selectivity and stability. Finally, challenges and future developments in MOF‐based encapsulation‐structured nanocatalysts are proposed. The aim is to deliver better insight into the design of well‐defined nanocatalysts with atomically accurate structures and high performance in challenging reactions. Compared with conventional supported catalysts, controllable encapsulation of catalytically active nanoparticles by porous metal–organic frameworks can exhibit intriguing features, such as uniform catalytic interface, strong interactions, the pore confinement effect, high stability, and outstanding designability, all of which contribute to the design and construction of high‐performance nanocatalysts.
AbstractList Beyond conventional porous materials, metal-organic frameworks (MOFs) have aroused great interest in the construction of nanocatalysts with the characteristics of catalytically active nanoparticles (NPs) confined into the cavities/channels of MOFs or surrounded by MOFs. The advantages of adopting MOFs as the encapsulating matrix are multifold: uniform and long-range ordered cavities can effectively promote the mass transfer and diffusion of substrates and products, while the diverse metal nodes and tunable organic linkers may enable outstanding synergy functions with the encapsulated active NPs. Herein, some key issues related to MOFs for catalysis are discussed. Then, state-of-the art progress in the encapsulation of catalytically active NPs by MOFs as well as their synergy functions for enhanced catalytic performance in the fields of thermo-, photo-, and electrocatalysis are summarized. Notably, encapsulation-structured nanocatalysts exhibit distinct advantages over conventional supported catalysts, especially in terms of the catalytic selectivity and stability. Finally, challenges and future developments in MOF-based encapsulation-structured nanocatalysts are proposed. The aim is to deliver better insight into the design of well-defined nanocatalysts with atomically accurate structures and high performance in challenging reactions.
Abstract Beyond conventional porous materials, metal–organic frameworks (MOFs) have aroused great interest in the construction of nanocatalysts with the characteristics of catalytically active nanoparticles (NPs) confined into the cavities/channels of MOFs or surrounded by MOFs. The advantages of adopting MOFs as the encapsulating matrix are multifold: uniform and long‐range ordered cavities can effectively promote the mass transfer and diffusion of substrates and products, while the diverse metal nodes and tunable organic linkers may enable outstanding synergy functions with the encapsulated active NPs. Herein, some key issues related to MOFs for catalysis are discussed. Then, state‐of‐the art progress in the encapsulation of catalytically active NPs by MOFs as well as their synergy functions for enhanced catalytic performance in the fields of thermo‐, photo‐, and electrocatalysis are summarized. Notably, encapsulation‐structured nanocatalysts exhibit distinct advantages over conventional supported catalysts, especially in terms of the catalytic selectivity and stability. Finally, challenges and future developments in MOF‐based encapsulation‐structured nanocatalysts are proposed. The aim is to deliver better insight into the design of well‐defined nanocatalysts with atomically accurate structures and high performance in challenging reactions.
Beyond conventional porous materials, metal–organic frameworks (MOFs) have aroused great interest in the construction of nanocatalysts with the characteristics of catalytically active nanoparticles (NPs) confined into the cavities/channels of MOFs or surrounded by MOFs. The advantages of adopting MOFs as the encapsulating matrix are multifold: uniform and long‐range ordered cavities can effectively promote the mass transfer and diffusion of substrates and products, while the diverse metal nodes and tunable organic linkers may enable outstanding synergy functions with the encapsulated active NPs. Herein, some key issues related to MOFs for catalysis are discussed. Then, state‐of‐the art progress in the encapsulation of catalytically active NPs by MOFs as well as their synergy functions for enhanced catalytic performance in the fields of thermo‐, photo‐, and electrocatalysis are summarized. Notably, encapsulation‐structured nanocatalysts exhibit distinct advantages over conventional supported catalysts, especially in terms of the catalytic selectivity and stability. Finally, challenges and future developments in MOF‐based encapsulation‐structured nanocatalysts are proposed. The aim is to deliver better insight into the design of well‐defined nanocatalysts with atomically accurate structures and high performance in challenging reactions. Compared with conventional supported catalysts, controllable encapsulation of catalytically active nanoparticles by porous metal–organic frameworks can exhibit intriguing features, such as uniform catalytic interface, strong interactions, the pore confinement effect, high stability, and outstanding designability, all of which contribute to the design and construction of high‐performance nanocatalysts.
Author Tang, Zhiyong
Zhang, Yin
Li, Guodong
Zhao, Shenlong
Author_xml – sequence: 1
  givenname: Guodong
  surname: Li
  fullname: Li, Guodong
  organization: National Center for Nanoscience and Technology
– sequence: 2
  givenname: Shenlong
  surname: Zhao
  fullname: Zhao, Shenlong
  organization: National Center for Nanoscience and Technology
– sequence: 3
  givenname: Yin
  surname: Zhang
  fullname: Zhang, Yin
  organization: Peking University
– sequence: 4
  givenname: Zhiyong
  orcidid: 0000-0003-0610-0064
  surname: Tang
  fullname: Tang, Zhiyong
  email: zytang@nanoctr.cn
  organization: University of Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30247789$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAQhi3Uim4LV47IEhcuWcaO48TcVktLkVpaIThHxp5duSR2sBOqvXHoG_QNeZJ6u22RuHAaafTNp5n5D8meDx4JecVgzgD4O217PefAGoAa-DMyYxVnhQBV7ZEZqLIqlBTNATlM6QoAlAT5nByUwEVdN2pGbs5x1N2f37cXca29M_Qk6h6vQ_yR6LE3ekhTp0fn13RhRvcL6Wftw6Dj6EyHiepM9RjXW2AZ-iEkN-b2KkS61Fm8SS69p1_QoB_pZQzriClPeUsvMaYB753pBdlf6S7hy4d6RL6dHH9dnhZnFx8_LRdnhRG15EWttc7XCItmBVJxZMqCtU3FLXCmmeXCsPyFWtqSN0aaUgpbCsMlk8o2UB6RtzvvEMPPCdPY9i4Z7DrtMUyp5Yyxumzqe_TNP-hVmKLP22WqqoXksiozNd9RJoaUIq7aIbpex03LoN3m027zaZ_yyQOvH7TT9x7tE_4YSAbUDrh2HW7-o2sXH84Xf-V3wUGf5w
CitedBy_id crossref_primary_10_1016_j_ccr_2023_215302
crossref_primary_10_1039_D3GC04952C
crossref_primary_10_1002_anie_202204108
crossref_primary_10_1039_D2SC05915K
crossref_primary_10_1002_adma_202109203
crossref_primary_10_1016_j_mtener_2021_100846
crossref_primary_10_1021_acsabm_4c00314
crossref_primary_10_3390_inorganics7050056
crossref_primary_10_1002_ange_201907002
crossref_primary_10_1002_advs_202205208
crossref_primary_10_1021_acssensors_3c01831
crossref_primary_10_1039_D0NR09064F
crossref_primary_10_1007_s12598_024_02767_w
crossref_primary_10_1002_adfm_202302573
crossref_primary_10_1093_nsr_nwaa044
crossref_primary_10_6023_A23040146
crossref_primary_10_1002_anie_202002389
crossref_primary_10_1002_ange_202011614
crossref_primary_10_1016_j_jcat_2022_01_031
crossref_primary_10_1021_acsaem_9b00243
crossref_primary_10_1016_j_jcis_2023_11_036
crossref_primary_10_1002_cctc_202001159
crossref_primary_10_1002_cjoc_202100712
crossref_primary_10_1021_acs_analchem_0c03723
crossref_primary_10_1002_smll_202005334
crossref_primary_10_1007_s11426_019_9674_x
crossref_primary_10_1016_j_matt_2022_07_014
crossref_primary_10_1021_acsenergylett_1c02241
crossref_primary_10_1002_smll_202305066
crossref_primary_10_1039_C9NR10109H
crossref_primary_10_1016_j_apsusc_2022_154641
crossref_primary_10_1021_acsami_9b20781
crossref_primary_10_1021_jacs_3c11446
crossref_primary_10_1016_j_microc_2019_104591
crossref_primary_10_1021_acscatal_1c05922
crossref_primary_10_1016_j_aca_2020_12_066
crossref_primary_10_1039_D0SC04684A
crossref_primary_10_1002_eem2_12170
crossref_primary_10_1007_s10562_022_04007_1
crossref_primary_10_1002_aenm_202100514
crossref_primary_10_1016_j_trac_2021_116395
crossref_primary_10_1007_s10311_021_01355_z
crossref_primary_10_1002_aenm_202003291
crossref_primary_10_1039_D1TA08741J
crossref_primary_10_1016_j_ccr_2021_213924
crossref_primary_10_1002_asia_201900748
crossref_primary_10_1016_j_mtener_2020_100462
crossref_primary_10_1002_chem_202204016
crossref_primary_10_1021_acsami_2c14533
crossref_primary_10_1002_ange_202308089
crossref_primary_10_1002_anie_202311625
crossref_primary_10_1039_D2RA06741B
crossref_primary_10_1016_j_cej_2019_123836
crossref_primary_10_1021_acs_energyfuels_3c02515
crossref_primary_10_1021_acs_cgd_0c01028
crossref_primary_10_1002_ange_201906134
crossref_primary_10_4164_sptj_60_698
crossref_primary_10_1039_D3TB01398G
crossref_primary_10_1021_acsanm_1c00266
crossref_primary_10_1039_D2CY00540A
crossref_primary_10_1021_acscentsci_1c00743
crossref_primary_10_1021_acsanm_1c02204
crossref_primary_10_1039_D1TA04439G
crossref_primary_10_1016_j_matt_2021_01_004
crossref_primary_10_1039_D3NJ01457F
crossref_primary_10_1002_zaac_202200379
crossref_primary_10_1021_acs_inorgchem_0c02888
crossref_primary_10_1039_C9TA02457C
crossref_primary_10_1039_D0NR09174J
crossref_primary_10_1002_chem_202203706
crossref_primary_10_1021_acs_analchem_0c00499
crossref_primary_10_1039_D0CS00070A
crossref_primary_10_1186_s12951_023_02007_w
crossref_primary_10_1016_j_envpol_2022_119690
crossref_primary_10_1002_cphc_202200565
crossref_primary_10_1039_D3NJ03660J
crossref_primary_10_3390_encyclopedia1030046
crossref_primary_10_1002_ange_202311241
crossref_primary_10_1016_j_jece_2022_109131
crossref_primary_10_1088_1361_6528_ab79ae
crossref_primary_10_1016_j_cej_2021_130230
crossref_primary_10_1016_j_cej_2022_137036
crossref_primary_10_1016_j_jcis_2020_07_121
crossref_primary_10_1016_j_ces_2023_119077
crossref_primary_10_1002_cctc_201900191
crossref_primary_10_3389_fchem_2022_986908
crossref_primary_10_1002_ange_202116396
crossref_primary_10_1021_acs_jpcc_0c08997
crossref_primary_10_1039_D2TA04411K
crossref_primary_10_1002_ange_202302161
crossref_primary_10_1021_acscatal_0c00449
crossref_primary_10_1002_adfm_202400767
crossref_primary_10_1002_ange_201900013
crossref_primary_10_1039_D0GC02048F
crossref_primary_10_1016_j_ccr_2019_02_031
crossref_primary_10_1039_D3NJ02486E
crossref_primary_10_1007_s12039_022_02067_9
crossref_primary_10_1016_j_jcis_2024_06_216
crossref_primary_10_1007_s11426_020_9881_7
crossref_primary_10_1039_C9CC09145A
crossref_primary_10_1039_C9SC03916C
crossref_primary_10_1002_adma_201902444
crossref_primary_10_1002_adma_201905950
crossref_primary_10_1002_anie_202011614
crossref_primary_10_1021_acssuschemeng_0c03376
crossref_primary_10_1021_acsami_1c17106
crossref_primary_10_1021_jacs_1c03561
crossref_primary_10_1039_D0NR02007A
crossref_primary_10_1002_solr_202000454
crossref_primary_10_1007_s10562_022_04044_w
crossref_primary_10_1088_2053_1591_ab5475
crossref_primary_10_1093_nsr_nwz147
crossref_primary_10_1002_ange_202206108
crossref_primary_10_3389_fbioe_2023_1251713
crossref_primary_10_1021_acs_analchem_4c00973
crossref_primary_10_1021_jacs_0c02497
crossref_primary_10_1002_cnma_201900776
crossref_primary_10_1021_accountsmr_1c00009
crossref_primary_10_1021_acs_inorgchem_1c00863
crossref_primary_10_1021_acsmaterialslett_1c00309
crossref_primary_10_1002_admi_202102077
crossref_primary_10_1007_s12274_020_3042_z
crossref_primary_10_1002_advs_201802373
crossref_primary_10_1002_chem_202203644
crossref_primary_10_1002_adfm_202104162
crossref_primary_10_1002_advs_201802132
crossref_primary_10_1039_C9TA01964B
crossref_primary_10_1021_acssuschemeng_1c07977
crossref_primary_10_1002_adma_202001731
crossref_primary_10_1016_j_xcrp_2020_100076
crossref_primary_10_1016_j_ccr_2020_213468
crossref_primary_10_1002_cjoc_202200571
crossref_primary_10_3390_catal10050578
crossref_primary_10_3390_bios12090745
crossref_primary_10_1002_smll_201905889
crossref_primary_10_1002_bio_3790
crossref_primary_10_1021_acs_inorgchem_9b00242
crossref_primary_10_3390_ijms24044228
crossref_primary_10_1016_j_chempr_2020_11_023
crossref_primary_10_1002_anie_202116396
crossref_primary_10_1002_anie_202211216
crossref_primary_10_1039_D2NR04933C
crossref_primary_10_1002_smll_202003971
crossref_primary_10_1016_j_cjche_2023_03_002
crossref_primary_10_1016_j_fuel_2024_132231
crossref_primary_10_1039_D3DT01020A
crossref_primary_10_1002_aenm_202002138
crossref_primary_10_1007_s40242_022_2250_3
crossref_primary_10_1002_smll_202207611
crossref_primary_10_1039_D1CC01797G
crossref_primary_10_1039_C9CC02727K
crossref_primary_10_1007_s00216_019_02217_y
crossref_primary_10_1039_D2DT00389A
crossref_primary_10_1039_D0CS01538E
crossref_primary_10_1007_s12274_022_4576_z
crossref_primary_10_1021_acs_inorgchem_0c01501
crossref_primary_10_1002_cnma_202000587
crossref_primary_10_1016_j_jelechem_2023_117464
crossref_primary_10_3390_nano9121698
crossref_primary_10_1002_anie_202217565
crossref_primary_10_1039_D0DT03877F
crossref_primary_10_1002_cssc_202100851
crossref_primary_10_1002_cssc_202100179
crossref_primary_10_3390_ijms23094949
crossref_primary_10_1021_acs_langmuir_9b03731
crossref_primary_10_1039_D1EN00628B
crossref_primary_10_1002_anie_202110585
crossref_primary_10_3390_molecules27196659
crossref_primary_10_1039_D1CY02156G
crossref_primary_10_1016_j_ccr_2020_213366
crossref_primary_10_1021_acs_analchem_9b03677
crossref_primary_10_1039_D3NA00213F
crossref_primary_10_1039_D1TA02896K
crossref_primary_10_1039_D0EE01882A
crossref_primary_10_1007_s00604_022_05238_0
crossref_primary_10_1002_aoc_7199
crossref_primary_10_1021_acs_inorgchem_0c00046
crossref_primary_10_1002_smll_201902463
crossref_primary_10_1021_acs_inorgchem_1c01589
crossref_primary_10_1002_aenm_202100346
crossref_primary_10_1002_ange_202217565
crossref_primary_10_1016_j_cattod_2023_01_007
crossref_primary_10_1016_j_jcis_2021_10_180
crossref_primary_10_1038_s41467_021_22084_5
crossref_primary_10_1038_s41467_020_16715_6
crossref_primary_10_1039_C9TA03578H
crossref_primary_10_1002_solr_201900449
crossref_primary_10_1021_jacs_0c05909
crossref_primary_10_1002_anie_202104219
crossref_primary_10_1039_D0CS01191F
crossref_primary_10_1039_D0SC05721E
crossref_primary_10_1016_j_bios_2019_111743
crossref_primary_10_1021_acscatal_2c06369
crossref_primary_10_1002_anie_201906134
crossref_primary_10_1007_s10904_022_02422_w
crossref_primary_10_1002_anie_202302161
crossref_primary_10_1002_cjoc_202100659
crossref_primary_10_1021_acs_chemmater_8b04533
crossref_primary_10_1002_ange_202311625
crossref_primary_10_1002_adfm_202104231
crossref_primary_10_1002_adma_202007368
crossref_primary_10_1016_j_ccr_2024_215658
crossref_primary_10_1021_acsami_9b16224
crossref_primary_10_1007_s40843_020_1587_3
crossref_primary_10_1039_D2QM01201D
crossref_primary_10_1002_ange_202401443
crossref_primary_10_1016_j_cej_2022_137095
crossref_primary_10_1016_j_apcatb_2023_123401
crossref_primary_10_1039_D3CS00873H
crossref_primary_10_1039_D1DT02127C
crossref_primary_10_1016_j_ccr_2019_02_001
crossref_primary_10_1039_D1TA02425F
crossref_primary_10_1039_D2CE01327D
crossref_primary_10_1002_ange_202306726
crossref_primary_10_1016_j_cclet_2020_07_040
crossref_primary_10_1021_acs_langmuir_1c01640
crossref_primary_10_1002_anie_201913453
crossref_primary_10_1016_j_jcis_2019_11_025
crossref_primary_10_1002_solr_201900438
crossref_primary_10_1039_C9NA00719A
crossref_primary_10_1016_j_cej_2023_148365
crossref_primary_10_1002_ange_202211216
crossref_primary_10_3390_nano14090808
crossref_primary_10_1002_smll_201906250
crossref_primary_10_1016_j_ccr_2023_215249
crossref_primary_10_1021_acs_nanolett_9b04124
crossref_primary_10_1039_D1SC05983A
crossref_primary_10_1002_adma_202000041
crossref_primary_10_1002_asia_202300291
crossref_primary_10_1021_acsami_0c10151
crossref_primary_10_1016_j_cis_2023_103050
crossref_primary_10_1021_jacs_0c02966
crossref_primary_10_1016_j_xcrp_2022_100757
crossref_primary_10_1002_anie_202206108
crossref_primary_10_1016_j_actbio_2022_03_018
crossref_primary_10_1021_acsanm_3c05533
crossref_primary_10_1002_adma_202210669
crossref_primary_10_1007_s11426_021_1095_y
crossref_primary_10_1002_adma_202206842
crossref_primary_10_1038_s41929_021_00665_3
crossref_primary_10_1002_chem_202102877
crossref_primary_10_1039_D1CC03059K
crossref_primary_10_1016_j_inoche_2022_109577
crossref_primary_10_1021_acsaem_2c01153
crossref_primary_10_1016_j_mtchem_2020_100343
crossref_primary_10_1021_acs_inorgchem_1c03425
crossref_primary_10_1007_s40242_022_2002_4
crossref_primary_10_1021_acsami_9b11578
crossref_primary_10_1021_acs_inorgchem_0c00625
crossref_primary_10_3390_polym12102265
crossref_primary_10_1021_acs_inorgchem_3c01874
crossref_primary_10_1039_D1CY02024B
crossref_primary_10_1038_s41467_019_12885_0
crossref_primary_10_1021_acsanm_3c01842
crossref_primary_10_1016_j_mseb_2023_116385
crossref_primary_10_1002_ange_202204108
crossref_primary_10_1002_anie_201900013
crossref_primary_10_1002_adma_202101216
crossref_primary_10_1002_smll_202106587
crossref_primary_10_1039_D0SE00095G
crossref_primary_10_1021_acs_inorgchem_9b02114
crossref_primary_10_1002_ange_202002389
crossref_primary_10_1002_cctc_202100425
crossref_primary_10_3390_min10100918
crossref_primary_10_1016_j_matt_2019_05_018
crossref_primary_10_1002_aesr_202100055
crossref_primary_10_1021_jacs_2c06720
crossref_primary_10_1002_slct_202101471
crossref_primary_10_1038_s41467_021_24571_1
crossref_primary_10_1039_C8SC05441J
crossref_primary_10_1002_chem_202003743
crossref_primary_10_1002_adom_202200463
crossref_primary_10_1016_j_cplett_2021_138749
crossref_primary_10_3390_bios13040435
crossref_primary_10_1002_anie_201910309
crossref_primary_10_1002_anie_202311241
crossref_primary_10_1021_acs_jpcc_0c07262
crossref_primary_10_1016_j_ccr_2019_03_005
crossref_primary_10_1021_acs_accounts_9b00609
crossref_primary_10_1039_C9CP05380H
crossref_primary_10_1038_s41467_023_35981_8
crossref_primary_10_1002_anie_202401443
crossref_primary_10_1021_acscatal_0c00177
crossref_primary_10_1016_j_inoche_2023_111446
crossref_primary_10_1016_j_cej_2022_134975
crossref_primary_10_1039_D1NJ05487B
crossref_primary_10_1002_anie_202306726
crossref_primary_10_1002_jccs_202300115
crossref_primary_10_1021_acsami_0c15340
crossref_primary_10_1002_anie_202308089
crossref_primary_10_1016_j_matt_2023_12_010
crossref_primary_10_1002_ange_201913453
crossref_primary_10_1002_anie_202008189
crossref_primary_10_1016_j_cej_2023_146154
crossref_primary_10_1007_s12274_020_2693_0
crossref_primary_10_1021_jacs_2c09136
crossref_primary_10_1021_jacs_2c10801
crossref_primary_10_1016_j_mtener_2020_100419
crossref_primary_10_1002_smsc_202100015
crossref_primary_10_3390_nano12234263
crossref_primary_10_1016_j_seppur_2024_127090
crossref_primary_10_1021_acsanm_3c00499
crossref_primary_10_1016_j_ccr_2022_214761
crossref_primary_10_1021_acssuschemeng_0c00836
crossref_primary_10_1039_D2CC05686K
crossref_primary_10_3390_pharmaceutics14122641
crossref_primary_10_1039_C9CC05708K
crossref_primary_10_1016_j_cej_2022_140864
crossref_primary_10_1016_j_cej_2022_140623
crossref_primary_10_1039_D2SC04223A
crossref_primary_10_1002_smll_202107459
crossref_primary_10_1016_j_pmatsci_2024_101335
crossref_primary_10_1002_chem_202400360
crossref_primary_10_1002_cplu_202200396
crossref_primary_10_1002_ange_202008189
crossref_primary_10_1007_s10562_020_03277_x
crossref_primary_10_1039_D1NR03006J
crossref_primary_10_1007_s12274_020_3144_7
crossref_primary_10_1016_j_crcon_2023_100211
crossref_primary_10_1002_smll_202300916
crossref_primary_10_1016_j_jece_2024_112835
crossref_primary_10_1039_C9CY01690B
crossref_primary_10_1039_D0CC00566E
crossref_primary_10_3389_fchem_2021_673738
crossref_primary_10_1002_adfm_202007624
crossref_primary_10_1002_ange_201910309
crossref_primary_10_1039_D0QI01351J
crossref_primary_10_1002_ange_202110585
crossref_primary_10_1039_D0QM00040J
crossref_primary_10_1039_D1QM00242B
crossref_primary_10_1039_D1QI00516B
crossref_primary_10_1126_sciadv_abb2695
crossref_primary_10_1007_s11696_022_02193_1
crossref_primary_10_1021_acs_chemmater_0c03007
crossref_primary_10_1021_acsanm_1c03332
crossref_primary_10_1002_anie_201907002
crossref_primary_10_1016_j_mtener_2020_100437
crossref_primary_10_1016_j_ijhydene_2023_05_247
crossref_primary_10_1039_D0TA02033H
crossref_primary_10_3390_molecules24173050
crossref_primary_10_1021_acsaem_1c02175
crossref_primary_10_1002_adfm_202301013
crossref_primary_10_1002_cssc_201902272
crossref_primary_10_1007_s10853_019_03604_7
crossref_primary_10_1007_s10311_020_01119_1
crossref_primary_10_1002_slct_202303384
crossref_primary_10_1007_s11426_022_1295_3
crossref_primary_10_1016_j_seppur_2024_128395
crossref_primary_10_1039_C9CY01745C
crossref_primary_10_1039_D0TA08094B
crossref_primary_10_1016_j_addr_2023_114730
crossref_primary_10_1016_j_cej_2021_129201
crossref_primary_10_1039_C9CP05273A
crossref_primary_10_1016_j_cclet_2019_09_054
crossref_primary_10_1021_acs_organomet_9b00286
crossref_primary_10_1002_ange_202104219
Cites_doi 10.1126/science.1181761
10.1039/C7CE00398F
10.1038/nchem.1272
10.1021/ja903726m
10.1002/chem.200800980
10.1126/science.1116275
10.1021/jacs.5b13335
10.1039/C3CS60378D
10.1021/acs.chemmater.7b01636
10.1002/adma.201800643
10.1039/c3cy00910f
10.1038/nature06552
10.1021/acs.inorgchem.6b00911
10.1021/ja410684q
10.1039/C5CS00307E
10.1039/C7DT01351E
10.1021/acs.inorgchem.5b02973
10.1021/jacs.7b00106
10.1021/jacs.7b09943
10.1021/acscatal.6b03386
10.1002/chem.201505141
10.1039/C5GC01333J
10.1002/adma.201703663
10.1002/anie.201603990
10.1002/anie.201801289
10.1021/jacs.7b00058
10.1126/science.1246738
10.1038/nmat4030
10.1021/ja304693r
10.1002/adma.201705112
10.1021/jacs.7b02272
10.1021/ja407176p
10.1039/C3CS60472A
10.1021/ja403330m
10.1002/anie.200803387
10.1021/jp402154q
10.1039/C5CC03102H
10.1021/cs5012662
10.1016/j.electacta.2016.03.092
10.1039/C5TA00030K
10.1039/C6CC00805D
10.1038/nature19763
10.1038/nchem.2691
10.1021/ja411468e
10.1039/C6CC03096C
10.1021/cm4034319
10.1021/acs.inorgchem.8b00098
10.1039/C5SC04572J
10.1021/ja0770983
10.1002/adma.201702891
10.1039/C4CC04458D
10.1021/cs400959k
10.1002/anie.201709558
10.1021/jacs.6b11027
10.1039/b922061e
10.1021/ja3043905
10.1002/anie.201307340
10.1002/smtd.201700187
10.1039/C1SC00394A
10.1002/anie.201510655
10.1039/C1CS15055C
10.1021/jp803620v
10.1021/acscatal.7b02581
10.1039/C6CS00724D
10.1021/jacs.7b02186
10.1021/cs501169t
10.1002/smll.201401875
10.1002/adma.201405752
10.1002/anie.201600497
10.1039/C4CE00032C
10.1039/C7TA02611K
10.1039/C4CC09797A
10.1038/nenergy.2015.6
10.1002/chem.201701460
10.1039/C4TA04311A
10.1039/C0DT01065K
10.1039/c3sc00032j
10.1038/srep30651
10.1039/C6CC00730A
10.1039/C7CS00033B
10.1002/advs.201600371
10.1039/C6MH00484A
10.1021/nn5027092
10.1002/adma.201705634
10.1002/anie.201308589
10.1021/ja00429a030
10.1039/C5CC01697E
10.1021/acs.jpcc.6b02818
10.1021/ja306869j
10.1021/jacs.5b08773
10.1093/nsr/nwx013
10.1039/C5NR00361J
10.1021/acsnano.5b01138
10.1021/acscatal.8b00505
10.1002/anie.201800817
10.1039/C7DT00082K
10.1021/ja4093055
10.1021/cs501953d
10.1021/acs.chemrev.6b00346
10.1002/anie.201406484
10.1021/ja308786r
10.1002/anie.200454250
10.1002/adma.201701139
10.1038/46248
10.1126/science.1217544
10.1126/science.283.5405.1148
10.1021/ja405086e
10.1039/c2cp41099k
10.1002/chem.201000053
10.1002/anie.201801588
10.1016/j.ces.2014.08.052
10.1002/aic.15356
10.1039/C5CP06779K
10.1002/chem.201605473
10.1021/acscatal.6b01293
10.1002/anie.201701604
10.1021/cm101238m
10.1002/adma.201405583
10.1002/adma.201201715
10.1002/anie.201209903
10.1021/jacs.8b02710
10.1039/C5EE00762C
10.1002/chem.201103433
10.1021/acs.inorgchem.8b00282
10.1039/C5TA04675K
10.1039/C5CC00686D
10.1039/C6CS00537C
10.1039/C5CS00837A
10.1002/adma.201400620
10.1038/ncomms10942
10.1039/C6TA05098K
10.1021/ja502765n
10.1039/C7NJ00709D
10.1021/jacs.8b00605
10.1021/ja8024092
10.1002/anie.200462515
10.1002/chem.200601003
10.1039/C7CY01653K
10.1039/C4SC02362E
10.1126/science.1240148
10.1126/science.1192160
10.1021/cr5001892
10.1021/jacs.7b11364
10.1021/ja512437u
10.1039/C7CC06530B
10.1021/acs.inorgchem.6b00050
10.1002/anie.201711920
10.1038/nmat4766
10.1021/jacs.5b02688
10.1021/cs3005874
10.1039/C7QI00577F
10.1039/C7TA01070B
10.1039/c4cc00785a
10.1021/acs.jpcc.6b06710
10.1039/C6CE00733C
10.1039/C4CS00003J
10.1002/ange.201000863
10.1021/ic400048g
10.1021/ja00146a033
10.1039/C5SC02925B
10.1039/C4CS00230J
10.1002/smll.201601873
10.1021/ja300539p
10.1002/chem.200903526
10.1021/ja405350u
10.1039/C6CC09270E
10.1021/jp105666f
10.1021/acsami.7b17389
10.1021/ja8057953
10.1039/C5TA02860D
10.1021/ja3079219
10.1021/jacs.5b08212
10.1021/jacs.8b02638
10.1021/ja00160a038
10.1021/ja305004a
10.1021/ja308801n
10.1039/C7CC06166H
10.1002/anie.201802661
10.1002/adfm.200801439
10.1007/s12274-014-0501-4
10.1021/jacs.5b03540
10.1039/C5MH00125K
10.1021/ja1099006
10.1126/science.1230444
10.1002/adfm.201702067
10.1002/anie.201506219
10.1002/anie.201703675
10.1038/nmeth.2211
10.1039/C4CS00395K
10.1039/C4CS00103F
10.1021/acsami.7b11150
10.1038/nenergy.2016.184
10.1021/nn5072446
10.1021/acs.inorgchem.6b02855
10.1021/ic9812095
10.1002/anie.201504242
10.1002/anie.201600431
10.1021/jacs.5b05926
10.1126/science.1220131
10.1039/C7TA00437K
10.1021/jacs.8b03517
10.1126/sciadv.1701162
10.1039/C3NR06787D
10.1039/C7CC05927B
10.1021/acscatal.6b00397
10.1038/s41560-017-0044-5
10.1039/b807080f
10.1002/anie.201711725
10.1021/ja512951e
10.1039/C2CS35320B
10.1039/c3ta12894f
10.1016/j.nantod.2009.10.008
10.1126/science.aao3403
10.1021/acsami.5b00682
10.1146/annurev.physchem.58.032806.104607
10.1021/nl503007h
10.1021/ja00082a055
10.1039/C6RA00463F
10.1039/C4CC04387A
10.1021/acs.nanolett.6b03637
10.1021/jacs.8b01601
10.1038/ncomms14429
10.1039/C8CC00130H
10.1002/anie.201608597
10.1021/ja5048522
10.1002/cctc.201601653
10.1002/anie.201800320
10.1039/C4CC06568A
10.1021/acscatal.6b02923
10.1038/ncomms9248
10.1039/C2CS35355E
10.1021/acscatal.5b01949
10.1021/ja906198y
10.1039/C6CE00612D
10.1039/B618320B
10.1039/C4CP04162C
10.1039/b802423p
10.1021/acs.chemrev.5b00221
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201800702
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_201800702
30247789
ADMA201800702
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Frontier Science Key Project of Chinese Academy of Sciences
  funderid: QYZDJ‐SSW‐SLH038
– fundername: National Natural Science Foundation of China
  funderid: 21721002; 21475029; 21722102; 51672053; 21303029
– fundername: CAS‐CSIRO Cooperative Research Program
  funderid: GJHZ1503
– fundername: “Strategic Priority Research Program” of the Chinese Academy of Sciences
  funderid: XDA09040100
– fundername: Beijing Natural Science Foundation
  funderid: 2182087
– fundername: National Research Fund for Fundamental Key Project
  funderid: 2014CB931801; 2016YFA0200700
– fundername: Youth Innovation Promotion Association CAS
  funderid: 2016036
– fundername: Beijing Natural Science Foundation
  grantid: 2182087
– fundername: "Strategic Priority Research Program" of the Chinese Academy of Sciences
  grantid: XDA09040100
– fundername: National Natural Science Foundation of China
  grantid: 21303029
– fundername: National Natural Science Foundation of China
  grantid: 51672053
– fundername: Youth Innovation Promotion Association CAS
  grantid: 2016036
– fundername: National Research Fund for Fundamental Key Project
  grantid: 2014CB931801
– fundername: CAS-CSIRO Cooperative Research Program
  grantid: GJHZ1503
– fundername: National Natural Science Foundation of China
  grantid: 21722102
– fundername: Frontier Science Key Project of Chinese Academy of Sciences
  grantid: QYZDJ-SSW-SLH038
– fundername: National Natural Science Foundation of China
  grantid: 21721002
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAYOK
ABEML
ABTAH
ACBWZ
ACSCC
AFFNX
ASPBG
AVWKF
AZFZN
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
NPM
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4762-7aaa9644decf0692e19d0dd852d021a1d24c170276d328c6c364d34c26169d803
IEDL.DBID 33P
ISSN 0935-9648
IngestDate Fri Aug 16 05:02:38 EDT 2024
Thu Oct 10 16:00:13 EDT 2024
Thu Sep 26 15:57:06 EDT 2024
Sat Sep 28 08:37:54 EDT 2024
Sat Aug 24 00:54:46 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 51
Keywords encapsulation
nanocomposite
nanoparticle
heterogeneous catalysis
metal-organic frameworks
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4762-7aaa9644decf0692e19d0dd852d021a1d24c170276d328c6c364d34c26169d803
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ORCID 0000-0003-0610-0064
PMID 30247789
PQID 2157462653
PQPubID 2045203
PageCount 43
ParticipantIDs proquest_miscellaneous_2111738780
proquest_journals_2157462653
crossref_primary_10_1002_adma_201800702
pubmed_primary_30247789
wiley_primary_10_1002_adma_201800702_ADMA201800702
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 16
2013; 4
2013; 1
2014; 26
2008; 37
1999; 283
2012; 18
2012; 14
2014; 136
2010; 22
2018; 8
2018; 3
2012; 134
2018; 5
2015; 137
2010; 114
2013; 117
2013; 52
2014; 16
2014; 14
2014; 13
2018; 30
2008; 112
2012; 24
2009; 19
2016; 45
2004; 43
2010; 329
2010; 327
2015; 51
2015; 124
2015; 54
2016; 200
2013; 341
2016; 18
2016; 16
2007; 13
2011; 133
2014; 43
2017; 139
2016; 12
2016; 4
2016; 6
2017; 53
2016; 7
2016; 1
2010; 46
2015; 115
2018; 359
1999; 38
2017; 56
1990; 112
2018; 10
2008; 130
2012; 41
2016; 22
2017; 5
2017; 7
2017; 41
2017; 8
2017; 1
2017; 3
2017; 4
2017; 46
2012; 326
1999; 402
2017; 9
2009; 48
2014; 4
2014; 2
2015; 44
2005; 309
2016; 116
2012; 335
2014; 8
2014; 50
2014; 7
2014; 6
2014; 53
2015; 2
1994; 116
2015; 17
2015; 6
2015; 5
2018; 140
2015; 3
2017; 27
2013; 42
2011; 40
2015; 11
2017; 23
1995; 117
2008; 14
2010; 122
2016; 52
2017; 29
2009; 131
2015; 9
2015; 8
2015; 7
2005; 44
2016; 120
2014; 114
2007; 58
2016; 55
1976; 98
2012; 2
2012; 3
2015; 27
2016; 539
2017; 16
2016; 62
2013; 135
2017; 19
2016; 138
2009; 4
2008; 451
2018; 54
2012; 4
2009; 38
2014; 343
2018; 57
2012; 9
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_203_1
e_1_2_8_226_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_178_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_170_1
e_1_2_8_193_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_230_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_238_1
e_1_2_8_215_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_189_1
e_1_2_8_91_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_181_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_30_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_227_1
e_1_2_8_204_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_179_1
e_1_2_8_110_1
e_1_2_8_171_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_194_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_156_1
e_1_2_8_231_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_216_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_106_1
e_1_2_8_182_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_167_1
e_1_2_8_28_1
e_1_2_8_220_1
e_1_2_8_228_1
e_1_2_8_205_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_172_1
e_1_2_8_195_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_17_1
e_1_2_8_232_1
e_1_2_8_217_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_183_1
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_93_1
e_1_2_8_221_1
e_1_2_8_27_1
e_1_2_8_229_1
e_1_2_8_206_1
e_1_2_8_80_1
e_1_2_8_150_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_65_1
e_1_2_8_173_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_196_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_210_1
e_1_2_8_16_1
e_1_2_8_218_1
e_1_2_8_233_1
e_1_2_8_92_1
e_1_2_8_100_1
e_1_2_8_161_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_184_1
e_1_2_8_123_1
e_1_2_8_169_1
e_1_2_8_146_1
e_1_2_8_68_1
e_1_2_8_222_1
e_1_2_8_207_1
e_1_2_8_5_1
e_1_2_8_151_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_174_1
e_1_2_8_197_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_57_1
e_1_2_8_211_1
e_1_2_8_234_1
e_1_2_8_95_1
e_1_2_8_219_1
e_1_2_8_162_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_185_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_200_1
e_1_2_8_223_1
e_1_2_8_152_1
e_1_2_8_208_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_137_1
e_1_2_8_175_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_198_1
e_1_2_8_18_1
e_1_2_8_79_1
e_1_2_8_212_1
e_1_2_8_235_1
e_1_2_8_94_1
e_1_2_8_163_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_186_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_224_1
e_1_2_8_201_1
e_1_2_8_3_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_209_1
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_176_1
e_1_2_8_199_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_190_1
e_1_2_8_213_1
e_1_2_8_236_1
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_97_1
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_187_1
e_1_2_8_46_1
e_1_2_8_69_1
e_1_2_8_180_1
e_1_2_8_202_1
e_1_2_8_225_1
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_192_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_177_1
e_1_2_8_35_1
e_1_2_8_58_1
e_1_2_8_191_1
e_1_2_8_214_1
e_1_2_8_237_1
e_1_2_8_165_1
e_1_2_8_96_1
e_1_2_8_142_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_188_1
References_xml – volume: 55
  start-page: 3058
  year: 2016
  publication-title: Inorg. Chem.
– volume: 117
  start-page: 10401
  year: 1995
  publication-title: J. Am. Chem. Soc.
– volume: 131
  start-page: 14261
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 42
  start-page: 1807
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 134
  start-page: 14345
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 17881
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 112
  start-page: 14090
  year: 2008
  publication-title: J. Phys. Chem. C
– volume: 57
  start-page: 3493
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 57
  start-page: 1918
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 52
  start-page: 8957
  year: 2016
  publication-title: Chem. Commun.
– volume: 53
  start-page: 10026
  year: 2017
  publication-title: Chem. Commun.
– volume: 17
  start-page: 117
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 50
  start-page: 12800
  year: 2014
  publication-title: Chem. Commun.
– volume: 136
  start-page: 8859
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 4254
  year: 2014
  publication-title: ACS Catal.
– volume: 3
  start-page: 15259
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 137
  start-page: 7169
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 10595
  year: 2012
  publication-title: Chem. Eur. J.
– volume: 1
  start-page: 13252
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 27
  start-page: 1702067
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 53
  start-page: 10851
  year: 2017
  publication-title: Chem. Commun.
– volume: 140
  start-page: 6622
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 2142
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 55
  start-page: 9389
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 52
  start-page: 4011
  year: 2013
  publication-title: Inorg. Chem.
– volume: 50
  start-page: 14752
  year: 2014
  publication-title: Chem. Commun.
– volume: 140
  start-page: 1077
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 815
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 57
  start-page: 5708
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  start-page: 345
  year: 2017
  publication-title: Mater. Horiz.
– volume: 114
  start-page: 13362
  year: 2010
  publication-title: J. Phys. Chem. C
– volume: 55
  start-page: 3566
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 98
  start-page: 3916
  year: 1976
  publication-title: J. Am. Chem. Soc.
– volume: 117
  start-page: 11302
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 16
  start-page: 5902
  year: 2010
  publication-title: Chem. Eur. J.
– volume: 140
  start-page: 3871
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 5979
  year: 2014
  publication-title: Nano Lett.
– volume: 56
  start-page: 3414
  year: 2017
  publication-title: Inorg. Chem.
– volume: 136
  start-page: 2464
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 4409
  year: 2014
  publication-title: ACS Catal.
– volume: 56
  start-page: 5512
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 402
  start-page: 276
  year: 1999
  publication-title: Nature
– volume: 16
  start-page: 11133
  year: 2010
  publication-title: Chem. Eur. J.
– volume: 22
  start-page: 4120
  year: 2010
  publication-title: Chem. Mater.
– volume: 8
  start-page: 5542
  year: 2018
  publication-title: ACS Catal.
– volume: 19
  start-page: 4126
  year: 2017
  publication-title: CrystEngComm
– volume: 51
  start-page: 9880
  year: 2015
  publication-title: Chem. Commun.
– volume: 57
  start-page: 5095
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 30
  start-page: 1800643
  year: 2018
  publication-title: Adv. Mater.
– volume: 57
  start-page: 6834
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 6951
  year: 2015
  publication-title: ACS Nano
– volume: 3
  start-page: e1701162
  year: 2017
  publication-title: Sci. Adv.
– volume: 30
  start-page: 1705112
  year: 2018
  publication-title: Adv. Mater.
– volume: 43
  start-page: 6285
  year: 2004
  publication-title: Angew. Chem., Int. Ed.
– volume: 135
  start-page: 10942
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 5262
  year: 2016
  publication-title: CrystEngComm
– volume: 44
  start-page: 6237
  year: 2005
  publication-title: Angew. Chem., Int. Ed.
– volume: 48
  start-page: 650
  year: 2009
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  start-page: 2062
  year: 2015
  publication-title: ACS Catal.
– volume: 133
  start-page: 1304
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 494
  year: 2009
  publication-title: Nano Today
– volume: 341
  start-page: 771
  year: 2013
  publication-title: Science
– volume: 1
  start-page: 16184
  year: 2016
  publication-title: Nat. Energy
– volume: 115
  start-page: 6966
  year: 2015
  publication-title: Chem. Rev.
– volume: 38
  start-page: 144
  year: 1999
  publication-title: Inorg. Chem.
– volume: 51
  start-page: 5735
  year: 2015
  publication-title: Chem. Commun.
– volume: 283
  start-page: 1148
  year: 1999
  publication-title: Science
– volume: 29
  start-page: 1703663
  year: 2017
  publication-title: Adv. Mater.
– volume: 7
  start-page: 2896
  year: 2017
  publication-title: ACS Catal.
– volume: 120
  start-page: 19744
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 16
  start-page: 4919
  year: 2014
  publication-title: CrystEngComm
– volume: 45
  start-page: 2327
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 140
  start-page: 5326
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 2199
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 15240
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 14
  start-page: 8456
  year: 2008
  publication-title: Chem. Eur. J.
– volume: 57
  start-page: 1103
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 51
  start-page: 5199
  year: 2015
  publication-title: Chem. Commun.
– volume: 10
  start-page: 9332
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 134
  start-page: 13926
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 2645
  year: 2015
  publication-title: Chem. Commun.
– volume: 50
  start-page: 5899
  year: 2014
  publication-title: Chem. Commun.
– volume: 9
  start-page: 35010
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 140
  start-page: 6231
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 30651
  year: 2016
  publication-title: Sci. Rep.
– volume: 139
  start-page: 3834
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 58
  start-page: 267
  year: 2007
  publication-title: Annu. Rev. Phys. Chem.
– volume: 139
  start-page: 8222
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 130
  start-page: 14
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 112
  start-page: 1546
  year: 1990
  publication-title: J. Am. Chem. Soc.
– volume: 451
  start-page: 671
  year: 2008
  publication-title: Nature
– volume: 2
  start-page: 20588
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 46
  start-page: 8415
  year: 2017
  publication-title: Dalton Trans.
– volume: 359
  start-page: 206
  year: 2018
  publication-title: Science
– volume: 335
  start-page: 1606
  year: 2012
  publication-title: Science
– volume: 26
  start-page: 4056
  year: 2014
  publication-title: Adv. Mater.
– volume: 37
  start-page: 191
  year: 2008
  publication-title: Chem. Soc. Rev.
– volume: 3
  start-page: 30
  year: 2018
  publication-title: Nat. Energy
– volume: 27
  start-page: 2923
  year: 2015
  publication-title: Adv. Mater.
– volume: 30
  start-page: 1705634
  year: 2018
  publication-title: Adv. Mater.
– volume: 57
  start-page: 5030
  year: 2018
  publication-title: Inorg. Chem.
– volume: 1
  start-page: 1700187
  year: 2017
  publication-title: Small Methods
– volume: 135
  start-page: 10210
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 116
  start-page: 1151
  year: 1994
  publication-title: J. Am. Chem. Soc.
– volume: 200
  start-page: 276
  year: 2016
  publication-title: Electrochim. Acta
– volume: 52
  start-page: 5190
  year: 2016
  publication-title: Chem. Commun.
– volume: 137
  start-page: 14129
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 6448
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 43
  start-page: 7520
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 11854
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 18
  start-page: 4635
  year: 2016
  publication-title: Phys. Chem. Chem. Phys.
– volume: 29
  start-page: 1701139
  year: 2017
  publication-title: Adv. Mater.
– volume: 9
  start-page: 1189
  year: 2012
  publication-title: Nat. Methods
– volume: 38
  start-page: 1430
  year: 2009
  publication-title: Chem. Soc. Rev.
– volume: 14
  start-page: 13120
  year: 2012
  publication-title: Phys. Chem. Chem. Phys.
– volume: 52
  start-page: 7161
  year: 2016
  publication-title: Chem. Commun.
– volume: 7
  start-page: 997
  year: 2017
  publication-title: ACS Catal.
– volume: 8
  start-page: 7451
  year: 2014
  publication-title: ACS Nano
– volume: 4
  start-page: 296
  year: 2017
  publication-title: Nat. Sci. Rev.
– volume: 11
  start-page: 71
  year: 2015
  publication-title: Small
– volume: 139
  start-page: 356
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 4774
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 16
  start-page: 220
  year: 2017
  publication-title: Nat. Mater.
– volume: 7
  start-page: 1364
  year: 2014
  publication-title: Nano Res.
– volume: 29
  start-page: 6336
  year: 2017
  publication-title: Chem. Mater.
– volume: 7
  start-page: 4893
  year: 2017
  publication-title: Catal. Sci. Technol.
– volume: 53
  start-page: 12517
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 309
  start-page: 2040
  year: 2005
  publication-title: Science
– volume: 16
  start-page: 7645
  year: 2016
  publication-title: Nano Lett.
– volume: 5
  start-page: 7833
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 22
  start-page: 8012
  year: 2016
  publication-title: Chem. Eur. J.
– volume: 19
  start-page: 189
  year: 2009
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 802
  year: 2014
  publication-title: Nat. Mater.
– volume: 539
  start-page: 76
  year: 2016
  publication-title: Nature
– volume: 5
  start-page: 6852
  year: 2015
  publication-title: ACS Catal.
– volume: 53
  start-page: 1184
  year: 2017
  publication-title: Chem. Commun.
– volume: 6
  start-page: 29182
  year: 2016
  publication-title: RSC Adv.
– volume: 135
  start-page: 16997
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 122
  start-page: 5476
  year: 2010
  publication-title: Angew. Chem.
– volume: 18
  start-page: 3524
  year: 2016
  publication-title: CrystEngComm
– volume: 137
  start-page: 13440
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 2280
  year: 2010
  publication-title: Chem. Commun.
– volume: 134
  start-page: 12780
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 43
  start-page: 5561
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 29
  year: 2018
  publication-title: Inorg. Chem. Front.
– volume: 13
  start-page: 5106
  year: 2007
  publication-title: Chem. Eur. J.
– volume: 114
  start-page: 9919
  year: 2014
  publication-title: Chem. Rev.
– volume: 7
  start-page: 3062
  year: 2016
  publication-title: Chem. Sci.
– volume: 57
  start-page: 5379
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 52
  start-page: 3741
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 23
  start-page: 11189
  year: 2017
  publication-title: Chem. Eur. J.
– volume: 131
  start-page: 10857
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 55
  start-page: 6411
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 134
  start-page: 12807
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 10561
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 10942
  year: 2016
  publication-title: Nat. Commun.
– volume: 130
  start-page: 7848
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 3461
  year: 2016
  publication-title: ACS Catal.
– volume: 135
  start-page: 16356
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 1738
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 1119
  year: 2014
  publication-title: Chem. Mater.
– volume: 46
  start-page: 3134
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 40
  start-page: 2218
  year: 2011
  publication-title: Dalton Trans.
– volume: 124
  start-page: 45
  year: 2015
  publication-title: Chem. Eng. Sci.
– volume: 12
  start-page: 5702
  year: 2016
  publication-title: Small
– volume: 44
  start-page: 228
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 55
  start-page: 3685
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  start-page: 12498
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 795
  year: 2014
  publication-title: Catal. Sci. Technol.
– volume: 46
  start-page: 4614
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 41
  start-page: 1088
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 341
  start-page: 1230444
  year: 2013
  publication-title: Science
– volume: 3
  start-page: 20607
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 1035
  year: 2015
  publication-title: Chem. Sci.
– volume: 3
  start-page: 126
  year: 2012
  publication-title: Chem. Sci.
– volume: 137
  start-page: 9547
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 18082
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 3184
  year: 2017
  publication-title: Chem. Eur. J.
– volume: 4
  start-page: 310
  year: 2012
  publication-title: Nat. Chem.
– volume: 7
  start-page: 6949
  year: 2017
  publication-title: ACS Catal.
– volume: 53
  start-page: 12361
  year: 2017
  publication-title: Chem. Commun.
– volume: 41
  start-page: 5846
  year: 2017
  publication-title: New J. Chem.
– volume: 43
  start-page: 5468
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 137
  start-page: 1774
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 3273
  year: 2015
  publication-title: Adv. Mater.
– volume: 135
  start-page: 14488
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 44
  start-page: 6804
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 2054
  year: 2013
  publication-title: Chem. Sci.
– volume: 140
  start-page: 6383
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 38
  start-page: 1450
  year: 2009
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 5359
  year: 2016
  publication-title: ACS Catal.
– volume: 4
  start-page: 1600371
  year: 2017
  publication-title: Adv. Sci.
– volume: 134
  start-page: 18790
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 55
  start-page: 3558
  year: 2016
  publication-title: Inorg. Chem.
– volume: 54
  start-page: 10889
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 14429
  year: 2017
  publication-title: Nat. Commun.
– volume: 8
  start-page: 1837
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 3995
  year: 2014
  publication-title: Nanoscale
– volume: 17
  start-page: 4178
  year: 2015
  publication-title: Green Chem.
– volume: 56
  start-page: 16510
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  start-page: 228
  year: 2016
  publication-title: Chem. Sci.
– volume: 120
  start-page: 12539
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 1
  start-page: 15006
  year: 2016
  publication-title: Nat. Energy
– volume: 7
  start-page: 8115
  year: 2015
  publication-title: Nanoscale
– volume: 42
  start-page: 2568
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 8248
  year: 2015
  publication-title: Nat. Commun.
– volume: 29
  start-page: 1702891
  year: 2017
  publication-title: Adv. Mater.
– volume: 4
  start-page: 361
  year: 2013
  publication-title: ACS Catal.
– volume: 9
  start-page: 3044
  year: 2015
  publication-title: ACS Nano
– volume: 9
  start-page: 11
  year: 2017
  publication-title: Nat. Chem.
– volume: 44
  start-page: 6774
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 7
  start-page: 9507
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 139
  start-page: 5397
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 56
  start-page: 9704
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 3
  start-page: 8028
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 326
  start-page: 1018
  year: 2012
  publication-title: Science
– volume: 327
  start-page: 846
  year: 2010
  publication-title: Science
– volume: 54
  start-page: 2498
  year: 2018
  publication-title: Chem. Commun.
– volume: 57
  start-page: 4109
  year: 2018
  publication-title: Inorg. Chem.
– volume: 24
  start-page: 4473
  year: 2012
  publication-title: Adv. Mater.
– volume: 137
  start-page: 7810
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 55
  start-page: 7301
  year: 2016
  publication-title: Inorg. Chem.
– volume: 55
  start-page: 14310
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 55
  start-page: 7379
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 343
  start-page: 66
  year: 2014
  publication-title: Science
– volume: 130
  start-page: 13850
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 10419
  year: 2015
  publication-title: Chem. Commun.
– volume: 2
  start-page: 606
  year: 2015
  publication-title: Mater. Horiz.
– volume: 2
  start-page: 2630
  year: 2012
  publication-title: ACS Catal.
– volume: 9
  start-page: 1337
  year: 2017
  publication-title: ChemCatChem
– volume: 140
  start-page: 856
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 2751
  year: 2017
  publication-title: Dalton Trans.
– volume: 329
  start-page: 424
  year: 2010
  publication-title: Science
– volume: 43
  start-page: 5982
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 53
  start-page: 429
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 62
  start-page: 4403
  year: 2016
  publication-title: AIChE J.
– volume: 116
  start-page: 12466
  year: 2016
  publication-title: Chem. Rev.
– volume: 134
  start-page: 7211
  year: 2012
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_8_15_1
  doi: 10.1126/science.1181761
– ident: e_1_2_8_103_1
  doi: 10.1039/C7CE00398F
– ident: e_1_2_8_172_1
  doi: 10.1038/nchem.1272
– ident: e_1_2_8_104_1
  doi: 10.1021/ja903726m
– ident: e_1_2_8_72_1
  doi: 10.1002/chem.200800980
– ident: e_1_2_8_83_1
  doi: 10.1126/science.1116275
– ident: e_1_2_8_29_1
  doi: 10.1021/jacs.5b13335
– ident: e_1_2_8_95_1
  doi: 10.1039/C3CS60378D
– ident: e_1_2_8_184_1
  doi: 10.1021/acs.chemmater.7b01636
– ident: e_1_2_8_171_1
  doi: 10.1002/adma.201800643
– ident: e_1_2_8_193_1
  doi: 10.1039/c3cy00910f
– ident: e_1_2_8_17_1
  doi: 10.1038/nature06552
– ident: e_1_2_8_66_1
  doi: 10.1021/acs.inorgchem.6b00911
– ident: e_1_2_8_126_1
  doi: 10.1021/ja410684q
– ident: e_1_2_8_37_1
  doi: 10.1039/C5CS00307E
– ident: e_1_2_8_26_1
  doi: 10.1039/C7DT01351E
– ident: e_1_2_8_65_1
  doi: 10.1021/acs.inorgchem.5b02973
– ident: e_1_2_8_109_1
  doi: 10.1021/jacs.7b00106
– ident: e_1_2_8_118_1
  doi: 10.1021/jacs.7b09943
– ident: e_1_2_8_69_1
  doi: 10.1021/acscatal.6b03386
– ident: e_1_2_8_43_1
  doi: 10.1002/chem.201505141
– ident: e_1_2_8_31_1
  doi: 10.1039/C5GC01333J
– ident: e_1_2_8_34_1
  doi: 10.1002/adma.201703663
– ident: e_1_2_8_215_1
  doi: 10.1002/anie.201603990
– ident: e_1_2_8_176_1
  doi: 10.1002/anie.201801289
– ident: e_1_2_8_158_1
  doi: 10.1021/jacs.7b00058
– ident: e_1_2_8_141_1
  doi: 10.1126/science.1246738
– ident: e_1_2_8_160_1
  doi: 10.1038/nmat4030
– ident: e_1_2_8_147_1
  doi: 10.1021/ja304693r
– ident: e_1_2_8_219_1
  doi: 10.1002/adma.201705112
– ident: e_1_2_8_14_1
  doi: 10.1021/jacs.7b02272
– ident: e_1_2_8_115_1
  doi: 10.1021/ja407176p
– ident: e_1_2_8_54_1
  doi: 10.1039/C3CS60472A
– ident: e_1_2_8_155_1
  doi: 10.1021/ja403330m
– ident: e_1_2_8_7_1
  doi: 10.1002/anie.200803387
– ident: e_1_2_8_8_1
  doi: 10.1021/jp402154q
– ident: e_1_2_8_152_1
  doi: 10.1039/C5CC03102H
– ident: e_1_2_8_67_1
  doi: 10.1021/cs5012662
– ident: e_1_2_8_231_1
  doi: 10.1016/j.electacta.2016.03.092
– ident: e_1_2_8_236_1
  doi: 10.1039/C5TA00030K
– ident: e_1_2_8_133_1
  doi: 10.1039/C6CC00805D
– ident: e_1_2_8_175_1
  doi: 10.1038/nature19763
– ident: e_1_2_8_40_1
  doi: 10.1038/nchem.2691
– ident: e_1_2_8_163_1
  doi: 10.1021/ja411468e
– ident: e_1_2_8_190_1
  doi: 10.1039/C6CC03096C
– ident: e_1_2_8_181_1
  doi: 10.1021/cm4034319
– ident: e_1_2_8_211_1
  doi: 10.1021/acs.inorgchem.8b00098
– ident: e_1_2_8_125_1
  doi: 10.1039/C5SC04572J
– ident: e_1_2_8_137_1
  doi: 10.1021/ja0770983
– ident: e_1_2_8_202_1
  doi: 10.1002/adma.201702891
– ident: e_1_2_8_36_1
  doi: 10.1039/C4CC04458D
– ident: e_1_2_8_56_1
  doi: 10.1021/cs400959k
– ident: e_1_2_8_146_1
  doi: 10.1002/anie.201709558
– ident: e_1_2_8_222_1
  doi: 10.1021/jacs.6b11027
– ident: e_1_2_8_237_1
  doi: 10.1039/b922061e
– ident: e_1_2_8_151_1
  doi: 10.1021/ja3043905
– ident: e_1_2_8_78_1
  doi: 10.1002/anie.201307340
– ident: e_1_2_8_131_1
  doi: 10.1002/smtd.201700187
– ident: e_1_2_8_84_1
  doi: 10.1039/C1SC00394A
– ident: e_1_2_8_224_1
  doi: 10.1002/anie.201510655
– ident: e_1_2_8_44_1
  doi: 10.1039/C1CS15055C
– ident: e_1_2_8_117_1
  doi: 10.1021/jp803620v
– ident: e_1_2_8_208_1
  doi: 10.1021/acscatal.7b02581
– ident: e_1_2_8_68_1
  doi: 10.1039/C6CS00724D
– ident: e_1_2_8_105_1
  doi: 10.1021/jacs.7b02186
– ident: e_1_2_8_110_1
  doi: 10.1021/cs501169t
– ident: e_1_2_8_154_1
  doi: 10.1002/smll.201401875
– ident: e_1_2_8_174_1
  doi: 10.1002/adma.201405752
– ident: e_1_2_8_197_1
  doi: 10.1002/anie.201600497
– ident: e_1_2_8_119_1
  doi: 10.1039/C4CE00032C
– ident: e_1_2_8_205_1
  doi: 10.1039/C7TA02611K
– ident: e_1_2_8_122_1
  doi: 10.1039/C4CC09797A
– ident: e_1_2_8_75_1
  doi: 10.1038/nenergy.2015.6
– ident: e_1_2_8_114_1
  doi: 10.1002/chem.201701460
– ident: e_1_2_8_148_1
  doi: 10.1039/C4TA04311A
– ident: e_1_2_8_136_1
  doi: 10.1039/C0DT01065K
– ident: e_1_2_8_225_1
  doi: 10.1039/c3sc00032j
– ident: e_1_2_8_70_1
  doi: 10.1038/srep30651
– ident: e_1_2_8_204_1
  doi: 10.1039/C6CC00730A
– ident: e_1_2_8_38_1
  doi: 10.1039/C7CS00033B
– ident: e_1_2_8_102_1
  doi: 10.1002/advs.201600371
– ident: e_1_2_8_39_1
  doi: 10.1039/C6MH00484A
– ident: e_1_2_8_135_1
  doi: 10.1021/nn5027092
– ident: e_1_2_8_99_1
  doi: 10.1002/adma.201705634
– ident: e_1_2_8_22_1
  doi: 10.1002/anie.201308589
– ident: e_1_2_8_140_1
  doi: 10.1021/ja00429a030
– ident: e_1_2_8_212_1
  doi: 10.1039/C5CC01697E
– ident: e_1_2_8_59_1
  doi: 10.1021/acs.jpcc.6b02818
– ident: e_1_2_8_180_1
  doi: 10.1021/ja306869j
– ident: e_1_2_8_124_1
  doi: 10.1021/jacs.5b08773
– ident: e_1_2_8_5_1
  doi: 10.1093/nsr/nwx013
– ident: e_1_2_8_169_1
  doi: 10.1039/C5NR00361J
– ident: e_1_2_8_166_1
  doi: 10.1021/acsnano.5b01138
– ident: e_1_2_8_42_1
  doi: 10.1021/acscatal.8b00505
– ident: e_1_2_8_220_1
  doi: 10.1002/anie.201800817
– ident: e_1_2_8_209_1
  doi: 10.1039/C7DT00082K
– ident: e_1_2_8_64_1
  doi: 10.1021/ja4093055
– ident: e_1_2_8_150_1
  doi: 10.1021/cs501953d
– ident: e_1_2_8_35_1
  doi: 10.1021/acs.chemrev.6b00346
– ident: e_1_2_8_24_1
  doi: 10.1002/anie.201406484
– ident: e_1_2_8_86_1
  doi: 10.1021/ja308786r
– ident: e_1_2_8_6_1
  doi: 10.1002/anie.200454250
– ident: e_1_2_8_18_1
  doi: 10.1002/adma.201701139
– ident: e_1_2_8_73_1
  doi: 10.1038/46248
– ident: e_1_2_8_41_1
  doi: 10.1126/science.1217544
– ident: e_1_2_8_74_1
  doi: 10.1126/science.283.5405.1148
– ident: e_1_2_8_112_1
  doi: 10.1021/ja405086e
– ident: e_1_2_8_128_1
  doi: 10.1039/c2cp41099k
– ident: e_1_2_8_79_1
  doi: 10.1002/chem.201000053
– ident: e_1_2_8_179_1
  doi: 10.1002/anie.201801588
– ident: e_1_2_8_92_1
  doi: 10.1016/j.ces.2014.08.052
– ident: e_1_2_8_32_1
  doi: 10.1002/aic.15356
– ident: e_1_2_8_233_1
  doi: 10.1039/C5CP06779K
– ident: e_1_2_8_207_1
  doi: 10.1002/chem.201605473
– ident: e_1_2_8_218_1
  doi: 10.1021/acscatal.6b01293
– ident: e_1_2_8_183_1
  doi: 10.1002/anie.201701604
– ident: e_1_2_8_138_1
  doi: 10.1021/cm101238m
– ident: e_1_2_8_164_1
  doi: 10.1002/adma.201405583
– ident: e_1_2_8_16_1
  doi: 10.1002/adma.201201715
– ident: e_1_2_8_187_1
  doi: 10.1002/anie.201209903
– ident: e_1_2_8_51_1
  doi: 10.1021/jacs.8b02710
– ident: e_1_2_8_76_1
  doi: 10.1039/C5EE00762C
– ident: e_1_2_8_134_1
  doi: 10.1002/chem.201103433
– ident: e_1_2_8_53_1
  doi: 10.1021/acs.inorgchem.8b00282
– ident: e_1_2_8_157_1
  doi: 10.1039/C5TA04675K
– ident: e_1_2_8_203_1
  doi: 10.1039/C5CC00686D
– ident: e_1_2_8_71_1
  doi: 10.1039/C6CS00537C
– ident: e_1_2_8_91_1
  doi: 10.1039/C5CS00837A
– ident: e_1_2_8_173_1
  doi: 10.1002/adma.201400620
– ident: e_1_2_8_228_1
  doi: 10.1038/ncomms10942
– ident: e_1_2_8_20_1
  doi: 10.1039/C6TA05098K
– ident: e_1_2_8_139_1
  doi: 10.1021/ja502765n
– ident: e_1_2_8_194_1
  doi: 10.1039/C7NJ00709D
– ident: e_1_2_8_129_1
  doi: 10.1021/jacs.8b00605
– ident: e_1_2_8_80_1
  doi: 10.1021/ja8024092
– ident: e_1_2_8_55_1
  doi: 10.1002/anie.200462515
– ident: e_1_2_8_97_1
  doi: 10.1002/chem.200601003
– ident: e_1_2_8_101_1
  doi: 10.1039/C7CY01653K
– ident: e_1_2_8_210_1
  doi: 10.1039/C4SC02362E
– ident: e_1_2_8_19_1
  doi: 10.1126/science.1240148
– ident: e_1_2_8_12_1
  doi: 10.1126/science.1192160
– ident: e_1_2_8_93_1
  doi: 10.1021/cr5001892
– ident: e_1_2_8_132_1
  doi: 10.1021/jacs.7b11364
– ident: e_1_2_8_143_1
  doi: 10.1021/ja512437u
– ident: e_1_2_8_156_1
  doi: 10.1039/C7CC06530B
– ident: e_1_2_8_28_1
  doi: 10.1021/acs.inorgchem.6b00050
– ident: e_1_2_8_235_1
  doi: 10.1002/anie.201711920
– ident: e_1_2_8_142_1
  doi: 10.1038/nmat4766
– ident: e_1_2_8_234_1
  doi: 10.1021/jacs.5b02688
– ident: e_1_2_8_98_1
  doi: 10.1021/cs3005874
– ident: e_1_2_8_62_1
  doi: 10.1039/C7QI00577F
– ident: e_1_2_8_213_1
  doi: 10.1039/C7TA01070B
– ident: e_1_2_8_201_1
  doi: 10.1039/c4cc00785a
– ident: e_1_2_8_153_1
  doi: 10.1021/acs.jpcc.6b06710
– ident: e_1_2_8_168_1
  doi: 10.1039/C6CE00733C
– ident: e_1_2_8_9_1
  doi: 10.1039/C4CS00003J
– ident: e_1_2_8_227_1
  doi: 10.1002/ange.201000863
– ident: e_1_2_8_87_1
  doi: 10.1021/ic400048g
– ident: e_1_2_8_3_1
  doi: 10.1021/ja00146a033
– ident: e_1_2_8_200_1
  doi: 10.1039/C5SC02925B
– ident: e_1_2_8_81_1
  doi: 10.1039/C4CS00230J
– ident: e_1_2_8_178_1
  doi: 10.1002/smll.201601873
– ident: e_1_2_8_159_1
  doi: 10.1021/ja300539p
– ident: e_1_2_8_107_1
  doi: 10.1002/chem.200903526
– ident: e_1_2_8_116_1
  doi: 10.1021/ja405350u
– ident: e_1_2_8_198_1
  doi: 10.1039/C6CC09270E
– ident: e_1_2_8_58_1
  doi: 10.1021/jp105666f
– ident: e_1_2_8_61_1
  doi: 10.1021/acsami.7b17389
– ident: e_1_2_8_77_1
  doi: 10.1021/ja8057953
– ident: e_1_2_8_189_1
  doi: 10.1039/C5TA02860D
– ident: e_1_2_8_85_1
  doi: 10.1021/ja3079219
– ident: e_1_2_8_229_1
  doi: 10.1021/jacs.5b08212
– ident: e_1_2_8_130_1
  doi: 10.1021/jacs.8b02638
– ident: e_1_2_8_1_1
  doi: 10.1021/ja00160a038
– ident: e_1_2_8_57_1
  doi: 10.1021/ja305004a
– ident: e_1_2_8_10_1
  doi: 10.1021/ja308801n
– ident: e_1_2_8_30_1
  doi: 10.1039/C7CC06166H
– ident: e_1_2_8_50_1
  doi: 10.1002/anie.201802661
– ident: e_1_2_8_161_1
  doi: 10.1002/adfm.200801439
– ident: e_1_2_8_60_1
  doi: 10.1007/s12274-014-0501-4
– ident: e_1_2_8_195_1
  doi: 10.1021/jacs.5b03540
– ident: e_1_2_8_199_1
  doi: 10.1039/C5MH00125K
– ident: e_1_2_8_63_1
  doi: 10.1021/ja1099006
– ident: e_1_2_8_4_1
  doi: 10.1126/science.1230444
– ident: e_1_2_8_232_1
  doi: 10.1002/adfm.201702067
– ident: e_1_2_8_127_1
  doi: 10.1002/anie.201506219
– ident: e_1_2_8_49_1
  doi: 10.1002/anie.201703675
– ident: e_1_2_8_223_1
  doi: 10.1038/nmeth.2211
– ident: e_1_2_8_52_1
  doi: 10.1039/C4CS00395K
– ident: e_1_2_8_100_1
  doi: 10.1039/C4CS00103F
– ident: e_1_2_8_214_1
  doi: 10.1021/acsami.7b11150
– ident: e_1_2_8_230_1
  doi: 10.1038/nenergy.2016.184
– ident: e_1_2_8_149_1
  doi: 10.1021/nn5072446
– ident: e_1_2_8_192_1
  doi: 10.1021/acs.inorgchem.6b02855
– ident: e_1_2_8_145_1
  doi: 10.1021/ic9812095
– ident: e_1_2_8_23_1
  doi: 10.1002/anie.201504242
– ident: e_1_2_8_121_1
  doi: 10.1002/anie.201600431
– ident: e_1_2_8_96_1
  doi: 10.1021/jacs.5b05926
– ident: e_1_2_8_13_1
  doi: 10.1126/science.1220131
– ident: e_1_2_8_106_1
  doi: 10.1039/C7TA00437K
– ident: e_1_2_8_90_1
  doi: 10.1021/jacs.8b03517
– ident: e_1_2_8_113_1
  doi: 10.1126/sciadv.1701162
– ident: e_1_2_8_162_1
  doi: 10.1039/C3NR06787D
– ident: e_1_2_8_25_1
  doi: 10.1039/C7CC05927B
– ident: e_1_2_8_196_1
  doi: 10.1021/acscatal.6b00397
– ident: e_1_2_8_144_1
  doi: 10.1038/s41560-017-0044-5
– ident: e_1_2_8_48_1
  doi: 10.1039/b807080f
– ident: e_1_2_8_216_1
  doi: 10.1002/anie.201711725
– ident: e_1_2_8_182_1
  doi: 10.1021/ja512951e
– ident: e_1_2_8_191_1
  doi: 10.1039/C2CS35320B
– ident: e_1_2_8_185_1
  doi: 10.1039/c3ta12894f
– ident: e_1_2_8_177_1
  doi: 10.1016/j.nantod.2009.10.008
– ident: e_1_2_8_88_1
  doi: 10.1126/science.aao3403
– ident: e_1_2_8_108_1
  doi: 10.1021/acsami.5b00682
– ident: e_1_2_8_221_1
  doi: 10.1146/annurev.physchem.58.032806.104607
– ident: e_1_2_8_170_1
  doi: 10.1021/nl503007h
– ident: e_1_2_8_2_1
  doi: 10.1021/ja00082a055
– ident: e_1_2_8_21_1
  doi: 10.1039/C6RA00463F
– ident: e_1_2_8_33_1
  doi: 10.1039/C4CC04387A
– ident: e_1_2_8_165_1
  doi: 10.1021/acs.nanolett.6b03637
– ident: e_1_2_8_206_1
  doi: 10.1021/jacs.8b01601
– ident: e_1_2_8_238_1
  doi: 10.1038/ncomms14429
– ident: e_1_2_8_47_1
  doi: 10.1039/C8CC00130H
– ident: e_1_2_8_123_1
  doi: 10.1002/anie.201608597
– ident: e_1_2_8_167_1
  doi: 10.1021/ja5048522
– ident: e_1_2_8_27_1
  doi: 10.1002/cctc.201601653
– ident: e_1_2_8_217_1
  doi: 10.1002/anie.201800320
– ident: e_1_2_8_188_1
  doi: 10.1039/C4CC06568A
– ident: e_1_2_8_89_1
  doi: 10.1021/acscatal.6b02923
– ident: e_1_2_8_186_1
  doi: 10.1038/ncomms9248
– ident: e_1_2_8_94_1
  doi: 10.1039/C2CS35355E
– ident: e_1_2_8_111_1
  doi: 10.1021/acscatal.5b01949
– ident: e_1_2_8_82_1
  doi: 10.1021/ja906198y
– ident: e_1_2_8_45_1
  doi: 10.1039/C6CE00612D
– ident: e_1_2_8_226_1
  doi: 10.1039/B618320B
– ident: e_1_2_8_120_1
  doi: 10.1039/C4CP04162C
– ident: e_1_2_8_11_1
  doi: 10.1039/b802423p
– ident: e_1_2_8_46_1
  doi: 10.1021/acs.chemrev.5b00221
SSID ssj0009606
Score 2.7095628
SecondaryResourceType review_article
Snippet Beyond conventional porous materials, metal–organic frameworks (MOFs) have aroused great interest in the construction of nanocatalysts with the characteristics...
Beyond conventional porous materials, metal-organic frameworks (MOFs) have aroused great interest in the construction of nanocatalysts with the characteristics...
Abstract Beyond conventional porous materials, metal–organic frameworks (MOFs) have aroused great interest in the construction of nanocatalysts with the...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e1800702
SubjectTerms Catalysis
Encapsulation
heterogeneous catalysis
Holes
Mass transfer
Metal-organic frameworks
nanocomposite
nanoparticle
Nanoparticles
Porous materials
Selectivity
Substrates
Title Metal–Organic Frameworks Encapsulating Active Nanoparticles as Emerging Composites for Catalysis: Recent Progress and Perspectives
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201800702
https://www.ncbi.nlm.nih.gov/pubmed/30247789
https://www.proquest.com/docview/2157462653
https://search.proquest.com/docview/2111738780
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29btswED6kmdKhaZO2UeoGLFCgkxBKpPiTzXBseHFgIC2QTaBIuptSRPHeoW-QN8yT5E6y5BodCiSbfkiI4vGO35F3HwG-GqGcLmKeIlZWqfTVKrWBzjcJyvHMocuxIkdxfq2vbszllGhyhiz-jh9iWHAjzWjtNSm4q5rzLWmoCy1vUGaIsYaMMFE3UQ6HWG5Zd1V7uCZt9qVWSdOzNvL8fLf67qz0D9TcRa7t1DM7fHmj38KbDexk426cvIO9WB_B67_ICI_hzyIiEH_8_dClZ3o26-O2GjatvUN3muLm6p9s3NpIhoYZPe5NYB1zWIpSOakAGRkKBsPHiInZhJaIiPnkgiFKxVmOLSkqDG0sc3Vgy22-Z_Mefsym3yfzdHNGQ-ol2tFUO-ewZ2WIfsWVzWNmAw_BFHlA9OCykEuf4a9qFURuvPJCySCkR8dN2WC4-AD79W0dT4B5RH_BRi5dVLLSldXeclsVPGhBJPgJfOtlVP7qqDjKjnQ5L6lfy6FfExj1Iiw3KtmUiG20RPetEAl8GV6jMtEOiavj7ZrKZJkWRhuewMdO9MOnBKIZrY1NIG8l_J82lOPLxXi4O31OpU9wQNdd8MwI9u_v1vEzvGrC-qwd5k_YfPxW
link.rule.ids 315,783,787,1409,27936,27937,46067,46491
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTtwwEB7xc6g40JZCCdDiSpU4RTix1z-9RbCrRbBopVKpt8hre7mFimXvHHiDvmGfhJlkk2XVQyXUYxJbSTye8Tfjmc8AX41QTvdiniJWVqn0k2lqA51vEpTjmUOXY0qO4vC7vv5pzvtEk1O0tTANP0QXcCPNqO01KTgFpE-XrKEu1MRBmSHKGrTCm1JJS7opxHjJu6vq4zVpuy-1SpqWt5Hnp6v9V9elv8DmKnatF5_B2__w2e9ge4E8WdFMlfewFqsd2HrBR_gBnkYRsfifx99NhaZngzZ1a8b6lXfoUVPqXHXLitpMMrTN6HQvcuuYw1ZUzUkNyM5QPhjeRljMzihKROQn3xgCVVzo2JgSw9DMMlcFNl6WfM524cegf3M2TBfHNKReoilNtXMOh1aG6Kdc2TxmNvAQTC8PCCBcFnLpM_xVrYLIjVdeKBmE9Oi7KRsMF3uwUd1VcR-YRwAYbOTSRSUnemK1t9xOejxoQTz4CZy0Qip_NWwcZcO7nJc0rmU3rgkctTIsF1o5KxHeaIkeXE8k8KV7jPpEmySuindzapNlWhhteAIfG9l3rxIIaLQ2NoG8FvE_vqEszkdFd3Xwmk7H8GZ4M7oqry6uLw8ppsCzJpfmCDYe7ufxE6zPwvxzPeefAbl3AHw
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhMxEB5BkBA9FChQFgp1JSROq3rXjn-4RU2iINoqEiBxWzkep7dtRZp7D7xB37BP0pndZEPEAQmO67XlXY9n_I098xngg1Mm2H4qc8LKJtdxNs898v0maIIsArkcc3YUJ1_t-Q83HDFNTpfF3_JDdBturBmNvWYFv8L58YY0NGDDG1Q4ZqwhI_xIU2_sfik13dDumuZ2TT7ty73Rbk3bKMvj7fbby9IfWHMbujZrz_jp_3_1M9hd4U4xaCfKc3iQ6j3Y-Y2N8AX8OkuExO9ubtv8zCjG68CthRjVMZA_zYFz9YUYNEZSkGUml3sVWScC1eJcTq7AVoajwaiYQLE44T0ipj75JAim0jInphwWRkZWhBrFdJPwuXgJ38ejbyeTfHVJQx41GdLchhBoZDWmOJfGl6nwKBFdv0SCD6HAUseCftUaVKWLJiqjUelInpvx6KR6Bb36sk6vQUSCf-iT1CEZPbMzb6OXftaXaBWz4GfwcS2j6qrl4qha1uWy4nGtunHN4GAtwmqlk4uKwI3V5L_1VQZH3WvSJj4iCXW6XHKdorDKWScz2G9F33WlCM5Y63wGZSPhv3xDNRieDbqnN__S6BAeT4fj6vTz-Ze38ISL20CaA-hd_1ymd_Bwgcv3zYy_B68f_yY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal%E2%80%93Organic+Frameworks+Encapsulating+Active+Nanoparticles+as+Emerging+Composites+for+Catalysis%3A+Recent+Progress+and+Perspectives&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Li%2C+Guodong&rft.au=Zhao%2C+Shenlong&rft.au=Zhang%2C+Yin&rft.au=Tang%2C+Zhiyong&rft.date=2018-12-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=51&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201800702&rft.externalDBID=10.1002%252Fadma.201800702&rft.externalDocID=ADMA201800702
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon