Morphology‐Controlled Metal Sulfides and Phosphides for Electrochemical Water Splitting

Because H2 is considered a promising clean energy source, water electrolysis has attracted great interest in related research and technology. Noble‐metal‐based catalysts are used as electrode materials in water electrolyzers, but their high cost and low abundance have impeded them from being used in...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) Vol. 31; no. 14; pp. e1806682 - n/a
Main Authors: Joo, Jinwhan, Kim, Taekyung, Lee, Jaeyoung, Choi, Sang‐Il, Lee, Kwangyeol
Format: Journal Article
Language:English
Published: Germany Wiley Subscription Services, Inc 05-04-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Because H2 is considered a promising clean energy source, water electrolysis has attracted great interest in related research and technology. Noble‐metal‐based catalysts are used as electrode materials in water electrolyzers, but their high cost and low abundance have impeded them from being used in practical areas. Recently, metal sulfides and phosphides based on earth‐abundant transition metals have emerged as promising candidates for efficient water‐splitting catalysts. Most studies have focused on adjusting the composition of the metal sulfides and phosphides to enhance the catalytic performance. However, morphology control of catalysts, including faceted and hollow structures, is much less explored for these systems because of difficulties in the synthesis, which requires a deep understanding of the nanocrystal growth process. Herein, representative synthetic methods for morphology‐controlled metal sulfides and phosphides are introduced to provide insights into these methodologies. The electrolytic performance of morphology‐controlled metal sulfide‐ and phosphide‐based nanocatalysts with enhanced surface area and intrinsically high catalytic activity is also summarized and the future research directions for this promising catalyst group is discussed. Metal sulfide and phosphide nanoparticles have emerged as viable alternatives to expensive noble‐metal‐based electrocatalysts for water splitting. The recent significant developments of morphology‐controlled metal sulfide and phosphide nanoparticles as electrcatalysts for the hydrogen evolution reaction and oxygen evolution reaction are addressed.
AbstractList Abstract Because H 2 is considered a promising clean energy source, water electrolysis has attracted great interest in related research and technology. Noble‐metal‐based catalysts are used as electrode materials in water electrolyzers, but their high cost and low abundance have impeded them from being used in practical areas. Recently, metal sulfides and phosphides based on earth‐abundant transition metals have emerged as promising candidates for efficient water‐splitting catalysts. Most studies have focused on adjusting the composition of the metal sulfides and phosphides to enhance the catalytic performance. However, morphology control of catalysts, including faceted and hollow structures, is much less explored for these systems because of difficulties in the synthesis, which requires a deep understanding of the nanocrystal growth process. Herein, representative synthetic methods for morphology‐controlled metal sulfides and phosphides are introduced to provide insights into these methodologies. The electrolytic performance of morphology‐controlled metal sulfide‐ and phosphide‐based nanocatalysts with enhanced surface area and intrinsically high catalytic activity is also summarized and the future research directions for this promising catalyst group is discussed.
Because H is considered a promising clean energy source, water electrolysis has attracted great interest in related research and technology. Noble-metal-based catalysts are used as electrode materials in water electrolyzers, but their high cost and low abundance have impeded them from being used in practical areas. Recently, metal sulfides and phosphides based on earth-abundant transition metals have emerged as promising candidates for efficient water-splitting catalysts. Most studies have focused on adjusting the composition of the metal sulfides and phosphides to enhance the catalytic performance. However, morphology control of catalysts, including faceted and hollow structures, is much less explored for these systems because of difficulties in the synthesis, which requires a deep understanding of the nanocrystal growth process. Herein, representative synthetic methods for morphology-controlled metal sulfides and phosphides are introduced to provide insights into these methodologies. The electrolytic performance of morphology-controlled metal sulfide- and phosphide-based nanocatalysts with enhanced surface area and intrinsically high catalytic activity is also summarized and the future research directions for this promising catalyst group is discussed.
Because H2 is considered a promising clean energy source, water electrolysis has attracted great interest in related research and technology. Noble‐metal‐based catalysts are used as electrode materials in water electrolyzers, but their high cost and low abundance have impeded them from being used in practical areas. Recently, metal sulfides and phosphides based on earth‐abundant transition metals have emerged as promising candidates for efficient water‐splitting catalysts. Most studies have focused on adjusting the composition of the metal sulfides and phosphides to enhance the catalytic performance. However, morphology control of catalysts, including faceted and hollow structures, is much less explored for these systems because of difficulties in the synthesis, which requires a deep understanding of the nanocrystal growth process. Herein, representative synthetic methods for morphology‐controlled metal sulfides and phosphides are introduced to provide insights into these methodologies. The electrolytic performance of morphology‐controlled metal sulfide‐ and phosphide‐based nanocatalysts with enhanced surface area and intrinsically high catalytic activity is also summarized and the future research directions for this promising catalyst group is discussed. Metal sulfide and phosphide nanoparticles have emerged as viable alternatives to expensive noble‐metal‐based electrocatalysts for water splitting. The recent significant developments of morphology‐controlled metal sulfide and phosphide nanoparticles as electrcatalysts for the hydrogen evolution reaction and oxygen evolution reaction are addressed.
Because H2 is considered a promising clean energy source, water electrolysis has attracted great interest in related research and technology. Noble‐metal‐based catalysts are used as electrode materials in water electrolyzers, but their high cost and low abundance have impeded them from being used in practical areas. Recently, metal sulfides and phosphides based on earth‐abundant transition metals have emerged as promising candidates for efficient water‐splitting catalysts. Most studies have focused on adjusting the composition of the metal sulfides and phosphides to enhance the catalytic performance. However, morphology control of catalysts, including faceted and hollow structures, is much less explored for these systems because of difficulties in the synthesis, which requires a deep understanding of the nanocrystal growth process. Herein, representative synthetic methods for morphology‐controlled metal sulfides and phosphides are introduced to provide insights into these methodologies. The electrolytic performance of morphology‐controlled metal sulfide‐ and phosphide‐based nanocatalysts with enhanced surface area and intrinsically high catalytic activity is also summarized and the future research directions for this promising catalyst group is discussed.
Author Choi, Sang‐Il
Kim, Taekyung
Lee, Jaeyoung
Joo, Jinwhan
Lee, Kwangyeol
Author_xml – sequence: 1
  givenname: Jinwhan
  orcidid: 0000-0001-5614-8790
  surname: Joo
  fullname: Joo, Jinwhan
  organization: Korea University
– sequence: 2
  givenname: Taekyung
  orcidid: 0000-0003-0401-5958
  surname: Kim
  fullname: Kim, Taekyung
  organization: Korea University
– sequence: 3
  givenname: Jaeyoung
  surname: Lee
  fullname: Lee, Jaeyoung
  organization: Korea University
– sequence: 4
  givenname: Sang‐Il
  surname: Choi
  fullname: Choi, Sang‐Il
  email: sichoi@knu.ac.kr
  organization: Kyungpook National University
– sequence: 5
  givenname: Kwangyeol
  orcidid: 0000-0003-0575-7216
  surname: Lee
  fullname: Lee, Kwangyeol
  email: kylee1@korea.ac.kr
  organization: Korea University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30706578$$D View this record in MEDLINE/PubMed
BookMark eNqFkMtq3DAUQEVISCaPbZbF0E03nly9bGs5TNMHZEghKSUrIctSxkG2XMmmzC6fkG_sl1TTyQO6KXchLhwdLucY7fe-NwidY5hjAHKhmk7NCeAKiqIie2iGOcE5A8H30QwE5bkoWHWEjmN8AABRQHGIjiiUUPCymqG7lQ_D2jt_v_n9-LT0_Ri8c6bJVmZULruZnG0bEzPVN9m3tY_D-u9qfcgundGJ1mvTtTqxP9RoQnYzuHYc2_7-FB1Y5aI5e35P0PdPl7fLL_nV9eevy8VVrllZkBzTkimmNQVjeUPSxVbjUnAmmKprbpWF2nJLqrpqSip4SSiIWmHKCGNQN_QEfdh5h-B_TiaOsmujNs6p3vgpSrK14TRFQt__gz74KfTpOklSwxIEcJqo-Y7SwccYjJVDaDsVNhKD3EaX2-jyNXr68O5ZO9WdaV7xl8oJEDvgV-vM5j86ufi4WrzJ_wDcvpBi
CitedBy_id crossref_primary_10_1002_ente_201901310
crossref_primary_10_1002_adfm_202102321
crossref_primary_10_1016_j_ijhydene_2023_11_020
crossref_primary_10_1002_slct_202101034
crossref_primary_10_1021_acs_inorgchem_2c01035
crossref_primary_10_1016_j_cej_2024_151544
crossref_primary_10_1039_D1TA05527E
crossref_primary_10_1021_acsami_2c02418
crossref_primary_10_1039_D1SE01708J
crossref_primary_10_1016_j_jallcom_2022_167670
crossref_primary_10_1016_j_jechem_2021_12_006
crossref_primary_10_1016_j_jcis_2020_02_070
crossref_primary_10_1007_s12274_021_3680_9
crossref_primary_10_1016_j_jechem_2021_05_051
crossref_primary_10_1021_acsaem_0c01360
crossref_primary_10_1002_anie_202104055
crossref_primary_10_1016_j_tifs_2024_104611
crossref_primary_10_1016_j_renene_2020_04_053
crossref_primary_10_1016_j_foodchem_2024_140026
crossref_primary_10_1149_1945_7111_aba96e
crossref_primary_10_1021_acs_analchem_2c01607
crossref_primary_10_1002_anie_202002280
crossref_primary_10_1002_smll_202302906
crossref_primary_10_1016_j_ijhydene_2024_05_042
crossref_primary_10_1002_cssc_202002002
crossref_primary_10_1007_s42247_020_00123_z
crossref_primary_10_1016_j_cclet_2023_108900
crossref_primary_10_1016_j_mtnano_2022_100272
crossref_primary_10_1016_j_jallcom_2024_174525
crossref_primary_10_1016_j_chemosphere_2022_136483
crossref_primary_10_1002_admi_201900774
crossref_primary_10_1039_D1SE01167G
crossref_primary_10_1016_j_electacta_2021_138438
crossref_primary_10_1039_D0MA00688B
crossref_primary_10_1021_acsaem_2c01523
crossref_primary_10_1039_D3EY00147D
crossref_primary_10_1039_C9TA03220G
crossref_primary_10_1002_chem_201904583
crossref_primary_10_1007_s12274_020_2618_y
crossref_primary_10_1016_j_apcatb_2021_120657
crossref_primary_10_1016_j_jpowsour_2021_229688
crossref_primary_10_1016_S1872_2067_20_63639_7
crossref_primary_10_1021_acsaem_4c00539
crossref_primary_10_1039_D2TA02751H
crossref_primary_10_1002_smll_202310526
crossref_primary_10_1021_acsaem_0c00122
crossref_primary_10_3390_cryst13060873
crossref_primary_10_1002_cssc_202300214
crossref_primary_10_1016_j_jpowsour_2024_234757
crossref_primary_10_1515_zkri_2023_0006
crossref_primary_10_1016_j_electacta_2022_140835
crossref_primary_10_1016_j_isci_2021_102167
crossref_primary_10_1016_j_ijhydene_2023_10_122
crossref_primary_10_1039_D0QI01060J
crossref_primary_10_1039_D3NR01574B
crossref_primary_10_1016_j_jechem_2023_01_062
crossref_primary_10_1021_acsami_0c19914
crossref_primary_10_1007_s10008_021_04929_7
crossref_primary_10_1039_C9TA12562K
crossref_primary_10_1039_D0CE01850C
crossref_primary_10_1039_D3SE00679D
crossref_primary_10_1016_j_mtnano_2022_100296
crossref_primary_10_1016_j_apsusc_2022_156237
crossref_primary_10_3390_catal13111404
crossref_primary_10_1016_j_jcis_2021_09_013
crossref_primary_10_1021_acs_jpclett_3c02885
crossref_primary_10_1016_j_ccr_2022_214811
crossref_primary_10_1016_j_ceramint_2021_06_061
crossref_primary_10_1002_adfm_202306100
crossref_primary_10_1039_D3DT01469J
crossref_primary_10_1002_ejic_202200682
crossref_primary_10_1016_j_fuel_2022_127303
crossref_primary_10_26599_NRE_2023_9120092
crossref_primary_10_1039_D1SE01716K
crossref_primary_10_1016_j_colcom_2021_100520
crossref_primary_10_1039_D1TA04755H
crossref_primary_10_1016_j_colsurfa_2023_131663
crossref_primary_10_1007_s12274_020_3219_5
crossref_primary_10_1002_anie_202316306
crossref_primary_10_1016_j_ccr_2021_214144
crossref_primary_10_1039_D1DT02341A
crossref_primary_10_1021_acs_inorgchem_1c02804
crossref_primary_10_1149_1945_7111_ac3594
crossref_primary_10_1016_j_jcis_2023_01_072
crossref_primary_10_1016_j_electacta_2021_138517
crossref_primary_10_1021_acs_inorgchem_2c00093
crossref_primary_10_1016_j_colsurfa_2023_131307
crossref_primary_10_1021_acs_energyfuels_2c04004
crossref_primary_10_1016_j_electacta_2023_143342
crossref_primary_10_1002_cssc_202100715
crossref_primary_10_1002_chem_201904021
crossref_primary_10_1039_D2NR05881B
crossref_primary_10_1039_D0TA01501F
crossref_primary_10_1039_D1TA04831G
crossref_primary_10_1002_adfm_202101578
crossref_primary_10_1002_smll_202105680
crossref_primary_10_1039_D2NR00184E
crossref_primary_10_1016_j_electacta_2021_138786
crossref_primary_10_1002_cssc_202301105
crossref_primary_10_1016_j_inoche_2023_111980
crossref_primary_10_1039_D0TA03392H
crossref_primary_10_1016_j_nanoen_2021_105861
crossref_primary_10_1016_j_cej_2020_126045
crossref_primary_10_1039_D1DT03105H
crossref_primary_10_1039_D0NR03685D
crossref_primary_10_1016_j_colsurfa_2023_132857
crossref_primary_10_1016_j_apsusc_2022_153173
crossref_primary_10_1021_acssuschemeng_0c06547
crossref_primary_10_1002_cssc_202001293
crossref_primary_10_1039_D3TA01192E
crossref_primary_10_1021_acssuschemeng_9b06149
crossref_primary_10_1016_j_jcis_2021_12_028
crossref_primary_10_1002_celc_202001149
crossref_primary_10_1016_j_electacta_2021_139623
crossref_primary_10_1016_j_flatc_2022_100368
crossref_primary_10_1021_acsaem_2c00018
crossref_primary_10_1016_j_jcis_2022_02_102
crossref_primary_10_3390_nano12071173
crossref_primary_10_1002_ange_202104055
crossref_primary_10_1016_j_catcom_2023_106796
crossref_primary_10_1016_j_nanoen_2020_105699
crossref_primary_10_1039_D0SE01745K
crossref_primary_10_1016_j_nanoen_2024_109413
crossref_primary_10_1088_2631_6331_ac93e4
crossref_primary_10_1002_smll_202309448
crossref_primary_10_1016_j_jpowsour_2024_234825
crossref_primary_10_1002_cctc_201901682
crossref_primary_10_1002_cphc_201900498
crossref_primary_10_1021_acs_jpcc_1c04163
crossref_primary_10_1016_j_ijhydene_2022_02_223
crossref_primary_10_1021_acssuschemeng_9b03166
crossref_primary_10_1016_j_apcatb_2024_123914
crossref_primary_10_1016_j_apcatb_2024_123912
crossref_primary_10_3390_molecules28196986
crossref_primary_10_1016_j_trechm_2020_09_001
crossref_primary_10_1039_D0TA12152E
crossref_primary_10_1039_D0CS01191F
crossref_primary_10_1039_D3CP00223C
crossref_primary_10_1007_s12678_023_00835_w
crossref_primary_10_1080_00219592_2023_2210195
crossref_primary_10_1002_smll_202208202
crossref_primary_10_1016_j_jcat_2022_02_002
crossref_primary_10_1021_acsami_9b16224
crossref_primary_10_1021_acs_energyfuels_3c00749
crossref_primary_10_1039_D4NJ01285B
crossref_primary_10_1016_j_apcatb_2019_118555
crossref_primary_10_1002_adfm_202006484
crossref_primary_10_1016_j_enchem_2024_100119
crossref_primary_10_1007_s12598_023_02284_2
crossref_primary_10_1039_D0NR00051E
crossref_primary_10_1021_acsanm_3c00845
crossref_primary_10_1016_j_jallcom_2019_153086
crossref_primary_10_1039_D1DT01855H
crossref_primary_10_1002_ange_202316306
crossref_primary_10_1002_anie_202008514
crossref_primary_10_1002_tcr_202200149
crossref_primary_10_1016_j_inoche_2023_111142
crossref_primary_10_1016_j_ijhydene_2022_02_001
crossref_primary_10_1016_S1872_2067_21_63855_X
crossref_primary_10_1002_aenm_202400790
crossref_primary_10_1002_anie_202017102
crossref_primary_10_1016_j_jallcom_2023_169077
crossref_primary_10_1016_j_apcatb_2023_122403
crossref_primary_10_1016_j_cej_2024_152223
crossref_primary_10_1002_celc_202001614
crossref_primary_10_1007_s00339_024_07429_3
crossref_primary_10_1039_D3TA08052H
crossref_primary_10_3390_nano14110946
crossref_primary_10_1016_j_pnsc_2022_09_002
crossref_primary_10_1039_D0TA10633J
crossref_primary_10_1021_acsaem_9b02019
crossref_primary_10_1021_acsanm_9b00891
crossref_primary_10_1002_aenm_202103090
crossref_primary_10_1021_acssuschemeng_2c03215
crossref_primary_10_1088_1361_6528_acebf2
crossref_primary_10_1016_j_ccr_2022_214544
crossref_primary_10_1021_acsami_2c05977
crossref_primary_10_1088_2515_7639_abd596
crossref_primary_10_1016_j_apsusc_2021_150510
crossref_primary_10_1016_j_ijhydene_2023_04_241
crossref_primary_10_1016_j_jcis_2022_01_197
crossref_primary_10_1021_acs_chemrev_2c00515
crossref_primary_10_1002_slct_202200654
crossref_primary_10_1016_j_cej_2020_127630
crossref_primary_10_1016_j_ijhydene_2022_11_063
crossref_primary_10_1021_acsmaterialslett_1c00282
crossref_primary_10_1016_j_cej_2020_125457
crossref_primary_10_1002_celc_201900507
crossref_primary_10_1021_acs_langmuir_3c02719
crossref_primary_10_1088_1361_6528_ac8680
crossref_primary_10_1016_j_apsusc_2022_156190
crossref_primary_10_1039_D0TA05176D
crossref_primary_10_1039_D3QM00089C
crossref_primary_10_1021_acssuschemeng_0c04759
crossref_primary_10_3390_molecules28104134
crossref_primary_10_1039_D3DT01497E
crossref_primary_10_1007_s40843_020_1524_5
crossref_primary_10_1021_acsanm_1c02941
crossref_primary_10_1039_C9TA14256H
crossref_primary_10_1016_j_apcata_2022_118803
crossref_primary_10_1039_D3YA00188A
crossref_primary_10_1007_s42765_020_00063_7
crossref_primary_10_1039_D0CY01071E
crossref_primary_10_1016_j_partic_2024_06_014
crossref_primary_10_1039_D0EE03697H
crossref_primary_10_1002_anie_202016102
crossref_primary_10_1007_s40843_021_1953_5
crossref_primary_10_1002_advs_202000749
crossref_primary_10_1007_s43153_023_00425_9
crossref_primary_10_1002_cey2_284
crossref_primary_10_1021_acscatal_2c00859
crossref_primary_10_1016_j_colsurfa_2024_133187
crossref_primary_10_1021_acsaem_2c01965
crossref_primary_10_1039_D0NR02058C
crossref_primary_10_1039_D4MA00114A
crossref_primary_10_1021_acsami_1c05888
crossref_primary_10_1016_j_jpowsour_2021_230543
crossref_primary_10_1021_acsaem_9b02352
crossref_primary_10_1002_admi_201901302
crossref_primary_10_1016_j_apsusc_2021_149670
crossref_primary_10_1039_D2TA08209H
crossref_primary_10_1016_j_checat_2021_06_014
crossref_primary_10_1039_D2CC05225C
crossref_primary_10_1016_S1872_2067_22_64149_4
crossref_primary_10_1039_C9QM00697D
crossref_primary_10_1002_adma_202109145
crossref_primary_10_1021_acs_chemmater_2c00085
crossref_primary_10_3390_nano12203633
crossref_primary_10_1021_acsami_1c16546
crossref_primary_10_1016_j_electacta_2022_141049
crossref_primary_10_1021_acsomega_2c01423
crossref_primary_10_1016_j_apcatb_2023_122961
crossref_primary_10_1002_adfm_202003261
crossref_primary_10_1002_advs_201903195
crossref_primary_10_1016_j_jpowsour_2024_234553
crossref_primary_10_1016_j_nantod_2021_101245
crossref_primary_10_1002_aenm_202301162
crossref_primary_10_1039_D0TA08475A
crossref_primary_10_1016_j_jcis_2021_01_084
crossref_primary_10_1039_D1DT03266F
crossref_primary_10_12677_AAC_2023_134052
crossref_primary_10_1016_j_ijhydene_2023_05_247
crossref_primary_10_1016_j_electacta_2022_140183
crossref_primary_10_1039_D1TA10162E
crossref_primary_10_1039_D2NR03411E
crossref_primary_10_1039_D2TA00538G
crossref_primary_10_1002_adma_202107072
crossref_primary_10_1016_j_est_2024_111736
crossref_primary_10_1002_smll_202103561
crossref_primary_10_1016_j_jcis_2021_08_020
crossref_primary_10_1016_j_jcis_2024_06_084
crossref_primary_10_1039_D1SE01997J
crossref_primary_10_1016_j_jallcom_2024_174748
crossref_primary_10_1039_D1RA03377H
crossref_primary_10_1002_chem_202000209
crossref_primary_10_1016_j_enconman_2021_115038
crossref_primary_10_1088_2515_7655_ab8c5f
crossref_primary_10_1007_s11581_021_03959_5
crossref_primary_10_1016_j_jallcom_2021_159945
crossref_primary_10_1016_j_jpowsour_2024_234422
crossref_primary_10_1039_D3TA07888D
crossref_primary_10_1039_D2NR04657A
crossref_primary_10_1016_j_nanoen_2020_105056
crossref_primary_10_1021_acsaem_9b02455
crossref_primary_10_1016_j_colsurfa_2023_131802
crossref_primary_10_1021_acs_langmuir_9b03577
crossref_primary_10_1016_j_apcatb_2020_118956
crossref_primary_10_1016_j_cej_2021_133719
crossref_primary_10_1021_acs_inorgchem_4c00921
crossref_primary_10_1016_j_jelechem_2021_115761
crossref_primary_10_1002_cssc_202202126
crossref_primary_10_1021_acsami_0c01937
crossref_primary_10_1021_acs_inorgchem_9b03009
crossref_primary_10_1016_j_cej_2022_139781
crossref_primary_10_1016_j_jcis_2023_04_089
crossref_primary_10_1016_j_apsusc_2020_147201
crossref_primary_10_1002_smll_202304782
crossref_primary_10_1016_j_mtener_2020_100573
crossref_primary_10_1016_j_mtener_2020_100455
crossref_primary_10_1039_D2TC02934K
crossref_primary_10_1016_j_apcatb_2019_118393
crossref_primary_10_1016_j_jcis_2022_01_134
crossref_primary_10_1021_acsanm_3c01301
crossref_primary_10_1039_D1CC00535A
crossref_primary_10_1016_j_jssc_2021_122799
crossref_primary_10_1039_D2TA02374A
crossref_primary_10_1016_j_cattod_2020_06_077
crossref_primary_10_1016_j_jcis_2022_07_103
crossref_primary_10_1021_acs_inorgchem_2c00727
crossref_primary_10_1016_j_electacta_2023_142725
crossref_primary_10_1039_D1SE01535D
crossref_primary_10_1016_j_jcis_2023_09_117
crossref_primary_10_1016_j_jelechem_2023_118018
crossref_primary_10_1016_j_mtener_2020_100464
crossref_primary_10_1039_D2NR04409A
crossref_primary_10_1002_cssc_202100116
crossref_primary_10_1016_j_electacta_2020_137618
crossref_primary_10_1016_j_inoche_2024_112474
crossref_primary_10_1016_j_jallcom_2023_171516
crossref_primary_10_1016_j_apcata_2023_119304
crossref_primary_10_1002_smll_201905201
crossref_primary_10_1039_D0GC02208J
crossref_primary_10_1021_acsami_9b04528
crossref_primary_10_1016_j_jece_2024_112907
crossref_primary_10_1002_adma_202401448
crossref_primary_10_1021_acsanm_1c01233
crossref_primary_10_1039_D0QI00570C
crossref_primary_10_1016_j_ijhydene_2019_07_082
crossref_primary_10_1016_j_fuel_2024_131741
crossref_primary_10_1016_j_mtener_2020_100597
crossref_primary_10_1016_j_jmst_2020_01_036
crossref_primary_10_1021_acs_chemrev_3c00332
crossref_primary_10_1021_acsami_0c09794
crossref_primary_10_1016_j_apcatb_2019_118376
crossref_primary_10_1016_j_commatsci_2024_112946
crossref_primary_10_1021_acsanm_3c02897
crossref_primary_10_1039_D0TA09410B
crossref_primary_10_1002_cnma_202000145
crossref_primary_10_1039_D3NR06456E
crossref_primary_10_1039_D2DT00886F
crossref_primary_10_1039_D0TA08466B
crossref_primary_10_1016_j_electacta_2020_136777
crossref_primary_10_1039_D2CE00209D
crossref_primary_10_1002_adma_202306097
crossref_primary_10_1002_cctc_202001239
crossref_primary_10_3390_catal12111417
crossref_primary_10_1039_D1TA04231A
crossref_primary_10_1016_j_apsusc_2023_157284
crossref_primary_10_1016_j_apsusc_2024_160611
crossref_primary_10_1016_j_jechem_2023_12_048
crossref_primary_10_1016_j_cej_2020_124408
crossref_primary_10_1016_j_cej_2024_153251
crossref_primary_10_1016_j_cjche_2022_02_010
crossref_primary_10_1039_D0TA09788H
crossref_primary_10_1016_j_apsusc_2022_154727
crossref_primary_10_1016_j_jcis_2021_05_129
crossref_primary_10_1016_j_jcis_2023_10_021
crossref_primary_10_1002_chem_201903508
crossref_primary_10_1021_acsaem_1c02695
crossref_primary_10_1016_j_jcis_2020_05_089
crossref_primary_10_1021_acs_energyfuels_2c01429
crossref_primary_10_1016_j_jcis_2023_09_142
crossref_primary_10_1063_5_0005137
crossref_primary_10_1016_j_ijhydene_2024_02_094
crossref_primary_10_1002_aenm_201902104
crossref_primary_10_1016_j_ccr_2020_213552
crossref_primary_10_1016_j_solidstatesciences_2020_106143
crossref_primary_10_1002_cnma_202000125
crossref_primary_10_1039_D2SE01068B
crossref_primary_10_1002_cssc_202001503
crossref_primary_10_1021_acsmaterialslett_4c00544
crossref_primary_10_1016_j_ijhydene_2021_12_045
crossref_primary_10_1039_D0TA02697B
crossref_primary_10_1021_acs_iecr_9b05194
crossref_primary_10_1002_aenm_202303730
crossref_primary_10_1016_j_electacta_2020_136873
crossref_primary_10_1016_j_electacta_2020_136994
crossref_primary_10_1016_j_apcatb_2022_121400
crossref_primary_10_1021_acs_energyfuels_2c03833
crossref_primary_10_1021_acs_chemrev_3c00005
crossref_primary_10_1007_s12598_021_01735_y
crossref_primary_10_1039_D1DT01645H
crossref_primary_10_1016_j_jallcom_2020_157729
crossref_primary_10_1039_D1MA00130B
crossref_primary_10_1002_smll_201905885
crossref_primary_10_1002_asia_201901721
crossref_primary_10_1016_j_jcis_2023_12_171
crossref_primary_10_1016_j_cej_2024_152268
crossref_primary_10_1016_j_electacta_2020_135997
crossref_primary_10_1016_j_mtnano_2021_100124
crossref_primary_10_1016_j_mcat_2024_114023
crossref_primary_10_1002_cey2_459
crossref_primary_10_1002_er_7933
crossref_primary_10_1002_adma_201906915
crossref_primary_10_1016_j_jcis_2022_09_085
crossref_primary_10_1039_C9SE01122F
crossref_primary_10_1016_j_jcis_2021_07_075
crossref_primary_10_1088_2515_7655_acccb1
crossref_primary_10_1016_j_ijhydene_2023_08_018
crossref_primary_10_1002_celc_202100713
crossref_primary_10_1016_j_electacta_2022_141790
crossref_primary_10_1016_j_ijhydene_2024_02_078
crossref_primary_10_1002_smll_202302130
crossref_primary_10_1016_j_cej_2020_126838
crossref_primary_10_1016_j_jechem_2020_06_068
crossref_primary_10_1021_acs_energyfuels_1c01650
crossref_primary_10_1002_chem_202102209
crossref_primary_10_1002_cnl2_64
crossref_primary_10_1007_s12274_020_2816_7
crossref_primary_10_1007_s13204_021_01782_y
crossref_primary_10_1039_D4EE01167H
crossref_primary_10_1002_celc_202000734
crossref_primary_10_1016_j_jcis_2023_12_063
crossref_primary_10_1039_C9CC01235D
crossref_primary_10_1021_acs_chemrev_3c00382
crossref_primary_10_1007_s12274_021_3424_x
crossref_primary_10_1021_acsami_4c07404
crossref_primary_10_1002_smll_202004398
crossref_primary_10_1016_j_ijhydene_2020_08_283
crossref_primary_10_1002_aenm_201902135
crossref_primary_10_1016_j_ccr_2023_215029
crossref_primary_10_1021_acscatal_2c01001
crossref_primary_10_1002_adfm_202102285
crossref_primary_10_1002_celc_201901085
crossref_primary_10_1002_ange_202016102
crossref_primary_10_1039_D1TA02165F
crossref_primary_10_1039_D3DT03143H
crossref_primary_10_1016_j_cej_2022_138977
crossref_primary_10_1016_j_ijhydene_2023_09_169
crossref_primary_10_1016_j_ijhydene_2022_09_200
crossref_primary_10_1039_D3MH00339F
crossref_primary_10_1016_j_cej_2021_129972
crossref_primary_10_1002_er_5973
crossref_primary_10_1021_acs_inorgchem_1c03641
crossref_primary_10_1002_slct_202001810
crossref_primary_10_1016_j_jelechem_2022_116969
crossref_primary_10_1021_acs_cgd_2c00168
crossref_primary_10_1007_s11581_021_04434_x
crossref_primary_10_1039_D1NR03500B
crossref_primary_10_1002_cssc_202000213
crossref_primary_10_1039_D2TA00120A
crossref_primary_10_1016_j_jcis_2022_07_069
crossref_primary_10_1039_D2TA09588B
crossref_primary_10_1039_D4GC01098A
crossref_primary_10_1016_j_jallcom_2020_154535
crossref_primary_10_3389_fchem_2024_1394191
crossref_primary_10_1016_j_jpcs_2023_111332
crossref_primary_10_1002_cctc_202000233
crossref_primary_10_1016_j_checat_2022_02_007
crossref_primary_10_1021_acscatal_3c00128
crossref_primary_10_1016_j_mtener_2022_100987
crossref_primary_10_3390_ijms232315405
crossref_primary_10_1016_j_ceramint_2023_09_122
crossref_primary_10_1039_D1TA06548C
crossref_primary_10_3390_molecules28135010
crossref_primary_10_1002_admt_202301607
crossref_primary_10_1002_ange_202002280
crossref_primary_10_1039_D1MA00566A
crossref_primary_10_1039_D0SE01805H
crossref_primary_10_1016_j_jallcom_2022_167254
crossref_primary_10_1016_j_jcis_2023_09_046
crossref_primary_10_1016_j_cogsc_2020_100398
crossref_primary_10_1016_j_nanoen_2020_105545
crossref_primary_10_1016_j_ijhydene_2023_01_287
crossref_primary_10_1039_C9TA06686A
crossref_primary_10_1002_adfm_202002533
crossref_primary_10_1016_j_cej_2023_146172
crossref_primary_10_1039_D1TA10850F
crossref_primary_10_1021_jacs_9b09229
crossref_primary_10_1016_j_ijhydene_2021_08_031
crossref_primary_10_1021_acsami_0c13533
crossref_primary_10_1002_ange_202017102
crossref_primary_10_1016_j_jallcom_2023_169625
crossref_primary_10_1002_aenm_202100265
crossref_primary_10_1021_acs_inorgchem_0c03569
crossref_primary_10_3390_nano12071098
crossref_primary_10_1016_j_cej_2022_135019
crossref_primary_10_1016_j_ijhydene_2024_03_065
crossref_primary_10_1016_j_jallcom_2023_170842
crossref_primary_10_1016_j_ijhydene_2021_12_024
crossref_primary_10_1039_D2NR01525K
crossref_primary_10_1016_j_cej_2020_126198
crossref_primary_10_1016_j_jcis_2021_04_118
crossref_primary_10_1002_slct_202204456
crossref_primary_10_1021_acsaem_3c00164
crossref_primary_10_1002_tcr_202300109
crossref_primary_10_1016_j_jallcom_2019_153542
crossref_primary_10_1002_cctc_202000426
crossref_primary_10_1016_j_ijhydene_2020_12_029
crossref_primary_10_1039_D3NR01836A
crossref_primary_10_1016_j_matchemphys_2022_126942
crossref_primary_10_1016_j_ijhydene_2020_11_220
crossref_primary_10_1016_j_jelechem_2023_117191
crossref_primary_10_1016_j_ensm_2021_04_009
crossref_primary_10_1016_j_jssc_2020_121825
crossref_primary_10_1039_D1NR03845A
crossref_primary_10_1039_C9TA12300H
crossref_primary_10_1016_j_ijhydene_2022_09_126
crossref_primary_10_1002_advs_202204949
crossref_primary_10_1002_ange_202008514
crossref_primary_10_1016_j_jcis_2023_07_012
crossref_primary_10_1002_chem_202004267
crossref_primary_10_1002_smll_202101725
crossref_primary_10_1039_D2TA10081A
crossref_primary_10_1007_s12209_024_00389_y
crossref_primary_10_1016_j_jelechem_2022_116806
crossref_primary_10_1002_smsc_202100015
crossref_primary_10_1016_j_tca_2021_179101
crossref_primary_10_1039_D3SE00685A
crossref_primary_10_3389_fceng_2021_703812
crossref_primary_10_1016_j_mtnano_2023_100336
crossref_primary_10_1039_D1QI01465J
crossref_primary_10_1016_j_est_2023_108958
crossref_primary_10_1016_j_jmst_2020_10_009
crossref_primary_10_1016_j_ijhydene_2021_12_208
crossref_primary_10_1016_j_est_2022_105488
crossref_primary_10_1021_acs_chemmater_1c02609
crossref_primary_10_1039_C9SE00822E
crossref_primary_10_1002_admi_202101229
crossref_primary_10_1016_j_electacta_2021_138267
crossref_primary_10_1016_j_cej_2021_133942
crossref_primary_10_1039_C9TA10498D
crossref_primary_10_1039_D0SE00824A
crossref_primary_10_1021_acs_inorgchem_1c01566
crossref_primary_10_1016_j_jallcom_2019_153346
crossref_primary_10_1007_s40843_020_1452_9
crossref_primary_10_1021_acsaem_3c01046
crossref_primary_10_1039_D0TA10596A
crossref_primary_10_20517_microstructures_2023_30
crossref_primary_10_1021_acs_inorgchem_3c00349
crossref_primary_10_1360_TB_2023_1007
crossref_primary_10_1016_j_ensm_2022_07_027
crossref_primary_10_1088_1361_6528_ac83cb
crossref_primary_10_1039_D1TA09925F
crossref_primary_10_1002_admi_202101483
crossref_primary_10_1016_j_ijhydene_2020_05_135
crossref_primary_10_1007_s12274_019_2528_z
crossref_primary_10_1016_j_apcatb_2021_120753
crossref_primary_10_1007_s10311_022_01454_5
crossref_primary_10_1016_j_mtchem_2021_100675
crossref_primary_10_1016_j_apcatb_2023_123386
crossref_primary_10_1016_j_jcis_2021_05_073
Cites_doi 10.1039/C6TA08075H
10.1039/C7NR04327A
10.1039/C6CE00985A
10.1039/c2cs35310e
10.1021/acscatal.5b00349
10.1039/C4EE00440J
10.1039/C4TA04867A
10.1039/C6TA02334G
10.1039/c3dt50803j
10.1002/anie.201612635
10.1038/nmat4481
10.1039/C5EE03456F
10.1039/C6TA03628G
10.1021/jacs.6b03714
10.1002/adma.201706085
10.1126/science.1103197
10.1021/ja401727n
10.1002/aenm.201701592
10.1021/acsenergylett.6b00144
10.1021/ja511572q
10.1039/C7CY00035A
10.1039/C8NR02091D
10.1002/cctc.201000126
10.1016/j.nanoen.2016.07.032
10.1021/jacs.7b12420
10.1039/C5CY01111F
10.1021/acsami.5b09207
10.1039/C8CY00211H
10.1021/acsami.6b14127
10.1021/acsami.5b10727
10.1126/science.aad1920
10.1002/aenm.201801478
10.1021/cm5044792
10.1021/acsenergylett.7b00679
10.1039/C5TA02974K
10.1016/j.rser.2005.08.004
10.1002/adma.201801812
10.1016/j.rser.2014.12.020
10.1021/acsami.7b18439
10.1039/C3CS60468C
10.1021/acscentsci.5b00227
10.1039/C4EE00957F
10.1038/nmat4465
10.1021/ja0540019
10.1016/0013-4686(64)80088-8
10.1039/C5CP01065A
10.1039/C8TA03933J
10.1038/ncomms3817
10.1039/C5EE01155H
10.1038/s41560-017-0006-y
10.1002/anie.201402646
10.1002/adma.201504024
10.1039/C7CP00636E
10.1039/C7NR08097B
10.1039/C5CE00638D
10.1126/science.aaf5050
10.1002/admi.201500669
10.1002/ange.201505320
10.1016/j.nanoen.2017.07.027
10.1021/ja404523s
10.1039/C7CC03005C
10.1039/C8CC00766G
10.1002/aenm.201801891
10.1021/acscatal.6b02479
10.1002/ppsc.201400209
10.1007/978-3-319-29641-8_2
10.1016/j.electacta.2014.10.105
10.1021/acscatal.5b00154
10.1021/acs.chemmater.7b03627
10.1021/acscatal.7b03167
10.1021/acsnano.8b02752
10.1007/s10853-017-1294-0
10.1063/1.1742616
10.1039/C5NR06718A
10.1039/C4TA06642A
10.1021/acsami.5b10252
10.1039/C6SC05687C
10.1039/C4CC09849H
10.1039/C4CY00669K
10.1126/science.1096566
10.1149/2.0901504jes
10.1039/tf9575301636
10.1016/j.apcatb.2014.02.017
10.1016/j.rser.2007.01.023
10.1039/c3nr03371f
10.1021/acsenergylett.6b00084
10.1021/acsnano.7b04646
10.1126/science.aad5520
10.1021/jacs.5b08186
10.1002/cctc.201000397
10.1149/1.2115565
10.1002/aenm.201500985
10.1002/anie.201600686
10.1021/acs.chemmater.5b04645
10.1002/cssc.201701647
10.1039/C2CS35241A
10.1039/C4CS00470A
10.1038/nmat3313
10.1002/adma.201401692
10.1021/acs.chemrev.6b00374
10.1126/science.1141483
10.1126/science.aad4998
10.1039/C6NR07009D
10.1002/ange.201700150
10.1039/C5CS00434A
10.1016/j.ijhydene.2016.12.060
10.1021/acs.chemmater.5b01284
10.1021/acs.chemmater.7b00867
10.1002/2014GL062308
10.1021/jacs.5b11986
10.1002/adma.201606570
10.1021/acs.chemmater.5b02877
10.1039/C8TA04886J
10.1021/acs.chemmater.6b05080
10.1039/C5CS00729A
10.1016/j.jelechem.2006.11.008
10.1021/acs.inorgchem.5b02158
10.1039/C6NR01867J
10.1016/0254-0584(86)90045-3
10.1016/j.ijhydene.2018.03.154
10.1016/S0013-4686(02)00329-8
10.1039/C4CS00448E
10.1002/adfm.201706319
10.1002/chem.201503777
10.1038/nature21707
10.1039/C6CP04011J
10.1021/jacs.7b01376
10.1039/C5CP02876K
10.1002/anie.201704911
10.1002/anie.201611804
10.1021/ja0504690
10.1016/S0167-2738(02)00266-7
10.1021/acs.jpclett.5b00306
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201806682
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_201806682
30706578
ADMA201806682
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Research Foundation of Korea
  funderid: 2017R1A2B3005682; 2018R1C1B6004272
– fundername: Korea University
– fundername: Korea Basic Science
  funderid: C38530
– fundername: National Research Foundation of Korea
  grantid: 2017R1A2B3005682
– fundername: Korea Basic Science
  grantid: C38530
– fundername: National Research Foundation of Korea
  grantid: 2018R1C1B6004272
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
NPM
.Y3
31~
6TJ
8WZ
A6W
AAYOK
AAYXX
ABEML
ABTAH
ACBWZ
ACSCC
AFFNX
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4762-1374a4cc30ef5d2935fc1795494abb5faf0bf5f28b8d739572309ba1342440bd3
IEDL.DBID 33P
ISSN 0935-9648
IngestDate Fri Aug 16 22:52:02 EDT 2024
Thu Oct 10 15:53:52 EDT 2024
Thu Sep 26 15:57:08 EDT 2024
Wed Oct 16 00:49:49 EDT 2024
Sat Aug 24 01:16:47 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords electrolysis
hollow structures
metal sulfides
facet-controlled
metal phosphides
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4762-1374a4cc30ef5d2935fc1795494abb5faf0bf5f28b8d739572309ba1342440bd3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ORCID 0000-0003-0401-5958
0000-0003-0575-7216
0000-0001-5614-8790
PMID 30706578
PQID 2201709053
PQPubID 2045203
PageCount 23
ParticipantIDs proquest_miscellaneous_2179515156
proquest_journals_2201709053
crossref_primary_10_1002_adma_201806682
pubmed_primary_30706578
wiley_primary_10_1002_adma_201806682_ADMA201806682
PublicationCentury 2000
PublicationDate April 5, 2019
PublicationDateYYYYMMDD 2019-04-05
PublicationDate_xml – month: 04
  year: 2019
  text: April 5, 2019
  day: 05
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1957; 53
2017; 42
2017; 7
2017; 8
2017; 2
2013; 4
2002; 150
1964; 9
2015; 32
2014; 26
1974
2017; 355
2013; 5
2018; 43
2012; 11
2017; 9
2018; 6
2002; 47
1963; 37
2018; 8
2014; 4
2015; 137
2017; 39
2015; 44
2016; 353
2018; 30
2016; 116
2010; 2
2014; 7
2016; 351
2016; 45
2014; 53
2017; 129
2015; 162
2015; 1
2018; 28
2015; 17
2015; 6
2015; 5
2018; 140
2015; 3
2015; 127
2015; 51
1986; 14
2013; 42
1976; 76‐ENAs‐37
2008; 12
2017; 29
2014; 41
2016; 18
2011; 3
2007; 607
2007; 11
2004; 305
2015; 8
2015; 7
2016; 15
2004; 304
2014; 43
2017; 139
2016; 55
2016; 4
2016; 6
2017; 53
2014; 149
2017; 52
2007; 317
1984; 131
2015; 27
2016; 1
2016; 3
2017; 10
2005; 127
2017; 56
2015; 21
1956; 24
2013; 135
2016
2017; 19
2016; 138
2018; 12
2016; 28
2018; 10
2016; 27
2018; 54
2017; 543
2016; 8
2016; 9
2014; 154–155
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_14_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_115_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_130_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_129_1
e_1_2_9_106_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
Woolf D. (e_1_2_9_5_1) 2016
e_1_2_9_1_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
O'Grady W. (e_1_2_9_59_1) 1976; 76
e_1_2_9_101_1
e_1_2_9_128_1
e_1_2_9_105_1
e_1_2_9_124_1
e_1_2_9_39_1
e_1_2_9_120_1
e_1_2_9_16_1
O'Grady W. E. (e_1_2_9_58_1) 1974
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_113_1
e_1_2_9_117_1
e_1_2_9_136_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_127_1
e_1_2_9_100_1
e_1_2_9_123_1
Krasil'shchkov A. I. (e_1_2_9_56_1) 1963; 37
e_1_2_9_104_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_112_1
e_1_2_9_116_1
e_1_2_9_135_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 5
  start-page: 4066
  year: 2015
  publication-title: ACS Catal.
– volume: 150
  start-page: 93
  year: 2002
  publication-title: Solid State Ionics
– volume: 21
  start-page: 18062
  year: 2015
  publication-title: Chem. ‐ Eur. J.
– volume: 44
  start-page: 2060
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 44
  start-page: 5148
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 42
  start-page: 12596
  year: 2013
  publication-title: Dalton Trans.
– volume: 351
  start-page: aad1920
  year: 2016
  publication-title: Science
– volume: 138
  start-page: 7965
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 48
  year: 2016
  publication-title: Nat. Mater.
– volume: 3
  start-page: 5420
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 1599
  year: 1964
  publication-title: Electrochim. Acta
– volume: 8
  start-page: 2289
  year: 2018
  publication-title: Catal. Sci. Technol.
– volume: 2
  start-page: 821
  year: 2017
  publication-title: Nat. Energy
– volume: 7
  start-page: 2624
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 18
  start-page: 23864
  year: 2016
  publication-title: Phys. Chem. Chem. Phys.
– volume: 4
  start-page: 17587
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 28412
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 305
  start-page: 972
  year: 2004
  publication-title: Science
– volume: 3
  start-page: 1656
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 139
  start-page: 5494
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 850
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 2255
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 1159
  year: 2011
  publication-title: ChemCatChem
– volume: 28
  start-page: 1155
  year: 2016
  publication-title: Chem. Mater.
– volume: 8
  start-page: 1143
  year: 2018
  publication-title: ACS Catal.
– volume: 8
  start-page: 19129
  year: 2016
  publication-title: Nanoscale
– volume: 27
  start-page: 526
  year: 2016
  publication-title: Nano Energy
– volume: 7
  start-page: 1549
  year: 2017
  publication-title: Catal. Sci. Technol.
– volume: 56
  start-page: 11559
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 1
  start-page: 244
  year: 2015
  publication-title: ACS Cent. Sci.
– volume: 53
  start-page: 5427
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 9379
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 1774
  year: 2018
  publication-title: Nanoscale
– volume: 353
  start-page: 1011
  year: 2016
  publication-title: Science
– volume: 5
  start-page: 1500985
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 32
  start-page: 536
  year: 2015
  publication-title: Part. Part. Syst. Charact.
– volume: 6
  start-page: 1077
  year: 2016
  publication-title: Catal. Sci. Technol.
– volume: 11
  start-page: 550
  year: 2012
  publication-title: Nat. Mater.
– volume: 137
  start-page: 14023
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 45
  start-page: 3039
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 10902
  year: 2016
  publication-title: Nanoscale
– volume: 30
  start-page: 1706085
  year: 2018
  publication-title: Adv. Mater.
– volume: 27
  start-page: 1120
  year: 2015
  publication-title: Chem. Mater.
– volume: 29
  start-page: 1606570
  year: 2017
  publication-title: Adv. Mater.
– start-page: 41
  year: 2016
– volume: 3
  start-page: 14942
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 51
  start-page: 4252
  year: 2015
  publication-title: Chem. Commun.
– start-page: 286
  year: 1974
– volume: 45
  start-page: 1529
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 52
  start-page: 11402
  year: 2017
  publication-title: J. Mater. Sci.
– volume: 149
  start-page: 324
  year: 2014
  publication-title: Electrochim. Acta
– volume: 3
  start-page: 1500669
  year: 2016
  publication-title: Adv. Mater. Interfaces
– volume: 56
  start-page: 3897
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 30
  start-page: 1801812
  year: 2018
  publication-title: Adv. Mater.
– volume: 6
  start-page: 14103
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 1937
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 53
  start-page: 6025
  year: 2017
  publication-title: Chem. Commun.
– volume: 116
  start-page: 14056
  year: 2016
  publication-title: Chem. Rev.
– volume: 28
  start-page: 1706319
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 543
  start-page: 373
  year: 2017
  publication-title: Nature
– start-page: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 6
  start-page: 16130
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 137
  start-page: 1587
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 42
  start-page: 89
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 12
  start-page: 158
  year: 2018
  publication-title: ACS Nano
– volume: 27
  start-page: 3769
  year: 2015
  publication-title: Chem. Mater.
– volume: 5
  start-page: 3625
  year: 2015
  publication-title: ACS Catal.
– volume: 42
  start-page: 2986
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 5982
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 28
  start-page: 92
  year: 2016
  publication-title: Adv. Mater.
– volume: 18
  start-page: 6083
  year: 2016
  publication-title: CrystEngComm
– volume: 76‐ENAs‐37
  start-page: 1
  year: 1976
  publication-title: Am. Soc. Mech. Eng.
– volume: 4
  start-page: 10114
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 29
  start-page: 8539
  year: 2017
  publication-title: Chem. Mater.
– volume: 135
  start-page: 10664
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 1221
  year: 2008
  publication-title: Renewable Sustainable Energy Rev.
– volume: 29
  start-page: 3854
  year: 2017
  publication-title: Chem. Mater.
– volume: 44
  start-page: 391
  year: 2015
  publication-title: Renewable Sustainable Energy Rev.
– volume: 4
  start-page: 11973
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 2817
  year: 2013
  publication-title: Nat. Commun.
– volume: 12
  start-page: 7996
  year: 2018
  publication-title: ACS Nano
– volume: 53
  start-page: 1636
  year: 1957
  publication-title: Trans. Faraday Soc.
– volume: 8
  start-page: 5517
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 1117
  year: 2007
  publication-title: Renewable Sustainable Energy Rev.
– volume: 47
  start-page: 3571
  year: 2002
  publication-title: Electrochim. Acta
– volume: 41
  start-page: 8847
  year: 2014
  publication-title: Geophys. Res. Lett.
– volume: 56
  start-page: 2386
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 140
  start-page: 2610
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 1359
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 43
  start-page: 8815
  year: 2018
  publication-title: Int. J. Hydrogen Energy
– volume: 15
  start-page: 197
  year: 2016
  publication-title: Nat. Mater.
– volume: 17
  start-page: 4627
  year: 2015
  publication-title: CrystEngComm
– volume: 5
  start-page: 12224
  year: 2013
  publication-title: Nanoscale
– volume: 162
  start-page: F455
  year: 2015
  publication-title: J. Electrochem. Soc.
– volume: 304
  start-page: 711
  year: 2004
  publication-title: Science
– volume: 39
  start-page: 444
  year: 2017
  publication-title: Nano Energy
– volume: 135
  start-page: 10274
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 10823
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 43
  start-page: 6555
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 1801478
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 724
  year: 2010
  publication-title: ChemCatChem
– volume: 8
  start-page: 2347
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 4899
  year: 2017
  publication-title: ChemSusChem
– volume: 54
  start-page: 3859
  year: 2018
  publication-title: Chem. Commun.
– volume: 317
  start-page: 100
  year: 2007
  publication-title: Science
– volume: 14
  start-page: 397
  year: 1986
  publication-title: Mater. Chem. Phys.
– volume: 8
  start-page: 2769
  year: 2017
  publication-title: Chem. Sci.
– volume: 55
  start-page: 221
  year: 2016
  publication-title: Inorg. Chem.
– volume: 7
  start-page: 19764
  year: 2015
  publication-title: Nanoscale
– volume: 29
  start-page: 5566
  year: 2017
  publication-title: Chem. Mater.
– volume: 26
  start-page: 5702
  year: 2014
  publication-title: Adv. Mater.
– volume: 127
  start-page: 5308
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 1701592
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 195
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 6
  start-page: 951
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 607
  start-page: 83
  year: 2007
  publication-title: J. Electroanal. Chem.
– volume: 127
  start-page: 14871
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 3800
  year: 2014
  publication-title: Catal. Sci. Technol.
– volume: 37
  start-page: 273
  year: 1963
  publication-title: Zh. Fiz. Khim.
– volume: 55
  start-page: 6502
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 27
  start-page: 7636
  year: 2015
  publication-title: Chem. Mater.
– volume: 8
  start-page: 1801891
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 9845
  year: 2018
  publication-title: Nanoscale
– volume: 1
  start-page: 169
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 355
  start-page: eaad4998
  year: 2017
  publication-title: Science
– volume: 131
  start-page: 290
  year: 1984
  publication-title: J. Electrochem. Soc.
– volume: 351
  start-page: 1306
  year: 2016
  publication-title: Science
– volume: 127
  start-page: 11383
  year: 2015
  publication-title: Angew. Chem.
– volume: 9
  start-page: 15397
  year: 2017
  publication-title: Nanoscale
– volume: 42
  start-page: 5985
  year: 2017
  publication-title: Int. J. Hydrogen Energy
– volume: 19
  start-page: 10125
  year: 2017
  publication-title: Phys. Chem. Chem. Phys.
– volume: 129
  start-page: 4270
  year: 2017
  publication-title: Angew. Chem.
– volume: 154–155
  start-page: 213
  year: 2014
  publication-title: Appl. Catal., B
– volume: 6
  start-page: 8069
  year: 2016
  publication-title: ACS Catal.
– volume: 17
  start-page: 29387
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 24
  start-page: 817
  year: 1956
  publication-title: J. Chem. Phys.
– volume: 8
  start-page: 2158
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_9_16_1
  doi: 10.1039/C6TA08075H
– ident: e_1_2_9_88_1
  doi: 10.1039/C7NR04327A
– ident: e_1_2_9_108_1
  doi: 10.1039/C6CE00985A
– ident: e_1_2_9_46_1
  doi: 10.1039/c2cs35310e
– ident: e_1_2_9_77_1
  doi: 10.1021/acscatal.5b00349
– ident: e_1_2_9_50_1
  doi: 10.1039/C4EE00440J
– ident: e_1_2_9_65_1
  doi: 10.1039/C4TA04867A
– ident: e_1_2_9_14_1
  doi: 10.1039/C6TA02334G
– ident: e_1_2_9_87_1
  doi: 10.1039/c3dt50803j
– ident: e_1_2_9_95_1
  doi: 10.1002/anie.201612635
– ident: e_1_2_9_73_1
  doi: 10.1038/nmat4481
– ident: e_1_2_9_32_1
  doi: 10.1039/C5EE03456F
– ident: e_1_2_9_126_1
  doi: 10.1039/C6TA03628G
– ident: e_1_2_9_72_1
  doi: 10.1021/jacs.6b03714
– ident: e_1_2_9_98_1
  doi: 10.1002/adma.201706085
– ident: e_1_2_9_13_1
  doi: 10.1126/science.1103197
– ident: e_1_2_9_99_1
  doi: 10.1021/ja401727n
– ident: e_1_2_9_20_1
  doi: 10.1002/aenm.201701592
– ident: e_1_2_9_79_1
  doi: 10.1021/acsenergylett.6b00144
– ident: e_1_2_9_23_1
  doi: 10.1021/ja511572q
– ident: e_1_2_9_133_1
  doi: 10.1039/C7CY00035A
– ident: e_1_2_9_100_1
  doi: 10.1039/C8NR02091D
– ident: e_1_2_9_64_1
  doi: 10.1002/cctc.201000126
– ident: e_1_2_9_103_1
  doi: 10.1016/j.nanoen.2016.07.032
– ident: e_1_2_9_28_1
  doi: 10.1021/jacs.7b12420
– ident: e_1_2_9_21_1
  doi: 10.1039/C5CY01111F
– ident: e_1_2_9_129_1
  doi: 10.1021/acsami.5b09207
– ident: e_1_2_9_132_1
  doi: 10.1039/C8CY00211H
– ident: e_1_2_9_93_1
  doi: 10.1021/acsami.6b14127
– ident: e_1_2_9_27_1
  doi: 10.1021/acsami.5b10727
– ident: e_1_2_9_6_1
  doi: 10.1126/science.aad1920
– ident: e_1_2_9_41_1
  doi: 10.1002/aenm.201801478
– ident: e_1_2_9_112_1
  doi: 10.1021/cm5044792
– start-page: 7
  year: 2016
  ident: e_1_2_9_5_1
  publication-title: Nat. Commun.
  contributor:
    fullname: Woolf D.
– ident: e_1_2_9_118_1
  doi: 10.1021/acsenergylett.7b00679
– ident: e_1_2_9_70_1
  doi: 10.1039/C5TA02974K
– ident: e_1_2_9_7_1
  doi: 10.1016/j.rser.2005.08.004
– ident: e_1_2_9_97_1
  doi: 10.1002/adma.201801812
– ident: e_1_2_9_3_1
  doi: 10.1016/j.rser.2014.12.020
– ident: e_1_2_9_83_1
  doi: 10.1021/acsami.7b18439
– ident: e_1_2_9_9_1
  doi: 10.1039/C3CS60468C
– ident: e_1_2_9_75_1
  doi: 10.1021/acscentsci.5b00227
– ident: e_1_2_9_68_1
  doi: 10.1039/C4EE00957F
– ident: e_1_2_9_69_1
  doi: 10.1038/nmat4465
– ident: e_1_2_9_67_1
  doi: 10.1021/ja0540019
– volume: 37
  start-page: 273
  year: 1963
  ident: e_1_2_9_56_1
  publication-title: Zh. Fiz. Khim.
  contributor:
    fullname: Krasil'shchkov A. I.
– ident: e_1_2_9_61_1
  doi: 10.1016/0013-4686(64)80088-8
– ident: e_1_2_9_35_1
  doi: 10.1039/C5CP01065A
– ident: e_1_2_9_82_1
  doi: 10.1039/C8TA03933J
– ident: e_1_2_9_44_1
  doi: 10.1038/ncomms3817
– ident: e_1_2_9_78_1
  doi: 10.1039/C5EE01155H
– ident: e_1_2_9_4_1
  doi: 10.1038/s41560-017-0006-y
– ident: e_1_2_9_31_1
  doi: 10.1002/anie.201402646
– ident: e_1_2_9_135_1
  doi: 10.1002/adma.201504024
– ident: e_1_2_9_71_1
  doi: 10.1039/C7CP00636E
– ident: e_1_2_9_84_1
  doi: 10.1039/C7NR08097B
– ident: e_1_2_9_106_1
  doi: 10.1039/C5CE00638D
– ident: e_1_2_9_12_1
  doi: 10.1126/science.aaf5050
– ident: e_1_2_9_127_1
  doi: 10.1002/admi.201500669
– ident: e_1_2_9_136_1
  doi: 10.1002/ange.201505320
– ident: e_1_2_9_101_1
  doi: 10.1016/j.nanoen.2017.07.027
– ident: e_1_2_9_18_1
  doi: 10.1021/ja404523s
– ident: e_1_2_9_24_1
  doi: 10.1039/C7CC03005C
– ident: e_1_2_9_134_1
  doi: 10.1039/C8CC00766G
– ident: e_1_2_9_37_1
  doi: 10.1002/aenm.201801891
– ident: e_1_2_9_26_1
  doi: 10.1021/acscatal.6b02479
– ident: e_1_2_9_105_1
  doi: 10.1002/ppsc.201400209
– ident: e_1_2_9_62_1
  doi: 10.1007/978-3-319-29641-8_2
– ident: e_1_2_9_122_1
  doi: 10.1016/j.electacta.2014.10.105
– ident: e_1_2_9_137_1
  doi: 10.1021/acscatal.5b00154
– ident: e_1_2_9_85_1
  doi: 10.1021/acs.chemmater.7b03627
– ident: e_1_2_9_15_1
  doi: 10.1021/acscatal.7b03167
– ident: e_1_2_9_110_1
  doi: 10.1021/acsnano.8b02752
– ident: e_1_2_9_38_1
  doi: 10.1007/s10853-017-1294-0
– ident: e_1_2_9_55_1
  doi: 10.1063/1.1742616
– ident: e_1_2_9_17_1
  doi: 10.1039/C5NR06718A
– ident: e_1_2_9_107_1
  doi: 10.1039/C4TA06642A
– ident: e_1_2_9_125_1
  doi: 10.1021/acsami.5b10252
– volume: 76
  start-page: 1
  year: 1976
  ident: e_1_2_9_59_1
  publication-title: Am. Soc. Mech. Eng.
  contributor:
    fullname: O'Grady W.
– ident: e_1_2_9_116_1
  doi: 10.1039/C6SC05687C
– ident: e_1_2_9_81_1
  doi: 10.1039/C4CC09849H
– ident: e_1_2_9_47_1
  doi: 10.1039/C4CY00669K
– ident: e_1_2_9_80_1
  doi: 10.1126/science.1096566
– ident: e_1_2_9_39_1
  doi: 10.1149/2.0901504jes
– ident: e_1_2_9_57_1
  doi: 10.1039/tf9575301636
– ident: e_1_2_9_123_1
  doi: 10.1016/j.apcatb.2014.02.017
– ident: e_1_2_9_43_1
  doi: 10.1016/j.rser.2007.01.023
– start-page: 286
  volume-title: Proc. Symp. on Electrocatalysis
  year: 1974
  ident: e_1_2_9_58_1
  contributor:
    fullname: O'Grady W. E.
– ident: e_1_2_9_30_1
  doi: 10.1039/c3nr03371f
– ident: e_1_2_9_76_1
  doi: 10.1021/acsenergylett.6b00084
– ident: e_1_2_9_131_1
  doi: 10.1021/acsnano.7b04646
– ident: e_1_2_9_113_1
  doi: 10.1126/science.aad5520
– ident: e_1_2_9_33_1
  doi: 10.1021/jacs.5b08186
– ident: e_1_2_9_42_1
  doi: 10.1002/cctc.201000397
– ident: e_1_2_9_60_1
  doi: 10.1149/1.2115565
– ident: e_1_2_9_19_1
  doi: 10.1002/aenm.201500985
– ident: e_1_2_9_89_1
  doi: 10.1002/anie.201600686
– ident: e_1_2_9_128_1
  doi: 10.1021/acs.chemmater.5b04645
– ident: e_1_2_9_102_1
  doi: 10.1002/cssc.201701647
– ident: e_1_2_9_109_1
  doi: 10.1039/C2CS35241A
– ident: e_1_2_9_48_1
  doi: 10.1039/C4CS00470A
– ident: e_1_2_9_74_1
  doi: 10.1038/nmat3313
– ident: e_1_2_9_124_1
  doi: 10.1002/adma.201401692
– ident: e_1_2_9_115_1
  doi: 10.1021/acs.chemrev.6b00374
– ident: e_1_2_9_11_1
  doi: 10.1126/science.1141483
– ident: e_1_2_9_8_1
  doi: 10.1126/science.aad4998
– ident: e_1_2_9_86_1
  doi: 10.1039/C6NR07009D
– ident: e_1_2_9_111_1
  doi: 10.1002/ange.201700150
– ident: e_1_2_9_53_1
  doi: 10.1039/C5CS00434A
– ident: e_1_2_9_90_1
  doi: 10.1016/j.ijhydene.2016.12.060
– ident: e_1_2_9_66_1
  doi: 10.1021/acs.chemmater.5b01284
– ident: e_1_2_9_94_1
  doi: 10.1021/acs.chemmater.7b00867
– ident: e_1_2_9_2_1
  doi: 10.1002/2014GL062308
– ident: e_1_2_9_22_1
  doi: 10.1021/jacs.5b11986
– ident: e_1_2_9_121_1
  doi: 10.1002/adma.201606570
– ident: e_1_2_9_92_1
  doi: 10.1021/acs.chemmater.5b02877
– ident: e_1_2_9_114_1
  doi: 10.1039/C8TA04886J
– ident: e_1_2_9_104_1
  doi: 10.1021/acs.chemmater.6b05080
– ident: e_1_2_9_10_1
  doi: 10.1039/C5CS00729A
– ident: e_1_2_9_63_1
  doi: 10.1016/j.jelechem.2006.11.008
– ident: e_1_2_9_130_1
  doi: 10.1021/acs.inorgchem.5b02158
– ident: e_1_2_9_29_1
  doi: 10.1039/C6NR01867J
– ident: e_1_2_9_45_1
  doi: 10.1016/0254-0584(86)90045-3
– ident: e_1_2_9_91_1
  doi: 10.1016/j.ijhydene.2018.03.154
– ident: e_1_2_9_52_1
  doi: 10.1016/S0013-4686(02)00329-8
– ident: e_1_2_9_25_1
  doi: 10.1039/C4CS00448E
– ident: e_1_2_9_119_1
  doi: 10.1002/adfm.201706319
– ident: e_1_2_9_120_1
  doi: 10.1002/chem.201503777
– ident: e_1_2_9_1_1
  doi: 10.1038/nature21707
– ident: e_1_2_9_117_1
  doi: 10.1039/C6CP04011J
– ident: e_1_2_9_36_1
  doi: 10.1021/jacs.7b01376
– ident: e_1_2_9_34_1
  doi: 10.1039/C5CP02876K
– ident: e_1_2_9_40_1
  doi: 10.1002/anie.201704911
– ident: e_1_2_9_96_1
  doi: 10.1002/anie.201611804
– ident: e_1_2_9_54_1
  doi: 10.1021/ja0504690
– ident: e_1_2_9_51_1
  doi: 10.1016/S0167-2738(02)00266-7
– ident: e_1_2_9_49_1
  doi: 10.1021/acs.jpclett.5b00306
SSID ssj0009606
Score 2.731838
SecondaryResourceType review_article
Snippet Because H2 is considered a promising clean energy source, water electrolysis has attracted great interest in related research and technology. Noble‐metal‐based...
Because H is considered a promising clean energy source, water electrolysis has attracted great interest in related research and technology. Noble-metal-based...
Abstract Because H 2 is considered a promising clean energy source, water electrolysis has attracted great interest in related research and technology....
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e1806682
SubjectTerms Abundance
Catalysis
Catalysts
Catalytic activity
Clean energy
Control methods
Electrode materials
Electrolysis
facet‐controlled
hollow structures
Materials science
metal phosphides
Metal sulfides
Morphology
Nanocrystals
Phosphides
Transition metals
Water splitting
Title Morphology‐Controlled Metal Sulfides and Phosphides for Electrochemical Water Splitting
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201806682
https://www.ncbi.nlm.nih.gov/pubmed/30706578
https://www.proquest.com/docview/2201709053
https://search.proquest.com/docview/2179515156
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSsQwEB7Ukx78_6muEkHwVEzTpJs9LuuKlxVhFfVUkiZBQbqLde8-gs_okzhJd6uLB0FvDW1omGRmvskk3wCc8DQtEsNVzHUiYu4ST3lraeyY0YJSx-pUzOWwfXUvz_ueJqe5xV_zQzQbbl4zgr32Cq50dfZFGqpM4A1KJDpN6Y0whgrhDkd6_cW6m4Ximj7ZF3cyLmesjZSdzXef90o_oOY8cg2u52Lt_4Neh9Up7CTdep1swIItN2HlGxnhFjwMRijzsMv-8fbeq4-wP1tDBhYBOhlOnt2TsRVRpSHXj6Nq_BiaCHpJv66lU0zJB8gdAtgXMkR8G05Vb8PtRf-mdxlPCy_EBUfjGCdpmyteFCm1ThgEBMIVqLgYSnKltXDKUe2EY1JLExJ9GMd0tEpSf2uOapPuwFI5Ku0eEJ1JKZQQGLkwrlKpE2o7vGizjGkmMxvB6Uzw-bjm18hrJmWWe2HljbAiaM3mJZ_qWZUz5vl_OmhJIjhuXqOG-LSHKu1ogt_4oXvclkWwW89n8ytv8TI0WhGwMG2_jCHvng-6TWv_L50OYBmfQ0KKihYsvb5M7CEsVmZyFNbuJ7dk7J0
link.rule.ids 315,782,786,1408,27935,27936,46066,46490
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7xOACHlmdJC8VISJwiHD-yznEFixaVRUgLoj1FdmyLSiiLWPbOT-hv7C_p2NkNXfWAVHF0EivW2DPzjcf-BuBIcF5lVuhUmEymwmeB8tbR1DNrJKWeNamY_rBz9V2d9QJNTnd2F6bhh2g33IJmRHsdFDxsSJ-8soZqG4mDMoVeU6EVXha5KEL1Bs6vX3l381heM6T70iIXasbbSNnJfP95v_QP2JzHrtH5nH98h2Gvw4cp8iTdZqlswIKrN2HtLz7CLfgxGKHY40b775dfp80p9gdnycAhRifDyYP_ad2Y6NqS6_vR-PE-NhH3kl5TTqea8g-QO8SwT2SIEDcerN6G2_PezWk_ndZeSCuB9jHNeEdoUVWcOi8tYgLpK9RdjCaFNkZ67anx0jNllI25PgxlCqMzHi7OUWP5DizVo9rtAjG5UlJLicELE5ork1FXiKrDcmaYyl0CxzPJl48NxUbZkCmzMgirbIWVwN5sYsqpqo1LxgIFUIHGJIHD9jUqSch86NqNJvhNGHqAbnkCn5oJbX8VjF6OdisBFuftjTGU3bNBt219_p9OB7DSvxlclpcXV9--wCo-j_kpKvdg6flp4vZhcWwnX-NC_gOoOPC-
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9swED-6DMb20K7b2rntNg0GezKVZclRHkP-kLIlBNKx7clIlkQLwQnJ_L6P0M_YT9KTnLgNfRh0j7ItLO50dz_pdD8BfOFpWiSGq5jrRMTcJZ7y1tLYMaMFpY7VqZjRrD35JfsDT5PTVPHX_BDNhpu3jOCvvYEvjTu_Jw1VJvAGJRKDpkQn_Jx7LO6LONLpPe1uFm7X9Nm-uJNxuaVtpOx8t_9uWHqENXeha4g9w4P_H_Vr2N_gTtKtJ8oh7NnyDbx6wEb4Fn6PFyj0sM1--_emV59hn1tDxhYROplVc3dt7Jqo0pDp1WK9vApNRL1kUF-mU2zYB8hPRLArMkOAG45Vv4Mfw8FlbxRvbl6IC47eMU7SNle8KFJqnTCICIQr0HJxLcmV1sIpR7UTjkktTcj04UKmo1WS-rI5qk16BK1yUdr3QHQmpVBC4NKFcZVKnVDb4UWbZUwzmdkIvm4Fny9rgo28plJmuRdW3ggrgrOtXvKNoa1zxjwBUAddSQSfm9doIj7voUq7qPAbP3QP3LIIjmt9Nr_yLi9DrxUBC2r7xxjybn_cbVonT-n0CV5M-8P8-8Xk2ym8xMchOUXFGbT-rCr7AZ6tTfUxTOM71bLvbQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Morphology%E2%80%90Controlled+Metal+Sulfides+and+Phosphides+for+Electrochemical+Water+Splitting&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Joo%2C+Jinwhan&rft.au=Kim%2C+Taekyung&rft.au=Lee%2C+Jaeyoung&rft.au=Choi%2C+Sang%E2%80%90Il&rft.date=2019-04-05&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=14&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201806682&rft.externalDBID=10.1002%252Fadma.201806682&rft.externalDocID=ADMA201806682
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon