Morphology‐Controlled Metal Sulfides and Phosphides for Electrochemical Water Splitting
Because H2 is considered a promising clean energy source, water electrolysis has attracted great interest in related research and technology. Noble‐metal‐based catalysts are used as electrode materials in water electrolyzers, but their high cost and low abundance have impeded them from being used in...
Saved in:
Published in: | Advanced materials (Weinheim) Vol. 31; no. 14; pp. e1806682 - n/a |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Germany
Wiley Subscription Services, Inc
05-04-2019
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Because H2 is considered a promising clean energy source, water electrolysis has attracted great interest in related research and technology. Noble‐metal‐based catalysts are used as electrode materials in water electrolyzers, but their high cost and low abundance have impeded them from being used in practical areas. Recently, metal sulfides and phosphides based on earth‐abundant transition metals have emerged as promising candidates for efficient water‐splitting catalysts. Most studies have focused on adjusting the composition of the metal sulfides and phosphides to enhance the catalytic performance. However, morphology control of catalysts, including faceted and hollow structures, is much less explored for these systems because of difficulties in the synthesis, which requires a deep understanding of the nanocrystal growth process. Herein, representative synthetic methods for morphology‐controlled metal sulfides and phosphides are introduced to provide insights into these methodologies. The electrolytic performance of morphology‐controlled metal sulfide‐ and phosphide‐based nanocatalysts with enhanced surface area and intrinsically high catalytic activity is also summarized and the future research directions for this promising catalyst group is discussed.
Metal sulfide and phosphide nanoparticles have emerged as viable alternatives to expensive noble‐metal‐based electrocatalysts for water splitting. The recent significant developments of morphology‐controlled metal sulfide and phosphide nanoparticles as electrcatalysts for the hydrogen evolution reaction and oxygen evolution reaction are addressed. |
---|---|
AbstractList | Abstract
Because H
2
is considered a promising clean energy source, water electrolysis has attracted great interest in related research and technology. Noble‐metal‐based catalysts are used as electrode materials in water electrolyzers, but their high cost and low abundance have impeded them from being used in practical areas. Recently, metal sulfides and phosphides based on earth‐abundant transition metals have emerged as promising candidates for efficient water‐splitting catalysts. Most studies have focused on adjusting the composition of the metal sulfides and phosphides to enhance the catalytic performance. However, morphology control of catalysts, including faceted and hollow structures, is much less explored for these systems because of difficulties in the synthesis, which requires a deep understanding of the nanocrystal growth process. Herein, representative synthetic methods for morphology‐controlled metal sulfides and phosphides are introduced to provide insights into these methodologies. The electrolytic performance of morphology‐controlled metal sulfide‐ and phosphide‐based nanocatalysts with enhanced surface area and intrinsically high catalytic activity is also summarized and the future research directions for this promising catalyst group is discussed. Because H is considered a promising clean energy source, water electrolysis has attracted great interest in related research and technology. Noble-metal-based catalysts are used as electrode materials in water electrolyzers, but their high cost and low abundance have impeded them from being used in practical areas. Recently, metal sulfides and phosphides based on earth-abundant transition metals have emerged as promising candidates for efficient water-splitting catalysts. Most studies have focused on adjusting the composition of the metal sulfides and phosphides to enhance the catalytic performance. However, morphology control of catalysts, including faceted and hollow structures, is much less explored for these systems because of difficulties in the synthesis, which requires a deep understanding of the nanocrystal growth process. Herein, representative synthetic methods for morphology-controlled metal sulfides and phosphides are introduced to provide insights into these methodologies. The electrolytic performance of morphology-controlled metal sulfide- and phosphide-based nanocatalysts with enhanced surface area and intrinsically high catalytic activity is also summarized and the future research directions for this promising catalyst group is discussed. Because H2 is considered a promising clean energy source, water electrolysis has attracted great interest in related research and technology. Noble‐metal‐based catalysts are used as electrode materials in water electrolyzers, but their high cost and low abundance have impeded them from being used in practical areas. Recently, metal sulfides and phosphides based on earth‐abundant transition metals have emerged as promising candidates for efficient water‐splitting catalysts. Most studies have focused on adjusting the composition of the metal sulfides and phosphides to enhance the catalytic performance. However, morphology control of catalysts, including faceted and hollow structures, is much less explored for these systems because of difficulties in the synthesis, which requires a deep understanding of the nanocrystal growth process. Herein, representative synthetic methods for morphology‐controlled metal sulfides and phosphides are introduced to provide insights into these methodologies. The electrolytic performance of morphology‐controlled metal sulfide‐ and phosphide‐based nanocatalysts with enhanced surface area and intrinsically high catalytic activity is also summarized and the future research directions for this promising catalyst group is discussed. Metal sulfide and phosphide nanoparticles have emerged as viable alternatives to expensive noble‐metal‐based electrocatalysts for water splitting. The recent significant developments of morphology‐controlled metal sulfide and phosphide nanoparticles as electrcatalysts for the hydrogen evolution reaction and oxygen evolution reaction are addressed. Because H2 is considered a promising clean energy source, water electrolysis has attracted great interest in related research and technology. Noble‐metal‐based catalysts are used as electrode materials in water electrolyzers, but their high cost and low abundance have impeded them from being used in practical areas. Recently, metal sulfides and phosphides based on earth‐abundant transition metals have emerged as promising candidates for efficient water‐splitting catalysts. Most studies have focused on adjusting the composition of the metal sulfides and phosphides to enhance the catalytic performance. However, morphology control of catalysts, including faceted and hollow structures, is much less explored for these systems because of difficulties in the synthesis, which requires a deep understanding of the nanocrystal growth process. Herein, representative synthetic methods for morphology‐controlled metal sulfides and phosphides are introduced to provide insights into these methodologies. The electrolytic performance of morphology‐controlled metal sulfide‐ and phosphide‐based nanocatalysts with enhanced surface area and intrinsically high catalytic activity is also summarized and the future research directions for this promising catalyst group is discussed. |
Author | Choi, Sang‐Il Kim, Taekyung Lee, Jaeyoung Joo, Jinwhan Lee, Kwangyeol |
Author_xml | – sequence: 1 givenname: Jinwhan orcidid: 0000-0001-5614-8790 surname: Joo fullname: Joo, Jinwhan organization: Korea University – sequence: 2 givenname: Taekyung orcidid: 0000-0003-0401-5958 surname: Kim fullname: Kim, Taekyung organization: Korea University – sequence: 3 givenname: Jaeyoung surname: Lee fullname: Lee, Jaeyoung organization: Korea University – sequence: 4 givenname: Sang‐Il surname: Choi fullname: Choi, Sang‐Il email: sichoi@knu.ac.kr organization: Kyungpook National University – sequence: 5 givenname: Kwangyeol orcidid: 0000-0003-0575-7216 surname: Lee fullname: Lee, Kwangyeol email: kylee1@korea.ac.kr organization: Korea University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30706578$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMtq3DAUQEVISCaPbZbF0E03nly9bGs5TNMHZEghKSUrIctSxkG2XMmmzC6fkG_sl1TTyQO6KXchLhwdLucY7fe-NwidY5hjAHKhmk7NCeAKiqIie2iGOcE5A8H30QwE5bkoWHWEjmN8AABRQHGIjiiUUPCymqG7lQ_D2jt_v_n9-LT0_Ri8c6bJVmZULruZnG0bEzPVN9m3tY_D-u9qfcgundGJ1mvTtTqxP9RoQnYzuHYc2_7-FB1Y5aI5e35P0PdPl7fLL_nV9eevy8VVrllZkBzTkimmNQVjeUPSxVbjUnAmmKprbpWF2nJLqrpqSip4SSiIWmHKCGNQN_QEfdh5h-B_TiaOsmujNs6p3vgpSrK14TRFQt__gz74KfTpOklSwxIEcJqo-Y7SwccYjJVDaDsVNhKD3EaX2-jyNXr68O5ZO9WdaV7xl8oJEDvgV-vM5j86ufi4WrzJ_wDcvpBi |
CitedBy_id | crossref_primary_10_1002_ente_201901310 crossref_primary_10_1002_adfm_202102321 crossref_primary_10_1016_j_ijhydene_2023_11_020 crossref_primary_10_1002_slct_202101034 crossref_primary_10_1021_acs_inorgchem_2c01035 crossref_primary_10_1016_j_cej_2024_151544 crossref_primary_10_1039_D1TA05527E crossref_primary_10_1021_acsami_2c02418 crossref_primary_10_1039_D1SE01708J crossref_primary_10_1016_j_jallcom_2022_167670 crossref_primary_10_1016_j_jechem_2021_12_006 crossref_primary_10_1016_j_jcis_2020_02_070 crossref_primary_10_1007_s12274_021_3680_9 crossref_primary_10_1016_j_jechem_2021_05_051 crossref_primary_10_1021_acsaem_0c01360 crossref_primary_10_1002_anie_202104055 crossref_primary_10_1016_j_tifs_2024_104611 crossref_primary_10_1016_j_renene_2020_04_053 crossref_primary_10_1016_j_foodchem_2024_140026 crossref_primary_10_1149_1945_7111_aba96e crossref_primary_10_1021_acs_analchem_2c01607 crossref_primary_10_1002_anie_202002280 crossref_primary_10_1002_smll_202302906 crossref_primary_10_1016_j_ijhydene_2024_05_042 crossref_primary_10_1002_cssc_202002002 crossref_primary_10_1007_s42247_020_00123_z crossref_primary_10_1016_j_cclet_2023_108900 crossref_primary_10_1016_j_mtnano_2022_100272 crossref_primary_10_1016_j_jallcom_2024_174525 crossref_primary_10_1016_j_chemosphere_2022_136483 crossref_primary_10_1002_admi_201900774 crossref_primary_10_1039_D1SE01167G crossref_primary_10_1016_j_electacta_2021_138438 crossref_primary_10_1039_D0MA00688B crossref_primary_10_1021_acsaem_2c01523 crossref_primary_10_1039_D3EY00147D crossref_primary_10_1039_C9TA03220G crossref_primary_10_1002_chem_201904583 crossref_primary_10_1007_s12274_020_2618_y crossref_primary_10_1016_j_apcatb_2021_120657 crossref_primary_10_1016_j_jpowsour_2021_229688 crossref_primary_10_1016_S1872_2067_20_63639_7 crossref_primary_10_1021_acsaem_4c00539 crossref_primary_10_1039_D2TA02751H crossref_primary_10_1002_smll_202310526 crossref_primary_10_1021_acsaem_0c00122 crossref_primary_10_3390_cryst13060873 crossref_primary_10_1002_cssc_202300214 crossref_primary_10_1016_j_jpowsour_2024_234757 crossref_primary_10_1515_zkri_2023_0006 crossref_primary_10_1016_j_electacta_2022_140835 crossref_primary_10_1016_j_isci_2021_102167 crossref_primary_10_1016_j_ijhydene_2023_10_122 crossref_primary_10_1039_D0QI01060J crossref_primary_10_1039_D3NR01574B crossref_primary_10_1016_j_jechem_2023_01_062 crossref_primary_10_1021_acsami_0c19914 crossref_primary_10_1007_s10008_021_04929_7 crossref_primary_10_1039_C9TA12562K crossref_primary_10_1039_D0CE01850C crossref_primary_10_1039_D3SE00679D crossref_primary_10_1016_j_mtnano_2022_100296 crossref_primary_10_1016_j_apsusc_2022_156237 crossref_primary_10_3390_catal13111404 crossref_primary_10_1016_j_jcis_2021_09_013 crossref_primary_10_1021_acs_jpclett_3c02885 crossref_primary_10_1016_j_ccr_2022_214811 crossref_primary_10_1016_j_ceramint_2021_06_061 crossref_primary_10_1002_adfm_202306100 crossref_primary_10_1039_D3DT01469J crossref_primary_10_1002_ejic_202200682 crossref_primary_10_1016_j_fuel_2022_127303 crossref_primary_10_26599_NRE_2023_9120092 crossref_primary_10_1039_D1SE01716K crossref_primary_10_1016_j_colcom_2021_100520 crossref_primary_10_1039_D1TA04755H crossref_primary_10_1016_j_colsurfa_2023_131663 crossref_primary_10_1007_s12274_020_3219_5 crossref_primary_10_1002_anie_202316306 crossref_primary_10_1016_j_ccr_2021_214144 crossref_primary_10_1039_D1DT02341A crossref_primary_10_1021_acs_inorgchem_1c02804 crossref_primary_10_1149_1945_7111_ac3594 crossref_primary_10_1016_j_jcis_2023_01_072 crossref_primary_10_1016_j_electacta_2021_138517 crossref_primary_10_1021_acs_inorgchem_2c00093 crossref_primary_10_1016_j_colsurfa_2023_131307 crossref_primary_10_1021_acs_energyfuels_2c04004 crossref_primary_10_1016_j_electacta_2023_143342 crossref_primary_10_1002_cssc_202100715 crossref_primary_10_1002_chem_201904021 crossref_primary_10_1039_D2NR05881B crossref_primary_10_1039_D0TA01501F crossref_primary_10_1039_D1TA04831G crossref_primary_10_1002_adfm_202101578 crossref_primary_10_1002_smll_202105680 crossref_primary_10_1039_D2NR00184E crossref_primary_10_1016_j_electacta_2021_138786 crossref_primary_10_1002_cssc_202301105 crossref_primary_10_1016_j_inoche_2023_111980 crossref_primary_10_1039_D0TA03392H crossref_primary_10_1016_j_nanoen_2021_105861 crossref_primary_10_1016_j_cej_2020_126045 crossref_primary_10_1039_D1DT03105H crossref_primary_10_1039_D0NR03685D crossref_primary_10_1016_j_colsurfa_2023_132857 crossref_primary_10_1016_j_apsusc_2022_153173 crossref_primary_10_1021_acssuschemeng_0c06547 crossref_primary_10_1002_cssc_202001293 crossref_primary_10_1039_D3TA01192E crossref_primary_10_1021_acssuschemeng_9b06149 crossref_primary_10_1016_j_jcis_2021_12_028 crossref_primary_10_1002_celc_202001149 crossref_primary_10_1016_j_electacta_2021_139623 crossref_primary_10_1016_j_flatc_2022_100368 crossref_primary_10_1021_acsaem_2c00018 crossref_primary_10_1016_j_jcis_2022_02_102 crossref_primary_10_3390_nano12071173 crossref_primary_10_1002_ange_202104055 crossref_primary_10_1016_j_catcom_2023_106796 crossref_primary_10_1016_j_nanoen_2020_105699 crossref_primary_10_1039_D0SE01745K crossref_primary_10_1016_j_nanoen_2024_109413 crossref_primary_10_1088_2631_6331_ac93e4 crossref_primary_10_1002_smll_202309448 crossref_primary_10_1016_j_jpowsour_2024_234825 crossref_primary_10_1002_cctc_201901682 crossref_primary_10_1002_cphc_201900498 crossref_primary_10_1021_acs_jpcc_1c04163 crossref_primary_10_1016_j_ijhydene_2022_02_223 crossref_primary_10_1021_acssuschemeng_9b03166 crossref_primary_10_1016_j_apcatb_2024_123914 crossref_primary_10_1016_j_apcatb_2024_123912 crossref_primary_10_3390_molecules28196986 crossref_primary_10_1016_j_trechm_2020_09_001 crossref_primary_10_1039_D0TA12152E crossref_primary_10_1039_D0CS01191F crossref_primary_10_1039_D3CP00223C crossref_primary_10_1007_s12678_023_00835_w crossref_primary_10_1080_00219592_2023_2210195 crossref_primary_10_1002_smll_202208202 crossref_primary_10_1016_j_jcat_2022_02_002 crossref_primary_10_1021_acsami_9b16224 crossref_primary_10_1021_acs_energyfuels_3c00749 crossref_primary_10_1039_D4NJ01285B crossref_primary_10_1016_j_apcatb_2019_118555 crossref_primary_10_1002_adfm_202006484 crossref_primary_10_1016_j_enchem_2024_100119 crossref_primary_10_1007_s12598_023_02284_2 crossref_primary_10_1039_D0NR00051E crossref_primary_10_1021_acsanm_3c00845 crossref_primary_10_1016_j_jallcom_2019_153086 crossref_primary_10_1039_D1DT01855H crossref_primary_10_1002_ange_202316306 crossref_primary_10_1002_anie_202008514 crossref_primary_10_1002_tcr_202200149 crossref_primary_10_1016_j_inoche_2023_111142 crossref_primary_10_1016_j_ijhydene_2022_02_001 crossref_primary_10_1016_S1872_2067_21_63855_X crossref_primary_10_1002_aenm_202400790 crossref_primary_10_1002_anie_202017102 crossref_primary_10_1016_j_jallcom_2023_169077 crossref_primary_10_1016_j_apcatb_2023_122403 crossref_primary_10_1016_j_cej_2024_152223 crossref_primary_10_1002_celc_202001614 crossref_primary_10_1007_s00339_024_07429_3 crossref_primary_10_1039_D3TA08052H crossref_primary_10_3390_nano14110946 crossref_primary_10_1016_j_pnsc_2022_09_002 crossref_primary_10_1039_D0TA10633J crossref_primary_10_1021_acsaem_9b02019 crossref_primary_10_1021_acsanm_9b00891 crossref_primary_10_1002_aenm_202103090 crossref_primary_10_1021_acssuschemeng_2c03215 crossref_primary_10_1088_1361_6528_acebf2 crossref_primary_10_1016_j_ccr_2022_214544 crossref_primary_10_1021_acsami_2c05977 crossref_primary_10_1088_2515_7639_abd596 crossref_primary_10_1016_j_apsusc_2021_150510 crossref_primary_10_1016_j_ijhydene_2023_04_241 crossref_primary_10_1016_j_jcis_2022_01_197 crossref_primary_10_1021_acs_chemrev_2c00515 crossref_primary_10_1002_slct_202200654 crossref_primary_10_1016_j_cej_2020_127630 crossref_primary_10_1016_j_ijhydene_2022_11_063 crossref_primary_10_1021_acsmaterialslett_1c00282 crossref_primary_10_1016_j_cej_2020_125457 crossref_primary_10_1002_celc_201900507 crossref_primary_10_1021_acs_langmuir_3c02719 crossref_primary_10_1088_1361_6528_ac8680 crossref_primary_10_1016_j_apsusc_2022_156190 crossref_primary_10_1039_D0TA05176D crossref_primary_10_1039_D3QM00089C crossref_primary_10_1021_acssuschemeng_0c04759 crossref_primary_10_3390_molecules28104134 crossref_primary_10_1039_D3DT01497E crossref_primary_10_1007_s40843_020_1524_5 crossref_primary_10_1021_acsanm_1c02941 crossref_primary_10_1039_C9TA14256H crossref_primary_10_1016_j_apcata_2022_118803 crossref_primary_10_1039_D3YA00188A crossref_primary_10_1007_s42765_020_00063_7 crossref_primary_10_1039_D0CY01071E crossref_primary_10_1016_j_partic_2024_06_014 crossref_primary_10_1039_D0EE03697H crossref_primary_10_1002_anie_202016102 crossref_primary_10_1007_s40843_021_1953_5 crossref_primary_10_1002_advs_202000749 crossref_primary_10_1007_s43153_023_00425_9 crossref_primary_10_1002_cey2_284 crossref_primary_10_1021_acscatal_2c00859 crossref_primary_10_1016_j_colsurfa_2024_133187 crossref_primary_10_1021_acsaem_2c01965 crossref_primary_10_1039_D0NR02058C crossref_primary_10_1039_D4MA00114A crossref_primary_10_1021_acsami_1c05888 crossref_primary_10_1016_j_jpowsour_2021_230543 crossref_primary_10_1021_acsaem_9b02352 crossref_primary_10_1002_admi_201901302 crossref_primary_10_1016_j_apsusc_2021_149670 crossref_primary_10_1039_D2TA08209H crossref_primary_10_1016_j_checat_2021_06_014 crossref_primary_10_1039_D2CC05225C crossref_primary_10_1016_S1872_2067_22_64149_4 crossref_primary_10_1039_C9QM00697D crossref_primary_10_1002_adma_202109145 crossref_primary_10_1021_acs_chemmater_2c00085 crossref_primary_10_3390_nano12203633 crossref_primary_10_1021_acsami_1c16546 crossref_primary_10_1016_j_electacta_2022_141049 crossref_primary_10_1021_acsomega_2c01423 crossref_primary_10_1016_j_apcatb_2023_122961 crossref_primary_10_1002_adfm_202003261 crossref_primary_10_1002_advs_201903195 crossref_primary_10_1016_j_jpowsour_2024_234553 crossref_primary_10_1016_j_nantod_2021_101245 crossref_primary_10_1002_aenm_202301162 crossref_primary_10_1039_D0TA08475A crossref_primary_10_1016_j_jcis_2021_01_084 crossref_primary_10_1039_D1DT03266F crossref_primary_10_12677_AAC_2023_134052 crossref_primary_10_1016_j_ijhydene_2023_05_247 crossref_primary_10_1016_j_electacta_2022_140183 crossref_primary_10_1039_D1TA10162E crossref_primary_10_1039_D2NR03411E crossref_primary_10_1039_D2TA00538G crossref_primary_10_1002_adma_202107072 crossref_primary_10_1016_j_est_2024_111736 crossref_primary_10_1002_smll_202103561 crossref_primary_10_1016_j_jcis_2021_08_020 crossref_primary_10_1016_j_jcis_2024_06_084 crossref_primary_10_1039_D1SE01997J crossref_primary_10_1016_j_jallcom_2024_174748 crossref_primary_10_1039_D1RA03377H crossref_primary_10_1002_chem_202000209 crossref_primary_10_1016_j_enconman_2021_115038 crossref_primary_10_1088_2515_7655_ab8c5f crossref_primary_10_1007_s11581_021_03959_5 crossref_primary_10_1016_j_jallcom_2021_159945 crossref_primary_10_1016_j_jpowsour_2024_234422 crossref_primary_10_1039_D3TA07888D crossref_primary_10_1039_D2NR04657A crossref_primary_10_1016_j_nanoen_2020_105056 crossref_primary_10_1021_acsaem_9b02455 crossref_primary_10_1016_j_colsurfa_2023_131802 crossref_primary_10_1021_acs_langmuir_9b03577 crossref_primary_10_1016_j_apcatb_2020_118956 crossref_primary_10_1016_j_cej_2021_133719 crossref_primary_10_1021_acs_inorgchem_4c00921 crossref_primary_10_1016_j_jelechem_2021_115761 crossref_primary_10_1002_cssc_202202126 crossref_primary_10_1021_acsami_0c01937 crossref_primary_10_1021_acs_inorgchem_9b03009 crossref_primary_10_1016_j_cej_2022_139781 crossref_primary_10_1016_j_jcis_2023_04_089 crossref_primary_10_1016_j_apsusc_2020_147201 crossref_primary_10_1002_smll_202304782 crossref_primary_10_1016_j_mtener_2020_100573 crossref_primary_10_1016_j_mtener_2020_100455 crossref_primary_10_1039_D2TC02934K crossref_primary_10_1016_j_apcatb_2019_118393 crossref_primary_10_1016_j_jcis_2022_01_134 crossref_primary_10_1021_acsanm_3c01301 crossref_primary_10_1039_D1CC00535A crossref_primary_10_1016_j_jssc_2021_122799 crossref_primary_10_1039_D2TA02374A crossref_primary_10_1016_j_cattod_2020_06_077 crossref_primary_10_1016_j_jcis_2022_07_103 crossref_primary_10_1021_acs_inorgchem_2c00727 crossref_primary_10_1016_j_electacta_2023_142725 crossref_primary_10_1039_D1SE01535D crossref_primary_10_1016_j_jcis_2023_09_117 crossref_primary_10_1016_j_jelechem_2023_118018 crossref_primary_10_1016_j_mtener_2020_100464 crossref_primary_10_1039_D2NR04409A crossref_primary_10_1002_cssc_202100116 crossref_primary_10_1016_j_electacta_2020_137618 crossref_primary_10_1016_j_inoche_2024_112474 crossref_primary_10_1016_j_jallcom_2023_171516 crossref_primary_10_1016_j_apcata_2023_119304 crossref_primary_10_1002_smll_201905201 crossref_primary_10_1039_D0GC02208J crossref_primary_10_1021_acsami_9b04528 crossref_primary_10_1016_j_jece_2024_112907 crossref_primary_10_1002_adma_202401448 crossref_primary_10_1021_acsanm_1c01233 crossref_primary_10_1039_D0QI00570C crossref_primary_10_1016_j_ijhydene_2019_07_082 crossref_primary_10_1016_j_fuel_2024_131741 crossref_primary_10_1016_j_mtener_2020_100597 crossref_primary_10_1016_j_jmst_2020_01_036 crossref_primary_10_1021_acs_chemrev_3c00332 crossref_primary_10_1021_acsami_0c09794 crossref_primary_10_1016_j_apcatb_2019_118376 crossref_primary_10_1016_j_commatsci_2024_112946 crossref_primary_10_1021_acsanm_3c02897 crossref_primary_10_1039_D0TA09410B crossref_primary_10_1002_cnma_202000145 crossref_primary_10_1039_D3NR06456E crossref_primary_10_1039_D2DT00886F crossref_primary_10_1039_D0TA08466B crossref_primary_10_1016_j_electacta_2020_136777 crossref_primary_10_1039_D2CE00209D crossref_primary_10_1002_adma_202306097 crossref_primary_10_1002_cctc_202001239 crossref_primary_10_3390_catal12111417 crossref_primary_10_1039_D1TA04231A crossref_primary_10_1016_j_apsusc_2023_157284 crossref_primary_10_1016_j_apsusc_2024_160611 crossref_primary_10_1016_j_jechem_2023_12_048 crossref_primary_10_1016_j_cej_2020_124408 crossref_primary_10_1016_j_cej_2024_153251 crossref_primary_10_1016_j_cjche_2022_02_010 crossref_primary_10_1039_D0TA09788H crossref_primary_10_1016_j_apsusc_2022_154727 crossref_primary_10_1016_j_jcis_2021_05_129 crossref_primary_10_1016_j_jcis_2023_10_021 crossref_primary_10_1002_chem_201903508 crossref_primary_10_1021_acsaem_1c02695 crossref_primary_10_1016_j_jcis_2020_05_089 crossref_primary_10_1021_acs_energyfuels_2c01429 crossref_primary_10_1016_j_jcis_2023_09_142 crossref_primary_10_1063_5_0005137 crossref_primary_10_1016_j_ijhydene_2024_02_094 crossref_primary_10_1002_aenm_201902104 crossref_primary_10_1016_j_ccr_2020_213552 crossref_primary_10_1016_j_solidstatesciences_2020_106143 crossref_primary_10_1002_cnma_202000125 crossref_primary_10_1039_D2SE01068B crossref_primary_10_1002_cssc_202001503 crossref_primary_10_1021_acsmaterialslett_4c00544 crossref_primary_10_1016_j_ijhydene_2021_12_045 crossref_primary_10_1039_D0TA02697B crossref_primary_10_1021_acs_iecr_9b05194 crossref_primary_10_1002_aenm_202303730 crossref_primary_10_1016_j_electacta_2020_136873 crossref_primary_10_1016_j_electacta_2020_136994 crossref_primary_10_1016_j_apcatb_2022_121400 crossref_primary_10_1021_acs_energyfuels_2c03833 crossref_primary_10_1021_acs_chemrev_3c00005 crossref_primary_10_1007_s12598_021_01735_y crossref_primary_10_1039_D1DT01645H crossref_primary_10_1016_j_jallcom_2020_157729 crossref_primary_10_1039_D1MA00130B crossref_primary_10_1002_smll_201905885 crossref_primary_10_1002_asia_201901721 crossref_primary_10_1016_j_jcis_2023_12_171 crossref_primary_10_1016_j_cej_2024_152268 crossref_primary_10_1016_j_electacta_2020_135997 crossref_primary_10_1016_j_mtnano_2021_100124 crossref_primary_10_1016_j_mcat_2024_114023 crossref_primary_10_1002_cey2_459 crossref_primary_10_1002_er_7933 crossref_primary_10_1002_adma_201906915 crossref_primary_10_1016_j_jcis_2022_09_085 crossref_primary_10_1039_C9SE01122F crossref_primary_10_1016_j_jcis_2021_07_075 crossref_primary_10_1088_2515_7655_acccb1 crossref_primary_10_1016_j_ijhydene_2023_08_018 crossref_primary_10_1002_celc_202100713 crossref_primary_10_1016_j_electacta_2022_141790 crossref_primary_10_1016_j_ijhydene_2024_02_078 crossref_primary_10_1002_smll_202302130 crossref_primary_10_1016_j_cej_2020_126838 crossref_primary_10_1016_j_jechem_2020_06_068 crossref_primary_10_1021_acs_energyfuels_1c01650 crossref_primary_10_1002_chem_202102209 crossref_primary_10_1002_cnl2_64 crossref_primary_10_1007_s12274_020_2816_7 crossref_primary_10_1007_s13204_021_01782_y crossref_primary_10_1039_D4EE01167H crossref_primary_10_1002_celc_202000734 crossref_primary_10_1016_j_jcis_2023_12_063 crossref_primary_10_1039_C9CC01235D crossref_primary_10_1021_acs_chemrev_3c00382 crossref_primary_10_1007_s12274_021_3424_x crossref_primary_10_1021_acsami_4c07404 crossref_primary_10_1002_smll_202004398 crossref_primary_10_1016_j_ijhydene_2020_08_283 crossref_primary_10_1002_aenm_201902135 crossref_primary_10_1016_j_ccr_2023_215029 crossref_primary_10_1021_acscatal_2c01001 crossref_primary_10_1002_adfm_202102285 crossref_primary_10_1002_celc_201901085 crossref_primary_10_1002_ange_202016102 crossref_primary_10_1039_D1TA02165F crossref_primary_10_1039_D3DT03143H crossref_primary_10_1016_j_cej_2022_138977 crossref_primary_10_1016_j_ijhydene_2023_09_169 crossref_primary_10_1016_j_ijhydene_2022_09_200 crossref_primary_10_1039_D3MH00339F crossref_primary_10_1016_j_cej_2021_129972 crossref_primary_10_1002_er_5973 crossref_primary_10_1021_acs_inorgchem_1c03641 crossref_primary_10_1002_slct_202001810 crossref_primary_10_1016_j_jelechem_2022_116969 crossref_primary_10_1021_acs_cgd_2c00168 crossref_primary_10_1007_s11581_021_04434_x crossref_primary_10_1039_D1NR03500B crossref_primary_10_1002_cssc_202000213 crossref_primary_10_1039_D2TA00120A crossref_primary_10_1016_j_jcis_2022_07_069 crossref_primary_10_1039_D2TA09588B crossref_primary_10_1039_D4GC01098A crossref_primary_10_1016_j_jallcom_2020_154535 crossref_primary_10_3389_fchem_2024_1394191 crossref_primary_10_1016_j_jpcs_2023_111332 crossref_primary_10_1002_cctc_202000233 crossref_primary_10_1016_j_checat_2022_02_007 crossref_primary_10_1021_acscatal_3c00128 crossref_primary_10_1016_j_mtener_2022_100987 crossref_primary_10_3390_ijms232315405 crossref_primary_10_1016_j_ceramint_2023_09_122 crossref_primary_10_1039_D1TA06548C crossref_primary_10_3390_molecules28135010 crossref_primary_10_1002_admt_202301607 crossref_primary_10_1002_ange_202002280 crossref_primary_10_1039_D1MA00566A crossref_primary_10_1039_D0SE01805H crossref_primary_10_1016_j_jallcom_2022_167254 crossref_primary_10_1016_j_jcis_2023_09_046 crossref_primary_10_1016_j_cogsc_2020_100398 crossref_primary_10_1016_j_nanoen_2020_105545 crossref_primary_10_1016_j_ijhydene_2023_01_287 crossref_primary_10_1039_C9TA06686A crossref_primary_10_1002_adfm_202002533 crossref_primary_10_1016_j_cej_2023_146172 crossref_primary_10_1039_D1TA10850F crossref_primary_10_1021_jacs_9b09229 crossref_primary_10_1016_j_ijhydene_2021_08_031 crossref_primary_10_1021_acsami_0c13533 crossref_primary_10_1002_ange_202017102 crossref_primary_10_1016_j_jallcom_2023_169625 crossref_primary_10_1002_aenm_202100265 crossref_primary_10_1021_acs_inorgchem_0c03569 crossref_primary_10_3390_nano12071098 crossref_primary_10_1016_j_cej_2022_135019 crossref_primary_10_1016_j_ijhydene_2024_03_065 crossref_primary_10_1016_j_jallcom_2023_170842 crossref_primary_10_1016_j_ijhydene_2021_12_024 crossref_primary_10_1039_D2NR01525K crossref_primary_10_1016_j_cej_2020_126198 crossref_primary_10_1016_j_jcis_2021_04_118 crossref_primary_10_1002_slct_202204456 crossref_primary_10_1021_acsaem_3c00164 crossref_primary_10_1002_tcr_202300109 crossref_primary_10_1016_j_jallcom_2019_153542 crossref_primary_10_1002_cctc_202000426 crossref_primary_10_1016_j_ijhydene_2020_12_029 crossref_primary_10_1039_D3NR01836A crossref_primary_10_1016_j_matchemphys_2022_126942 crossref_primary_10_1016_j_ijhydene_2020_11_220 crossref_primary_10_1016_j_jelechem_2023_117191 crossref_primary_10_1016_j_ensm_2021_04_009 crossref_primary_10_1016_j_jssc_2020_121825 crossref_primary_10_1039_D1NR03845A crossref_primary_10_1039_C9TA12300H crossref_primary_10_1016_j_ijhydene_2022_09_126 crossref_primary_10_1002_advs_202204949 crossref_primary_10_1002_ange_202008514 crossref_primary_10_1016_j_jcis_2023_07_012 crossref_primary_10_1002_chem_202004267 crossref_primary_10_1002_smll_202101725 crossref_primary_10_1039_D2TA10081A crossref_primary_10_1007_s12209_024_00389_y crossref_primary_10_1016_j_jelechem_2022_116806 crossref_primary_10_1002_smsc_202100015 crossref_primary_10_1016_j_tca_2021_179101 crossref_primary_10_1039_D3SE00685A crossref_primary_10_3389_fceng_2021_703812 crossref_primary_10_1016_j_mtnano_2023_100336 crossref_primary_10_1039_D1QI01465J crossref_primary_10_1016_j_est_2023_108958 crossref_primary_10_1016_j_jmst_2020_10_009 crossref_primary_10_1016_j_ijhydene_2021_12_208 crossref_primary_10_1016_j_est_2022_105488 crossref_primary_10_1021_acs_chemmater_1c02609 crossref_primary_10_1039_C9SE00822E crossref_primary_10_1002_admi_202101229 crossref_primary_10_1016_j_electacta_2021_138267 crossref_primary_10_1016_j_cej_2021_133942 crossref_primary_10_1039_C9TA10498D crossref_primary_10_1039_D0SE00824A crossref_primary_10_1021_acs_inorgchem_1c01566 crossref_primary_10_1016_j_jallcom_2019_153346 crossref_primary_10_1007_s40843_020_1452_9 crossref_primary_10_1021_acsaem_3c01046 crossref_primary_10_1039_D0TA10596A crossref_primary_10_20517_microstructures_2023_30 crossref_primary_10_1021_acs_inorgchem_3c00349 crossref_primary_10_1360_TB_2023_1007 crossref_primary_10_1016_j_ensm_2022_07_027 crossref_primary_10_1088_1361_6528_ac83cb crossref_primary_10_1039_D1TA09925F crossref_primary_10_1002_admi_202101483 crossref_primary_10_1016_j_ijhydene_2020_05_135 crossref_primary_10_1007_s12274_019_2528_z crossref_primary_10_1016_j_apcatb_2021_120753 crossref_primary_10_1007_s10311_022_01454_5 crossref_primary_10_1016_j_mtchem_2021_100675 crossref_primary_10_1016_j_apcatb_2023_123386 crossref_primary_10_1016_j_jcis_2021_05_073 |
Cites_doi | 10.1039/C6TA08075H 10.1039/C7NR04327A 10.1039/C6CE00985A 10.1039/c2cs35310e 10.1021/acscatal.5b00349 10.1039/C4EE00440J 10.1039/C4TA04867A 10.1039/C6TA02334G 10.1039/c3dt50803j 10.1002/anie.201612635 10.1038/nmat4481 10.1039/C5EE03456F 10.1039/C6TA03628G 10.1021/jacs.6b03714 10.1002/adma.201706085 10.1126/science.1103197 10.1021/ja401727n 10.1002/aenm.201701592 10.1021/acsenergylett.6b00144 10.1021/ja511572q 10.1039/C7CY00035A 10.1039/C8NR02091D 10.1002/cctc.201000126 10.1016/j.nanoen.2016.07.032 10.1021/jacs.7b12420 10.1039/C5CY01111F 10.1021/acsami.5b09207 10.1039/C8CY00211H 10.1021/acsami.6b14127 10.1021/acsami.5b10727 10.1126/science.aad1920 10.1002/aenm.201801478 10.1021/cm5044792 10.1021/acsenergylett.7b00679 10.1039/C5TA02974K 10.1016/j.rser.2005.08.004 10.1002/adma.201801812 10.1016/j.rser.2014.12.020 10.1021/acsami.7b18439 10.1039/C3CS60468C 10.1021/acscentsci.5b00227 10.1039/C4EE00957F 10.1038/nmat4465 10.1021/ja0540019 10.1016/0013-4686(64)80088-8 10.1039/C5CP01065A 10.1039/C8TA03933J 10.1038/ncomms3817 10.1039/C5EE01155H 10.1038/s41560-017-0006-y 10.1002/anie.201402646 10.1002/adma.201504024 10.1039/C7CP00636E 10.1039/C7NR08097B 10.1039/C5CE00638D 10.1126/science.aaf5050 10.1002/admi.201500669 10.1002/ange.201505320 10.1016/j.nanoen.2017.07.027 10.1021/ja404523s 10.1039/C7CC03005C 10.1039/C8CC00766G 10.1002/aenm.201801891 10.1021/acscatal.6b02479 10.1002/ppsc.201400209 10.1007/978-3-319-29641-8_2 10.1016/j.electacta.2014.10.105 10.1021/acscatal.5b00154 10.1021/acs.chemmater.7b03627 10.1021/acscatal.7b03167 10.1021/acsnano.8b02752 10.1007/s10853-017-1294-0 10.1063/1.1742616 10.1039/C5NR06718A 10.1039/C4TA06642A 10.1021/acsami.5b10252 10.1039/C6SC05687C 10.1039/C4CC09849H 10.1039/C4CY00669K 10.1126/science.1096566 10.1149/2.0901504jes 10.1039/tf9575301636 10.1016/j.apcatb.2014.02.017 10.1016/j.rser.2007.01.023 10.1039/c3nr03371f 10.1021/acsenergylett.6b00084 10.1021/acsnano.7b04646 10.1126/science.aad5520 10.1021/jacs.5b08186 10.1002/cctc.201000397 10.1149/1.2115565 10.1002/aenm.201500985 10.1002/anie.201600686 10.1021/acs.chemmater.5b04645 10.1002/cssc.201701647 10.1039/C2CS35241A 10.1039/C4CS00470A 10.1038/nmat3313 10.1002/adma.201401692 10.1021/acs.chemrev.6b00374 10.1126/science.1141483 10.1126/science.aad4998 10.1039/C6NR07009D 10.1002/ange.201700150 10.1039/C5CS00434A 10.1016/j.ijhydene.2016.12.060 10.1021/acs.chemmater.5b01284 10.1021/acs.chemmater.7b00867 10.1002/2014GL062308 10.1021/jacs.5b11986 10.1002/adma.201606570 10.1021/acs.chemmater.5b02877 10.1039/C8TA04886J 10.1021/acs.chemmater.6b05080 10.1039/C5CS00729A 10.1016/j.jelechem.2006.11.008 10.1021/acs.inorgchem.5b02158 10.1039/C6NR01867J 10.1016/0254-0584(86)90045-3 10.1016/j.ijhydene.2018.03.154 10.1016/S0013-4686(02)00329-8 10.1039/C4CS00448E 10.1002/adfm.201706319 10.1002/chem.201503777 10.1038/nature21707 10.1039/C6CP04011J 10.1021/jacs.7b01376 10.1039/C5CP02876K 10.1002/anie.201704911 10.1002/anie.201611804 10.1021/ja0504690 10.1016/S0167-2738(02)00266-7 10.1021/acs.jpclett.5b00306 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | NPM AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201806682 |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adma_201806682 30706578 ADMA201806682 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Research Foundation of Korea funderid: 2017R1A2B3005682; 2018R1C1B6004272 – fundername: Korea University – fundername: Korea Basic Science funderid: C38530 – fundername: National Research Foundation of Korea grantid: 2017R1A2B3005682 – fundername: Korea Basic Science grantid: C38530 – fundername: National Research Foundation of Korea grantid: 2018R1C1B6004272 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT NPM .Y3 31~ 6TJ 8WZ A6W AAYOK AAYXX ABEML ABTAH ACBWZ ACSCC AFFNX ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c4762-1374a4cc30ef5d2935fc1795494abb5faf0bf5f28b8d739572309ba1342440bd3 |
IEDL.DBID | 33P |
ISSN | 0935-9648 |
IngestDate | Fri Aug 16 22:52:02 EDT 2024 Thu Oct 10 15:53:52 EDT 2024 Thu Sep 26 15:57:08 EDT 2024 Wed Oct 16 00:49:49 EDT 2024 Sat Aug 24 01:16:47 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | electrolysis hollow structures metal sulfides facet-controlled metal phosphides |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4762-1374a4cc30ef5d2935fc1795494abb5faf0bf5f28b8d739572309ba1342440bd3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ORCID | 0000-0003-0401-5958 0000-0003-0575-7216 0000-0001-5614-8790 |
PMID | 30706578 |
PQID | 2201709053 |
PQPubID | 2045203 |
PageCount | 23 |
ParticipantIDs | proquest_miscellaneous_2179515156 proquest_journals_2201709053 crossref_primary_10_1002_adma_201806682 pubmed_primary_30706578 wiley_primary_10_1002_adma_201806682_ADMA201806682 |
PublicationCentury | 2000 |
PublicationDate | April 5, 2019 |
PublicationDateYYYYMMDD | 2019-04-05 |
PublicationDate_xml | – month: 04 year: 2019 text: April 5, 2019 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1957; 53 2017; 42 2017; 7 2017; 8 2017; 2 2013; 4 2002; 150 1964; 9 2015; 32 2014; 26 1974 2017; 355 2013; 5 2018; 43 2012; 11 2017; 9 2018; 6 2002; 47 1963; 37 2018; 8 2014; 4 2015; 137 2017; 39 2015; 44 2016; 353 2018; 30 2016; 116 2010; 2 2014; 7 2016; 351 2016; 45 2014; 53 2017; 129 2015; 162 2015; 1 2018; 28 2015; 17 2015; 6 2015; 5 2018; 140 2015; 3 2015; 127 2015; 51 1986; 14 2013; 42 1976; 76‐ENAs‐37 2008; 12 2017; 29 2014; 41 2016; 18 2011; 3 2007; 607 2007; 11 2004; 305 2015; 8 2015; 7 2016; 15 2004; 304 2014; 43 2017; 139 2016; 55 2016; 4 2016; 6 2017; 53 2014; 149 2017; 52 2007; 317 1984; 131 2015; 27 2016; 1 2016; 3 2017; 10 2005; 127 2017; 56 2015; 21 1956; 24 2013; 135 2016 2017; 19 2016; 138 2018; 12 2016; 28 2018; 10 2016; 27 2018; 54 2017; 543 2016; 8 2016; 9 2014; 154–155 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_115_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_130_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_129_1 e_1_2_9_106_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 Woolf D. (e_1_2_9_5_1) 2016 e_1_2_9_1_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 O'Grady W. (e_1_2_9_59_1) 1976; 76 e_1_2_9_101_1 e_1_2_9_128_1 e_1_2_9_105_1 e_1_2_9_124_1 e_1_2_9_39_1 e_1_2_9_120_1 e_1_2_9_16_1 O'Grady W. E. (e_1_2_9_58_1) 1974 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_113_1 e_1_2_9_117_1 e_1_2_9_136_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_127_1 e_1_2_9_100_1 e_1_2_9_123_1 Krasil'shchkov A. I. (e_1_2_9_56_1) 1963; 37 e_1_2_9_104_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_112_1 e_1_2_9_116_1 e_1_2_9_135_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 5 start-page: 4066 year: 2015 publication-title: ACS Catal. – volume: 150 start-page: 93 year: 2002 publication-title: Solid State Ionics – volume: 21 start-page: 18062 year: 2015 publication-title: Chem. ‐ Eur. J. – volume: 44 start-page: 2060 year: 2015 publication-title: Chem. Soc. Rev. – volume: 44 start-page: 5148 year: 2015 publication-title: Chem. Soc. Rev. – volume: 42 start-page: 12596 year: 2013 publication-title: Dalton Trans. – volume: 351 start-page: aad1920 year: 2016 publication-title: Science – volume: 138 start-page: 7965 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 48 year: 2016 publication-title: Nat. Mater. – volume: 3 start-page: 5420 year: 2015 publication-title: J. Mater. Chem. A – volume: 9 start-page: 1599 year: 1964 publication-title: Electrochim. Acta – volume: 8 start-page: 2289 year: 2018 publication-title: Catal. Sci. Technol. – volume: 2 start-page: 821 year: 2017 publication-title: Nat. Energy – volume: 7 start-page: 2624 year: 2014 publication-title: Energy Environ. Sci. – volume: 18 start-page: 23864 year: 2016 publication-title: Phys. Chem. Chem. Phys. – volume: 4 start-page: 17587 year: 2016 publication-title: J. Mater. Chem. A – volume: 7 start-page: 28412 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 305 start-page: 972 year: 2004 publication-title: Science – volume: 3 start-page: 1656 year: 2015 publication-title: J. Mater. Chem. A – volume: 139 start-page: 5494 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 850 year: 2016 publication-title: Energy Environ. Sci. – volume: 7 start-page: 2255 year: 2014 publication-title: Energy Environ. Sci. – volume: 3 start-page: 1159 year: 2011 publication-title: ChemCatChem – volume: 28 start-page: 1155 year: 2016 publication-title: Chem. Mater. – volume: 8 start-page: 1143 year: 2018 publication-title: ACS Catal. – volume: 8 start-page: 19129 year: 2016 publication-title: Nanoscale – volume: 27 start-page: 526 year: 2016 publication-title: Nano Energy – volume: 7 start-page: 1549 year: 2017 publication-title: Catal. Sci. Technol. – volume: 56 start-page: 11559 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 1 start-page: 244 year: 2015 publication-title: ACS Cent. Sci. – volume: 53 start-page: 5427 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 10 start-page: 9379 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 1774 year: 2018 publication-title: Nanoscale – volume: 353 start-page: 1011 year: 2016 publication-title: Science – volume: 5 start-page: 1500985 year: 2015 publication-title: Adv. Energy Mater. – volume: 32 start-page: 536 year: 2015 publication-title: Part. Part. Syst. Charact. – volume: 6 start-page: 1077 year: 2016 publication-title: Catal. Sci. Technol. – volume: 11 start-page: 550 year: 2012 publication-title: Nat. Mater. – volume: 137 start-page: 14023 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 45 start-page: 3039 year: 2016 publication-title: Chem. Soc. Rev. – volume: 8 start-page: 10902 year: 2016 publication-title: Nanoscale – volume: 30 start-page: 1706085 year: 2018 publication-title: Adv. Mater. – volume: 27 start-page: 1120 year: 2015 publication-title: Chem. Mater. – volume: 29 start-page: 1606570 year: 2017 publication-title: Adv. Mater. – start-page: 41 year: 2016 – volume: 3 start-page: 14942 year: 2015 publication-title: J. Mater. Chem. A – volume: 51 start-page: 4252 year: 2015 publication-title: Chem. Commun. – start-page: 286 year: 1974 – volume: 45 start-page: 1529 year: 2016 publication-title: Chem. Soc. Rev. – volume: 52 start-page: 11402 year: 2017 publication-title: J. Mater. Sci. – volume: 149 start-page: 324 year: 2014 publication-title: Electrochim. Acta – volume: 3 start-page: 1500669 year: 2016 publication-title: Adv. Mater. Interfaces – volume: 56 start-page: 3897 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 30 start-page: 1801812 year: 2018 publication-title: Adv. Mater. – volume: 6 start-page: 14103 year: 2018 publication-title: J. Mater. Chem. A – volume: 2 start-page: 1937 year: 2017 publication-title: ACS Energy Lett. – volume: 53 start-page: 6025 year: 2017 publication-title: Chem. Commun. – volume: 116 start-page: 14056 year: 2016 publication-title: Chem. Rev. – volume: 28 start-page: 1706319 year: 2018 publication-title: Adv. Funct. Mater. – volume: 543 start-page: 373 year: 2017 publication-title: Nature – start-page: 7 year: 2016 publication-title: Nat. Commun. – volume: 6 start-page: 16130 year: 2018 publication-title: J. Mater. Chem. A – volume: 137 start-page: 1587 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 42 start-page: 89 year: 2013 publication-title: Chem. Soc. Rev. – volume: 12 start-page: 158 year: 2018 publication-title: ACS Nano – volume: 27 start-page: 3769 year: 2015 publication-title: Chem. Mater. – volume: 5 start-page: 3625 year: 2015 publication-title: ACS Catal. – volume: 42 start-page: 2986 year: 2013 publication-title: Chem. Soc. Rev. – volume: 9 start-page: 5982 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 28 start-page: 92 year: 2016 publication-title: Adv. Mater. – volume: 18 start-page: 6083 year: 2016 publication-title: CrystEngComm – volume: 76‐ENAs‐37 start-page: 1 year: 1976 publication-title: Am. Soc. Mech. Eng. – volume: 4 start-page: 10114 year: 2016 publication-title: J. Mater. Chem. A – volume: 29 start-page: 8539 year: 2017 publication-title: Chem. Mater. – volume: 135 start-page: 10664 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 1221 year: 2008 publication-title: Renewable Sustainable Energy Rev. – volume: 29 start-page: 3854 year: 2017 publication-title: Chem. Mater. – volume: 44 start-page: 391 year: 2015 publication-title: Renewable Sustainable Energy Rev. – volume: 4 start-page: 11973 year: 2016 publication-title: J. Mater. Chem. A – volume: 4 start-page: 2817 year: 2013 publication-title: Nat. Commun. – volume: 12 start-page: 7996 year: 2018 publication-title: ACS Nano – volume: 53 start-page: 1636 year: 1957 publication-title: Trans. Faraday Soc. – volume: 8 start-page: 5517 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 1117 year: 2007 publication-title: Renewable Sustainable Energy Rev. – volume: 47 start-page: 3571 year: 2002 publication-title: Electrochim. Acta – volume: 41 start-page: 8847 year: 2014 publication-title: Geophys. Res. Lett. – volume: 56 start-page: 2386 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 140 start-page: 2610 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 1359 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 43 start-page: 8815 year: 2018 publication-title: Int. J. Hydrogen Energy – volume: 15 start-page: 197 year: 2016 publication-title: Nat. Mater. – volume: 17 start-page: 4627 year: 2015 publication-title: CrystEngComm – volume: 5 start-page: 12224 year: 2013 publication-title: Nanoscale – volume: 162 start-page: F455 year: 2015 publication-title: J. Electrochem. Soc. – volume: 304 start-page: 711 year: 2004 publication-title: Science – volume: 39 start-page: 444 year: 2017 publication-title: Nano Energy – volume: 135 start-page: 10274 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 10823 year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 43 start-page: 6555 year: 2014 publication-title: Chem. Soc. Rev. – volume: 8 start-page: 1801478 year: 2018 publication-title: Adv. Energy Mater. – volume: 2 start-page: 724 year: 2010 publication-title: ChemCatChem – volume: 8 start-page: 2347 year: 2015 publication-title: Energy Environ. Sci. – volume: 10 start-page: 4899 year: 2017 publication-title: ChemSusChem – volume: 54 start-page: 3859 year: 2018 publication-title: Chem. Commun. – volume: 317 start-page: 100 year: 2007 publication-title: Science – volume: 14 start-page: 397 year: 1986 publication-title: Mater. Chem. Phys. – volume: 8 start-page: 2769 year: 2017 publication-title: Chem. Sci. – volume: 55 start-page: 221 year: 2016 publication-title: Inorg. Chem. – volume: 7 start-page: 19764 year: 2015 publication-title: Nanoscale – volume: 29 start-page: 5566 year: 2017 publication-title: Chem. Mater. – volume: 26 start-page: 5702 year: 2014 publication-title: Adv. Mater. – volume: 127 start-page: 5308 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 1701592 year: 2018 publication-title: Adv. Energy Mater. – volume: 1 start-page: 195 year: 2016 publication-title: ACS Energy Lett. – volume: 6 start-page: 951 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 607 start-page: 83 year: 2007 publication-title: J. Electroanal. Chem. – volume: 127 start-page: 14871 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 3800 year: 2014 publication-title: Catal. Sci. Technol. – volume: 37 start-page: 273 year: 1963 publication-title: Zh. Fiz. Khim. – volume: 55 start-page: 6502 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 27 start-page: 7636 year: 2015 publication-title: Chem. Mater. – volume: 8 start-page: 1801891 year: 2018 publication-title: Adv. Energy Mater. – volume: 10 start-page: 9845 year: 2018 publication-title: Nanoscale – volume: 1 start-page: 169 year: 2016 publication-title: ACS Energy Lett. – volume: 355 start-page: eaad4998 year: 2017 publication-title: Science – volume: 131 start-page: 290 year: 1984 publication-title: J. Electrochem. Soc. – volume: 351 start-page: 1306 year: 2016 publication-title: Science – volume: 127 start-page: 11383 year: 2015 publication-title: Angew. Chem. – volume: 9 start-page: 15397 year: 2017 publication-title: Nanoscale – volume: 42 start-page: 5985 year: 2017 publication-title: Int. J. Hydrogen Energy – volume: 19 start-page: 10125 year: 2017 publication-title: Phys. Chem. Chem. Phys. – volume: 129 start-page: 4270 year: 2017 publication-title: Angew. Chem. – volume: 154–155 start-page: 213 year: 2014 publication-title: Appl. Catal., B – volume: 6 start-page: 8069 year: 2016 publication-title: ACS Catal. – volume: 17 start-page: 29387 year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 24 start-page: 817 year: 1956 publication-title: J. Chem. Phys. – volume: 8 start-page: 2158 year: 2016 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_9_16_1 doi: 10.1039/C6TA08075H – ident: e_1_2_9_88_1 doi: 10.1039/C7NR04327A – ident: e_1_2_9_108_1 doi: 10.1039/C6CE00985A – ident: e_1_2_9_46_1 doi: 10.1039/c2cs35310e – ident: e_1_2_9_77_1 doi: 10.1021/acscatal.5b00349 – ident: e_1_2_9_50_1 doi: 10.1039/C4EE00440J – ident: e_1_2_9_65_1 doi: 10.1039/C4TA04867A – ident: e_1_2_9_14_1 doi: 10.1039/C6TA02334G – ident: e_1_2_9_87_1 doi: 10.1039/c3dt50803j – ident: e_1_2_9_95_1 doi: 10.1002/anie.201612635 – ident: e_1_2_9_73_1 doi: 10.1038/nmat4481 – ident: e_1_2_9_32_1 doi: 10.1039/C5EE03456F – ident: e_1_2_9_126_1 doi: 10.1039/C6TA03628G – ident: e_1_2_9_72_1 doi: 10.1021/jacs.6b03714 – ident: e_1_2_9_98_1 doi: 10.1002/adma.201706085 – ident: e_1_2_9_13_1 doi: 10.1126/science.1103197 – ident: e_1_2_9_99_1 doi: 10.1021/ja401727n – ident: e_1_2_9_20_1 doi: 10.1002/aenm.201701592 – ident: e_1_2_9_79_1 doi: 10.1021/acsenergylett.6b00144 – ident: e_1_2_9_23_1 doi: 10.1021/ja511572q – ident: e_1_2_9_133_1 doi: 10.1039/C7CY00035A – ident: e_1_2_9_100_1 doi: 10.1039/C8NR02091D – ident: e_1_2_9_64_1 doi: 10.1002/cctc.201000126 – ident: e_1_2_9_103_1 doi: 10.1016/j.nanoen.2016.07.032 – ident: e_1_2_9_28_1 doi: 10.1021/jacs.7b12420 – ident: e_1_2_9_21_1 doi: 10.1039/C5CY01111F – ident: e_1_2_9_129_1 doi: 10.1021/acsami.5b09207 – ident: e_1_2_9_132_1 doi: 10.1039/C8CY00211H – ident: e_1_2_9_93_1 doi: 10.1021/acsami.6b14127 – ident: e_1_2_9_27_1 doi: 10.1021/acsami.5b10727 – ident: e_1_2_9_6_1 doi: 10.1126/science.aad1920 – ident: e_1_2_9_41_1 doi: 10.1002/aenm.201801478 – ident: e_1_2_9_112_1 doi: 10.1021/cm5044792 – start-page: 7 year: 2016 ident: e_1_2_9_5_1 publication-title: Nat. Commun. contributor: fullname: Woolf D. – ident: e_1_2_9_118_1 doi: 10.1021/acsenergylett.7b00679 – ident: e_1_2_9_70_1 doi: 10.1039/C5TA02974K – ident: e_1_2_9_7_1 doi: 10.1016/j.rser.2005.08.004 – ident: e_1_2_9_97_1 doi: 10.1002/adma.201801812 – ident: e_1_2_9_3_1 doi: 10.1016/j.rser.2014.12.020 – ident: e_1_2_9_83_1 doi: 10.1021/acsami.7b18439 – ident: e_1_2_9_9_1 doi: 10.1039/C3CS60468C – ident: e_1_2_9_75_1 doi: 10.1021/acscentsci.5b00227 – ident: e_1_2_9_68_1 doi: 10.1039/C4EE00957F – ident: e_1_2_9_69_1 doi: 10.1038/nmat4465 – ident: e_1_2_9_67_1 doi: 10.1021/ja0540019 – volume: 37 start-page: 273 year: 1963 ident: e_1_2_9_56_1 publication-title: Zh. Fiz. Khim. contributor: fullname: Krasil'shchkov A. I. – ident: e_1_2_9_61_1 doi: 10.1016/0013-4686(64)80088-8 – ident: e_1_2_9_35_1 doi: 10.1039/C5CP01065A – ident: e_1_2_9_82_1 doi: 10.1039/C8TA03933J – ident: e_1_2_9_44_1 doi: 10.1038/ncomms3817 – ident: e_1_2_9_78_1 doi: 10.1039/C5EE01155H – ident: e_1_2_9_4_1 doi: 10.1038/s41560-017-0006-y – ident: e_1_2_9_31_1 doi: 10.1002/anie.201402646 – ident: e_1_2_9_135_1 doi: 10.1002/adma.201504024 – ident: e_1_2_9_71_1 doi: 10.1039/C7CP00636E – ident: e_1_2_9_84_1 doi: 10.1039/C7NR08097B – ident: e_1_2_9_106_1 doi: 10.1039/C5CE00638D – ident: e_1_2_9_12_1 doi: 10.1126/science.aaf5050 – ident: e_1_2_9_127_1 doi: 10.1002/admi.201500669 – ident: e_1_2_9_136_1 doi: 10.1002/ange.201505320 – ident: e_1_2_9_101_1 doi: 10.1016/j.nanoen.2017.07.027 – ident: e_1_2_9_18_1 doi: 10.1021/ja404523s – ident: e_1_2_9_24_1 doi: 10.1039/C7CC03005C – ident: e_1_2_9_134_1 doi: 10.1039/C8CC00766G – ident: e_1_2_9_37_1 doi: 10.1002/aenm.201801891 – ident: e_1_2_9_26_1 doi: 10.1021/acscatal.6b02479 – ident: e_1_2_9_105_1 doi: 10.1002/ppsc.201400209 – ident: e_1_2_9_62_1 doi: 10.1007/978-3-319-29641-8_2 – ident: e_1_2_9_122_1 doi: 10.1016/j.electacta.2014.10.105 – ident: e_1_2_9_137_1 doi: 10.1021/acscatal.5b00154 – ident: e_1_2_9_85_1 doi: 10.1021/acs.chemmater.7b03627 – ident: e_1_2_9_15_1 doi: 10.1021/acscatal.7b03167 – ident: e_1_2_9_110_1 doi: 10.1021/acsnano.8b02752 – ident: e_1_2_9_38_1 doi: 10.1007/s10853-017-1294-0 – ident: e_1_2_9_55_1 doi: 10.1063/1.1742616 – ident: e_1_2_9_17_1 doi: 10.1039/C5NR06718A – ident: e_1_2_9_107_1 doi: 10.1039/C4TA06642A – ident: e_1_2_9_125_1 doi: 10.1021/acsami.5b10252 – volume: 76 start-page: 1 year: 1976 ident: e_1_2_9_59_1 publication-title: Am. Soc. Mech. Eng. contributor: fullname: O'Grady W. – ident: e_1_2_9_116_1 doi: 10.1039/C6SC05687C – ident: e_1_2_9_81_1 doi: 10.1039/C4CC09849H – ident: e_1_2_9_47_1 doi: 10.1039/C4CY00669K – ident: e_1_2_9_80_1 doi: 10.1126/science.1096566 – ident: e_1_2_9_39_1 doi: 10.1149/2.0901504jes – ident: e_1_2_9_57_1 doi: 10.1039/tf9575301636 – ident: e_1_2_9_123_1 doi: 10.1016/j.apcatb.2014.02.017 – ident: e_1_2_9_43_1 doi: 10.1016/j.rser.2007.01.023 – start-page: 286 volume-title: Proc. Symp. on Electrocatalysis year: 1974 ident: e_1_2_9_58_1 contributor: fullname: O'Grady W. E. – ident: e_1_2_9_30_1 doi: 10.1039/c3nr03371f – ident: e_1_2_9_76_1 doi: 10.1021/acsenergylett.6b00084 – ident: e_1_2_9_131_1 doi: 10.1021/acsnano.7b04646 – ident: e_1_2_9_113_1 doi: 10.1126/science.aad5520 – ident: e_1_2_9_33_1 doi: 10.1021/jacs.5b08186 – ident: e_1_2_9_42_1 doi: 10.1002/cctc.201000397 – ident: e_1_2_9_60_1 doi: 10.1149/1.2115565 – ident: e_1_2_9_19_1 doi: 10.1002/aenm.201500985 – ident: e_1_2_9_89_1 doi: 10.1002/anie.201600686 – ident: e_1_2_9_128_1 doi: 10.1021/acs.chemmater.5b04645 – ident: e_1_2_9_102_1 doi: 10.1002/cssc.201701647 – ident: e_1_2_9_109_1 doi: 10.1039/C2CS35241A – ident: e_1_2_9_48_1 doi: 10.1039/C4CS00470A – ident: e_1_2_9_74_1 doi: 10.1038/nmat3313 – ident: e_1_2_9_124_1 doi: 10.1002/adma.201401692 – ident: e_1_2_9_115_1 doi: 10.1021/acs.chemrev.6b00374 – ident: e_1_2_9_11_1 doi: 10.1126/science.1141483 – ident: e_1_2_9_8_1 doi: 10.1126/science.aad4998 – ident: e_1_2_9_86_1 doi: 10.1039/C6NR07009D – ident: e_1_2_9_111_1 doi: 10.1002/ange.201700150 – ident: e_1_2_9_53_1 doi: 10.1039/C5CS00434A – ident: e_1_2_9_90_1 doi: 10.1016/j.ijhydene.2016.12.060 – ident: e_1_2_9_66_1 doi: 10.1021/acs.chemmater.5b01284 – ident: e_1_2_9_94_1 doi: 10.1021/acs.chemmater.7b00867 – ident: e_1_2_9_2_1 doi: 10.1002/2014GL062308 – ident: e_1_2_9_22_1 doi: 10.1021/jacs.5b11986 – ident: e_1_2_9_121_1 doi: 10.1002/adma.201606570 – ident: e_1_2_9_92_1 doi: 10.1021/acs.chemmater.5b02877 – ident: e_1_2_9_114_1 doi: 10.1039/C8TA04886J – ident: e_1_2_9_104_1 doi: 10.1021/acs.chemmater.6b05080 – ident: e_1_2_9_10_1 doi: 10.1039/C5CS00729A – ident: e_1_2_9_63_1 doi: 10.1016/j.jelechem.2006.11.008 – ident: e_1_2_9_130_1 doi: 10.1021/acs.inorgchem.5b02158 – ident: e_1_2_9_29_1 doi: 10.1039/C6NR01867J – ident: e_1_2_9_45_1 doi: 10.1016/0254-0584(86)90045-3 – ident: e_1_2_9_91_1 doi: 10.1016/j.ijhydene.2018.03.154 – ident: e_1_2_9_52_1 doi: 10.1016/S0013-4686(02)00329-8 – ident: e_1_2_9_25_1 doi: 10.1039/C4CS00448E – ident: e_1_2_9_119_1 doi: 10.1002/adfm.201706319 – ident: e_1_2_9_120_1 doi: 10.1002/chem.201503777 – ident: e_1_2_9_1_1 doi: 10.1038/nature21707 – ident: e_1_2_9_117_1 doi: 10.1039/C6CP04011J – ident: e_1_2_9_36_1 doi: 10.1021/jacs.7b01376 – ident: e_1_2_9_34_1 doi: 10.1039/C5CP02876K – ident: e_1_2_9_40_1 doi: 10.1002/anie.201704911 – ident: e_1_2_9_96_1 doi: 10.1002/anie.201611804 – ident: e_1_2_9_54_1 doi: 10.1021/ja0504690 – ident: e_1_2_9_51_1 doi: 10.1016/S0167-2738(02)00266-7 – ident: e_1_2_9_49_1 doi: 10.1021/acs.jpclett.5b00306 |
SSID | ssj0009606 |
Score | 2.731838 |
SecondaryResourceType | review_article |
Snippet | Because H2 is considered a promising clean energy source, water electrolysis has attracted great interest in related research and technology. Noble‐metal‐based... Because H is considered a promising clean energy source, water electrolysis has attracted great interest in related research and technology. Noble-metal-based... Abstract Because H 2 is considered a promising clean energy source, water electrolysis has attracted great interest in related research and technology.... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e1806682 |
SubjectTerms | Abundance Catalysis Catalysts Catalytic activity Clean energy Control methods Electrode materials Electrolysis facet‐controlled hollow structures Materials science metal phosphides Metal sulfides Morphology Nanocrystals Phosphides Transition metals Water splitting |
Title | Morphology‐Controlled Metal Sulfides and Phosphides for Electrochemical Water Splitting |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201806682 https://www.ncbi.nlm.nih.gov/pubmed/30706578 https://www.proquest.com/docview/2201709053 https://search.proquest.com/docview/2179515156 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSsQwEB7Ukx78_6muEkHwVEzTpJs9LuuKlxVhFfVUkiZBQbqLde8-gs_okzhJd6uLB0FvDW1omGRmvskk3wCc8DQtEsNVzHUiYu4ST3lraeyY0YJSx-pUzOWwfXUvz_ueJqe5xV_zQzQbbl4zgr32Cq50dfZFGqpM4A1KJDpN6Y0whgrhDkd6_cW6m4Ximj7ZF3cyLmesjZSdzXef90o_oOY8cg2u52Lt_4Neh9Up7CTdep1swIItN2HlGxnhFjwMRijzsMv-8fbeq4-wP1tDBhYBOhlOnt2TsRVRpSHXj6Nq_BiaCHpJv66lU0zJB8gdAtgXMkR8G05Vb8PtRf-mdxlPCy_EBUfjGCdpmyteFCm1ThgEBMIVqLgYSnKltXDKUe2EY1JLExJ9GMd0tEpSf2uOapPuwFI5Ku0eEJ1JKZQQGLkwrlKpE2o7vGizjGkmMxvB6Uzw-bjm18hrJmWWe2HljbAiaM3mJZ_qWZUz5vl_OmhJIjhuXqOG-LSHKu1ogt_4oXvclkWwW89n8ytv8TI0WhGwMG2_jCHvng-6TWv_L50OYBmfQ0KKihYsvb5M7CEsVmZyFNbuJ7dk7J0 |
link.rule.ids | 315,782,786,1408,27935,27936,46066,46490 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7xOACHlmdJC8VISJwiHD-yznEFixaVRUgLoj1FdmyLSiiLWPbOT-hv7C_p2NkNXfWAVHF0EivW2DPzjcf-BuBIcF5lVuhUmEymwmeB8tbR1DNrJKWeNamY_rBz9V2d9QJNTnd2F6bhh2g33IJmRHsdFDxsSJ-8soZqG4mDMoVeU6EVXha5KEL1Bs6vX3l381heM6T70iIXasbbSNnJfP95v_QP2JzHrtH5nH98h2Gvw4cp8iTdZqlswIKrN2HtLz7CLfgxGKHY40b775dfp80p9gdnycAhRifDyYP_ad2Y6NqS6_vR-PE-NhH3kl5TTqea8g-QO8SwT2SIEDcerN6G2_PezWk_ndZeSCuB9jHNeEdoUVWcOi8tYgLpK9RdjCaFNkZ67anx0jNllI25PgxlCqMzHi7OUWP5DizVo9rtAjG5UlJLicELE5ork1FXiKrDcmaYyl0CxzPJl48NxUbZkCmzMgirbIWVwN5sYsqpqo1LxgIFUIHGJIHD9jUqSch86NqNJvhNGHqAbnkCn5oJbX8VjF6OdisBFuftjTGU3bNBt219_p9OB7DSvxlclpcXV9--wCo-j_kpKvdg6flp4vZhcWwnX-NC_gOoOPC- |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9swED-6DMb20K7b2rntNg0GezKVZclRHkP-kLIlBNKx7clIlkQLwQnJ_L6P0M_YT9KTnLgNfRh0j7ItLO50dz_pdD8BfOFpWiSGq5jrRMTcJZ7y1tLYMaMFpY7VqZjRrD35JfsDT5PTVPHX_BDNhpu3jOCvvYEvjTu_Jw1VJvAGJRKDpkQn_Jx7LO6LONLpPe1uFm7X9Nm-uJNxuaVtpOx8t_9uWHqENXeha4g9w4P_H_Vr2N_gTtKtJ8oh7NnyDbx6wEb4Fn6PFyj0sM1--_emV59hn1tDxhYROplVc3dt7Jqo0pDp1WK9vApNRL1kUF-mU2zYB8hPRLArMkOAG45Vv4Mfw8FlbxRvbl6IC47eMU7SNle8KFJqnTCICIQr0HJxLcmV1sIpR7UTjkktTcj04UKmo1WS-rI5qk16BK1yUdr3QHQmpVBC4NKFcZVKnVDb4UWbZUwzmdkIvm4Fny9rgo28plJmuRdW3ggrgrOtXvKNoa1zxjwBUAddSQSfm9doIj7voUq7qPAbP3QP3LIIjmt9Nr_yLi9DrxUBC2r7xxjybn_cbVonT-n0CV5M-8P8-8Xk2ym8xMchOUXFGbT-rCr7AZ6tTfUxTOM71bLvbQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Morphology%E2%80%90Controlled+Metal+Sulfides+and+Phosphides+for+Electrochemical+Water+Splitting&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Joo%2C+Jinwhan&rft.au=Kim%2C+Taekyung&rft.au=Lee%2C+Jaeyoung&rft.au=Choi%2C+Sang%E2%80%90Il&rft.date=2019-04-05&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=14&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201806682&rft.externalDBID=10.1002%252Fadma.201806682&rft.externalDocID=ADMA201806682 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |