Decoupling of ionic conductivity from structural dynamics in polymerized ionic liquids

Charge transport and structural dynamics in low molecular weight and polymerized 1-vinyl-3-pentylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids (ILs) are investigated by a combination of broadband dielectric spectroscopy, dynamic mechanical spectroscopy and differential scanning calorim...

Full description

Saved in:
Bibliographic Details
Published in:Soft matter Vol. 10; no. 20; p. 3536
Main Authors: Sangoro, J R, Iacob, C, Agapov, A L, Wang, Y, Berdzinski, S, Rexhausen, H, Strehmel, V, Friedrich, C, Sokolov, A P, Kremer, F
Format: Journal Article
Language:English
Published: England 28-05-2014
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Charge transport and structural dynamics in low molecular weight and polymerized 1-vinyl-3-pentylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids (ILs) are investigated by a combination of broadband dielectric spectroscopy, dynamic mechanical spectroscopy and differential scanning calorimetry. While the dc conductivity and fluidity exhibit practically identical temperature dependence for the non-polymerized IL, a significant decoupling of ionic conduction from structural dynamics is observed for the polymerized IL. In addition, the dc conductivity of the polymerized IL exceeds that of its molecular counterpart by four orders of magnitude at their respective calorimetric glass transition temperatures. This is attributed to the unusually high mobility of the anions especially at lower temperatures when the structural dynamics is significantly slowed down. A simple physical explanation of the possible origin of the remarkable decoupling of ionic conductivity from structural dynamics is proposed.
ISSN:1744-6848
DOI:10.1039/c3sm53202j