Assessment of pixel-oriented k-NN machine learning algorithm performance for the interannual remote sensing monitoring of eelgrass beds at the mouth of the Romaine
Eelgrass cover extent is among the most reliable indicators for measuring changes in coastal ecosystems. Eelgrass has colonized the mouth of the Romaine River and has become a part of environmental monitoring there since 2013. The presence of eelgrass in this area is an essential factor for the earl...
Saved in:
Published in: | Environmental monitoring and assessment Vol. 195; no. 8; p. 939 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Cham
Springer International Publishing
01-08-2023
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Eelgrass cover extent is among the most reliable indicators for measuring changes in coastal ecosystems. Eelgrass has colonized the mouth of the Romaine River and has become a part of environmental monitoring there since 2013. The presence of eelgrass in this area is an essential factor for the early detection of changes in the Romaine coastal ecosystem. This will act as a trigger for an appropriate environmental response to preserve ecosystem health. In this paper, a cost- and time-efficient workflow for such spatial monitoring is proposed using a pixel-oriented k-NN algorithm. It can then be applied to multiple modellers to efficiently map the eelgrass cover. Training data were collected to define key variables for segmentation and k-NN classification, providing greater edge detection for the presence of eelgrass. The study highlights that remote sensing and training data must be acquired under similar conditions, replicating methodologies for collecting data on the ground. Similar approaches must be used for the zonal statistic requirements of the monitoring area. This will allow a more accurate and reliable assessment of eelgrass beds over time. An overall accuracy of over 90% was achieved for eelgrass detection for each year of monitoring. |
---|---|
AbstractList | Abstract
Eelgrass cover extent is among the most reliable indicators for measuring changes in coastal ecosystems. Eelgrass has colonized the mouth of the Romaine River and has become a part of environmental monitoring there since 2013. The presence of eelgrass in this area is an essential factor for the early detection of changes in the Romaine coastal ecosystem. This will act as a trigger for an appropriate environmental response to preserve ecosystem health. In this paper, a cost- and time-efficient workflow for such spatial monitoring is proposed using a pixel-oriented k-NN algorithm. It can then be applied to multiple modellers to efficiently map the eelgrass cover. Training data were collected to define key variables for segmentation and k-NN classification, providing greater edge detection for the presence of eelgrass. The study highlights that remote sensing and training data must be acquired under similar conditions, replicating methodologies for collecting data on the ground. Similar approaches must be used for the zonal statistic requirements of the monitoring area. This will allow a more accurate and reliable assessment of eelgrass beds over time. An overall accuracy of over 90% was achieved for eelgrass detection for each year of monitoring. Eelgrass cover extent is among the most reliable indicators for measuring changes in coastal ecosystems. Eelgrass has colonized the mouth of the Romaine River and has become a part of environmental monitoring there since 2013. The presence of eelgrass in this area is an essential factor for the early detection of changes in the Romaine coastal ecosystem. This will act as a trigger for an appropriate environmental response to preserve ecosystem health. In this paper, a cost- and time-efficient workflow for such spatial monitoring is proposed using a pixel-oriented k-NN algorithm. It can then be applied to multiple modellers to efficiently map the eelgrass cover. Training data were collected to define key variables for segmentation and k-NN classification, providing greater edge detection for the presence of eelgrass. The study highlights that remote sensing and training data must be acquired under similar conditions, replicating methodologies for collecting data on the ground. Similar approaches must be used for the zonal statistic requirements of the monitoring area. This will allow a more accurate and reliable assessment of eelgrass beds over time. An overall accuracy of over 90% was achieved for eelgrass detection for each year of monitoring. |
ArticleNumber | 939 |
Author | Lalumière, C. Gilbert, J.-P. Lemieux, P. Fugaru, N. Tremblay, A. |
Author_xml | – sequence: 1 givenname: P. orcidid: 0000-0003-4386-9913 surname: Lemieux fullname: Lemieux, P. email: philippe.lemieux@englobecorp.com organization: Environmental Studies & Climate Changes, Englobe Corp – sequence: 2 givenname: C. surname: Lalumière fullname: Lalumière, C. organization: Environmental Studies & Climate Change, Englobe Corp, Boul. du Parc-Technologique – sequence: 3 givenname: N. surname: Fugaru fullname: Fugaru, N. organization: Innovations, Groupe Alphard – sequence: 4 givenname: J.-P. surname: Gilbert fullname: Gilbert, J.-P. organization: Direction Environnement, Hydro-Québec – sequence: 5 givenname: A. surname: Tremblay fullname: Tremblay, A. organization: Direction Environnement, Hydro-Québec |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37436485$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAQtVAR3S78AQ7IEpdeAnbs2PEJVRVfUlUk1Ls1yU42KbEd7ATB7-kfxdkt5ePAyTOa92beeN4ZOfHBIyHPOXvFGdOvE2dK8YKVouBcqroQj8iGV1oUpanMCdkwrnShhDKn5CylW8aY0dI8IadCS6FkXW3I3UVKmJJDP9PQ0Wn4jmMR4pBz3NEvxfU1ddD2g0c6IkQ_-D2FcZ8Rc-_ohLEL0YFvkeaAzj3SITMjeL_ASCO6MCNN6NNKdMEPc6bmMM9CHPcRUqIN7hKF-cB2YZn7tbomn4ODPPkpedzBmPDZ_bslN-_e3lx-KK4-vf94eXFVtFJXcwEN30Ej0ChWQmk0F6VQrVQla5kB0VVQN9BIaaRWvBWiZU2N0gipkXEEsSVvjm2npXG4a_MXRBjtFAcH8YcNMNi_K37o7T58s5wJUVe1yB3O7zvE8HXBNFs3pBbHETyGJdmyFqo0pc7StuTlP9DbsESf1zugONciS9uS8ohqY0gpYveghjO7esAePWCzB-zBA3ZV8eLPPR4ov46eAeIISNN6C4y_Z_-n7U-nMsIr |
CitedBy_id | crossref_primary_10_1371_journal_pone_0298664 |
Cites_doi | 10.1109/34.295913 10.2307/2529310 10.3390/rs14225760 10.1080/01431160500104111 10.1016/S0304-3770(99)00038-8 10.3390/rs4092661 10.1016/j.ecss.2013.08.026 10.1080/00045608.2012.689236 10.1016/S0272-7714(05)80039-3 10.1080/01431161.2014.990649 10.3390/rs71215838 10.5194/gmd-8-1991-2015 10.1007/978-1-4842-4261-2 10.1016/j.ecoinf.2018.09.004 10.1117/12.464654 10.1016/S0764-4469(99)00112-2 10.1017/CBO9780511525551 10.1088/1757-899X/677/5/052038 10.1109/ICCMC48092.2020.ICCMC-00069 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7QH 7QL 7SN 7ST 7T7 7TG 7TN 7U7 7UA 7WY 7WZ 7X7 7XB 87Z 88E 88I 8AO 8C1 8FD 8FI 8FJ 8FK 8FL ABUWG AFKRA ATCPS AZQEC BENPR BEZIV BHPHI C1K CCPQU DWQXO F1W FR3 FRNLG FYUFA F~G GHDGH GNUQQ H97 HCIFZ K60 K6~ K9. KL. L.- L.G M0C M0S M1P M2P M7N P64 PATMY PQBIZ PQBZA PQEST PQQKQ PQUKI PYCSY Q9U SOI 7X8 5PM |
DOI | 10.1007/s10661-023-11468-3 |
DatabaseName | SpringerOpen (Open Access) Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Aqualine Bacteriology Abstracts (Microbiology B) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Toxicology Abstracts Water Resources Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central ProQuest Agriculture & Environmental Science Database ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) Meteorological & Geoastrophysical Abstracts - Academic ABI/INFORM Professional Advanced Aquatic Science & Fisheries Abstracts (ASFA) Professional ABI/INFORM Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Science Journals Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environmental Science Database One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Medical Library (Alumni) Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Business Collection Ecology Abstracts Aqualine ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ABI/INFORM Global (Corporate) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced Oceanic Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest Medical Library ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Business (Alumni) Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Ecology Environmental Sciences |
EISSN | 1573-2959 |
EndPage | 939 |
ExternalDocumentID | 10_1007_s10661_023_11468_3 37436485 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Hydro-Québec funderid: http://dx.doi.org/10.13039/501100003833 – fundername: ; |
GroupedDBID | --- -5A -5G -5~ -BR -EM -XX -Y2 -~C ..I .86 .VR 06D 0VY 199 1N0 1SB 2.D 203 28- 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3V. 4.4 406 408 409 40D 40E 4P2 53G 5GY 5QI 5VS 67M 67Z 6NX 78A 7WY 7X7 7XC 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AAMRO AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO AAZAB ABBBX ABBXA ABDZT ABECU ABEOS ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACGOD ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACSNA ACTTH ACVWB ACWMK ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGNMA BHPHI BPHCQ BVXVI C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDH EIOEI EJD EMB EMOBN ESBYG ESTFP F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KOW L8X LAK LLZTM M0C M1P M2P M4Y MA- ML. N2Q NB0 NDZJH NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM OVD P19 P2P PATMY PF0 PQBIZ PQQKQ PROAC PSQYO PT4 PT5 PYCSY Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A U9L UG4 UKHRP UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK6 WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8O Z8P Z8Q Z8S Z8T Z8U Z8W Z8Z Z92 ZCA ZMTXR ~02 ~A9 ~EX ~KM 0R~ AACDK AAHBH AAJBT AASML AAYZH ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU ALIPV CGR CUY CVF ECM EIF NPM PQBZA AAEOY AAYXX CITATION H13 7QH 7QL 7SN 7ST 7T7 7TG 7TN 7U7 7UA 7XB 8FD 8FK C1K F1W FR3 H97 K9. KL. L.- L.G M7N P64 PQEST PQUKI Q9U SOI 7X8 5PM |
ID | FETCH-LOGICAL-c475t-ab1dab3e9602a29713236c4620c09a3f5a8bab4494761c33c0b8e49347e01ea3 |
IEDL.DBID | AEJHL |
ISSN | 0167-6369 |
IngestDate | Tue Sep 17 21:30:10 EDT 2024 Fri Oct 25 04:53:15 EDT 2024 Thu Nov 07 08:08:53 EST 2024 Thu Sep 12 19:08:24 EDT 2024 Wed Oct 16 00:38:43 EDT 2024 Sat Dec 16 12:04:33 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | K-NN Eelgrass Pixel oriented Classification Machine learning |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c475t-ab1dab3e9602a29713236c4620c09a3f5a8bab4494761c33c0b8e49347e01ea3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ORCID | 0000-0003-4386-9913 |
OpenAccessLink | http://link.springer.com/10.1007/s10661-023-11468-3 |
PMID | 37436485 |
PQID | 2836117349 |
PQPubID | 54151 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10338583 proquest_miscellaneous_2836292771 proquest_journals_2836117349 crossref_primary_10_1007_s10661_023_11468_3 pubmed_primary_37436485 springer_journals_10_1007_s10661_023_11468_3 |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Netherlands – name: Dordrecht |
PublicationSubtitle | An International Journal Devoted to Progress in the Use of Monitoring Data in Assessing Environmental Risks to Humans and the Environment |
PublicationTitle | Environmental monitoring and assessment |
PublicationTitleAbbrev | Environ Monit Assess |
PublicationTitleAlternate | Environ Monit Assess |
PublicationYear | 2023 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Demšar, Harris, Chris Brunsdon, Fotheringham, McLoone (CR7) 2013; 103 Landis, Kock (CR20) 1977; 33 CR18 Duarte, Chiscano (CR9) 1999; 65 CR16 CR15 CR14 CR35 CR34 CR11 CR33 CR10 CR32 CR31 CR30 Franco-Lopez, Ek, Bauer (CR12) 2001; 77 Fonseca, CahalanJ (CR13) 1992; 35 CR2 CR4 Schweizer, Armstrong, Posada (CR29) 2005; 26 CR3 Adams, Bischof (CR1) 1994; 16 CR6 CR5 Immitzer, Atzberger, Koukal (CR19) 2012; 2012 CR8 Hossain, Bujang, Zakaria, Hashim (CR17) 2015; 36 CR28 CR27 CR25 Maxwell, Bester, Ramezan (CR21) 2022; 14 CR24 CR23 CR22 Roelfsema, Kovacs, Saunders, Phinn, Lyons, Maxwell (CR26) 2013; 133 11468_CR18 11468_CR16 11468_CR15 11468_CR14 11468_CR35 11468_CR34 11468_CR11 JR Landis (11468_CR20) 1977; 33 11468_CR33 11468_CR10 11468_CR32 11468_CR31 M Immitzer (11468_CR19) 2012; 2012 11468_CR30 AE Maxwell (11468_CR21) 2022; 14 R Adams (11468_CR1) 1994; 16 MS Hossain (11468_CR17) 2015; 36 11468_CR8 11468_CR5 11468_CR4 11468_CR28 D Schweizer (11468_CR29) 2005; 26 11468_CR27 11468_CR6 11468_CR25 11468_CR24 11468_CR3 11468_CR23 11468_CR2 11468_CR22 MS Fonseca (11468_CR13) 1992; 35 H Franco-Lopez (11468_CR12) 2001; 77 U Demšar (11468_CR7) 2013; 103 CM Duarte (11468_CR9) 1999; 65 C Roelfsema (11468_CR26) 2013; 133 |
References_xml | – ident: CR22 – volume: 16 start-page: 641 issue: 6 year: 1994 end-page: 647 ident: CR1 article-title: Seeded region growing publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence. doi: 10.1109/34.295913 contributor: fullname: Bischof – ident: CR18 – volume: 77 start-page: 256 issue: 251–274 year: 2001 ident: CR12 article-title: Estimation and mapping of forest stand density, volume, and cover type using the k-nearest neighbours method publication-title: Internation Remote Sensing of Environment contributor: fullname: Bauer – volume: 33 start-page: 159 issue: 1 year: 1977 end-page: 174 ident: CR20 article-title: The measurement of observer agreement for categorical data publication-title: Biometrics doi: 10.2307/2529310 contributor: fullname: Kock – volume: 14 start-page: 5760 issue: 22 year: 2022 ident: CR21 article-title: Enhancing reproducibility and replicability in remote sensing deep learning research and practice publication-title: Remote Sensing doi: 10.3390/rs14225760 contributor: fullname: Ramezan – volume: 26 start-page: 2657 issue: 12 year: 2005 end-page: 2667 ident: CR29 article-title: Remote sensing characterization of benthic habitats and submerged vegetation biomass in Los Roques Archipelago National Park, Venezuela publication-title: International Journal of Remote Sensing doi: 10.1080/01431160500104111 contributor: fullname: Posada – ident: CR4 – ident: CR14 – ident: CR2 – ident: CR16 – ident: CR30 – ident: CR10 – volume: 65 start-page: 159 year: 1999 end-page: 174 ident: CR9 article-title: Seagrass biomass and production : A reassessment publication-title: Aquatic Botany doi: 10.1016/S0304-3770(99)00038-8 contributor: fullname: Chiscano – ident: CR33 – ident: CR35 – ident: CR6 – ident: CR8 – ident: CR25 – ident: CR27 – ident: CR23 – volume: 2012 start-page: 2661 issue: 4 year: 2012 end-page: 2693 ident: CR19 article-title: Tree species classification with random forest using very high spatial resolution 8-Band WorldView-2 Satellite Data publication-title: Remote Sens. doi: 10.3390/rs4092661 contributor: fullname: Koukal – ident: CR3 – ident: CR15 – ident: CR31 – ident: CR11 – volume: 133 start-page: 161 year: 2013 end-page: 171 ident: CR26 article-title: Challenges of remote sensing for quantifying changes in large complex seagrass environments publication-title: Estuarine, Coastal and Shelf Science doi: 10.1016/j.ecss.2013.08.026 contributor: fullname: Maxwell – volume: 103 start-page: 106 issue: 1 year: 2013 end-page: 128 ident: CR7 article-title: Principal component analysis on spatial data: An overview publication-title: Annals of the Association of American Geographers doi: 10.1080/00045608.2012.689236 contributor: fullname: McLoone – ident: CR32 – ident: CR34 – ident: CR5 – ident: CR28 – ident: CR24 – volume: 35 start-page: 565 issue: 6 year: 1992 end-page: 576 ident: CR13 article-title: A preliminary evaluation of wave attenuation by four species of seagrass publication-title: Estuarine Coastal and Shelf Science doi: 10.1016/S0272-7714(05)80039-3 contributor: fullname: CahalanJ – volume: 36 start-page: 61 issue: 1 year: 2015 end-page: 113 ident: CR17 article-title: The application of remote sensing to seagrass ecosystems: An overview and future research prospects publication-title: International Journal of Remote Sensing doi: 10.1080/01431161.2014.990649 contributor: fullname: Hashim – volume: 14 start-page: 5760 issue: 22 year: 2022 ident: 11468_CR21 publication-title: Remote Sensing doi: 10.3390/rs14225760 contributor: fullname: AE Maxwell – ident: 11468_CR30 doi: 10.3390/rs71215838 – volume: 103 start-page: 106 issue: 1 year: 2013 ident: 11468_CR7 publication-title: Annals of the Association of American Geographers doi: 10.1080/00045608.2012.689236 contributor: fullname: U Demšar – ident: 11468_CR27 doi: 10.5194/gmd-8-1991-2015 – ident: 11468_CR18 – ident: 11468_CR22 – ident: 11468_CR24 – ident: 11468_CR14 doi: 10.1007/978-1-4842-4261-2 – volume: 133 start-page: 161 year: 2013 ident: 11468_CR26 publication-title: Estuarine, Coastal and Shelf Science doi: 10.1016/j.ecss.2013.08.026 contributor: fullname: C Roelfsema – volume: 33 start-page: 159 issue: 1 year: 1977 ident: 11468_CR20 publication-title: Biometrics doi: 10.2307/2529310 contributor: fullname: JR Landis – ident: 11468_CR5 – ident: 11468_CR3 – ident: 11468_CR10 – ident: 11468_CR11 doi: 10.1016/j.ecoinf.2018.09.004 – volume: 2012 start-page: 2661 issue: 4 year: 2012 ident: 11468_CR19 publication-title: Remote Sens. doi: 10.3390/rs4092661 contributor: fullname: M Immitzer – ident: 11468_CR31 – ident: 11468_CR33 – volume: 26 start-page: 2657 issue: 12 year: 2005 ident: 11468_CR29 publication-title: International Journal of Remote Sensing doi: 10.1080/01431160500104111 contributor: fullname: D Schweizer – ident: 11468_CR35 doi: 10.1117/12.464654 – ident: 11468_CR16 doi: 10.1016/S0764-4469(99)00112-2 – ident: 11468_CR15 doi: 10.1017/CBO9780511525551 – ident: 11468_CR25 – volume: 77 start-page: 256 issue: 251–274 year: 2001 ident: 11468_CR12 publication-title: Internation Remote Sensing of Environment contributor: fullname: H Franco-Lopez – ident: 11468_CR23 – ident: 11468_CR34 doi: 10.1088/1757-899X/677/5/052038 – volume: 36 start-page: 61 issue: 1 year: 2015 ident: 11468_CR17 publication-title: International Journal of Remote Sensing doi: 10.1080/01431161.2014.990649 contributor: fullname: MS Hossain – volume: 35 start-page: 565 issue: 6 year: 1992 ident: 11468_CR13 publication-title: Estuarine Coastal and Shelf Science doi: 10.1016/S0272-7714(05)80039-3 contributor: fullname: MS Fonseca – ident: 11468_CR4 – volume: 65 start-page: 159 year: 1999 ident: 11468_CR9 publication-title: Aquatic Botany doi: 10.1016/S0304-3770(99)00038-8 contributor: fullname: CM Duarte – ident: 11468_CR32 – ident: 11468_CR2 – volume: 16 start-page: 641 issue: 6 year: 1994 ident: 11468_CR1 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence. doi: 10.1109/34.295913 contributor: fullname: R Adams – ident: 11468_CR6 – ident: 11468_CR28 doi: 10.1109/ICCMC48092.2020.ICCMC-00069 – ident: 11468_CR8 |
SSID | ssj0009749 |
Score | 2.4253864 |
SecondaryResourceType | review_article |
Snippet | Eelgrass cover extent is among the most reliable indicators for measuring changes in coastal ecosystems. Eelgrass has colonized the mouth of the Romaine River... Abstract Eelgrass cover extent is among the most reliable indicators for measuring changes in coastal ecosystems. Eelgrass has colonized the mouth of the... |
SourceID | pubmedcentral proquest crossref pubmed springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 939 |
SubjectTerms | Algorithms Aquatic plants Atmospheric Protection/Air Quality Control/Air Pollution Change detection Coastal ecosystems Data acquisition Data collection Detection Earth and Environmental Science Ecology Ecosystem Ecosystems Ecotoxicology Edge detection Environment Environmental Management Environmental Monitoring Environmental science Machine Learning Monitoring Monitoring/Environmental Analysis Pixels Remote monitoring Remote sensing Remote Sensing Technology Review Sea grasses Training Workflow Zosteraceae |
Title | Assessment of pixel-oriented k-NN machine learning algorithm performance for the interannual remote sensing monitoring of eelgrass beds at the mouth of the Romaine |
URI | https://link.springer.com/article/10.1007/s10661-023-11468-3 https://www.ncbi.nlm.nih.gov/pubmed/37436485 https://www.proquest.com/docview/2836117349 https://search.proquest.com/docview/2836292771 https://pubmed.ncbi.nlm.nih.gov/PMC10338583 |
Volume | 195 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFH5inZDgMKCwkTGQkbiBURw7cXKsWKYKoR5gh-0U2amzTVuSqmkl-D37o3t20mRlcIBTEtmObfl7fs_2e58BPsQFi9ScMxqGOqYiLDTVQmiqCqP9IEEjobB7utMfcnYWH6eWJof3WxfV9efNiaSbqO_FuqEqoahiKHPhQnwHdlH3hOEIdifp1-m3gWtXtlavpfSOeJR0sTJ__su2PnpgZD70lfztwNTpoZNn_9WD57DXmZ1k0uLkBTwy1Rgep46y-tcYnt6jJRzDfjpEv2GhTvybl3A76Xk8SV2QxdVPc0Nry5SMdiu5prMZKZ1zpiHdbRQXRN1cYI7VZUkWQ4wCwReCpiexbBXLlheVLA3CxpDGutRjwdLNNrZFti5j7E1JTUO0mTdErVzp0t7_Z1Ptx_e6VFjzKzg9SU-_TGl3ywPNhQxXVGk2V5obXEoFKkhw0RzwKBdR4Od-ongRqlgrxE8iZMRyznNfx0YkXEjjM6P4PoyqujKvgSgumc5l4fNQI8RyJQtmclwxMSZzI6QHHzdDnS1aLo9sYG22g5Ph4Lg47TjjHhxt0JB1ct1kaIxF-DcuEg_e98kokfaYRVWmXrd5giSQknlw0IKnr46jwRaJOPQg3oJVn8GyfW-nVFeXjvWb-dwe4mK7Pm3gNbTr7904_Lfsb-BJYBHqXByPYLRars1b2Gnm63edmNnn2fn58R2yQCbZ |
link.rule.ids | 230,315,782,786,887,27935,27936,41075,42144,48346,48349,49651,49654,52155 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH5inRBw4EdhEDbASNzAUhw7cXKstk5FjB6gh-0U2amzTSxJ1bQS_D38ozw7SbNu4wC3RH6Obfmz_Zz33vcAPsQ5i9ScMxqGOqYizDXVQmiqcqP9IEElIbf_dCff5fQ0PhpbmhzRxcI4b_fOJOl26mvBbniWUDxjKHPxQnwHdi3buRjA7uj07OyoJ9uVjdprOb0jHiVtsMzdX9k-kG5pmbedJW9YTN1BdPzk_4bwFB63iicZNUh5BvdMOYT7Y0da_WsIj64REw5hb9zHv2GldgOon8Pv0YbJk1Q5WVz-NFe0slzJqLmSH3Q6JYVzzzSkzUdxTtTVOUqsLgqy6KMUCD4QVD6J5atYNsyoZGkQOIbU1qkeKxZuv7E9sm0ZY3Ml1TXRZl4TtXK1C5sB0Jbal29VobDlFzA7Hs8OJ7TN80AzIcMVVZrNleYGL1OBChK8Ngc8ykQU-JmfKJ6HKtYKEZQIGbGM88zXsREJF9L4zCi-B4OyKs0rIIpLpjOZ-zzUCLJMyZyZDO9MjMnMCOnBx26u00XD5pH2vM12clKcHBepHafcg4MODmm7susU1bEIv8ZF4sH7TTGuSWtoUaWp1o1MkARSMg9eNujZNMdRZYtEHHoQb-FqI2D5vrdLyssLx_vNfG7NuNivTx28-n79fRiv_038HTyYzL6epCefp1_24WFg0eocHg9gsFquzRvYqefrt-2a-wNovClZ |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RViB64LFQGihgJG5gNY6dODmu6C6tQCsEe-AW2YnTVjTJarMrwe_hjzJ2skmXwgFxS-S3_Nkz9sx8BngdFyxSOWc0DHVMRVhoqoXQVBVG-0GCSkJh73RPv8jZ1_hkYmly-ih-5-2-MUm2MQ2WpalaHS_y4vha4BvKFYryhjIXO8R3YM9eiyHG98Zn8_fTgXhXtiqw5feOeJR0gTN_rmVbON3QOG86Tv5mPXVCaXr__4fzAO51CikZtwh6CLdMNYLbE0dm_WME-9cIC0dwMBni4rBQtzE0j-DnuGf4JHVBFpffzRWtLYcyarTkG53NSOncNg3p3qk4J-rqHHOsLkqyGKIXCH4QVEqJ5bFYtoypZGkQUIY01tkeC5ZuH7I9sm0ZY99QahqiTd4QtXKlS_syoE21P5_rUmHLj2E-nczfndLu_QeaCRmuqNIsV5obPGQFKkjwOB3wKBNR4Gd-ongRqlgrRFYiZMQyzjNfx0YkXEjjM6P4AexWdWUOgSgumc5k4fNQI_gyJQtmMjxLMSYzI6QHbzbzni5alo904HO2k5Pi5LgI7jjlHhxtoJF2K75JUU2LsDYuEg9e9cm4Vq0BRlWmXrd5giSQknnwpEVS3xxHVS4ScehBvIWxPoPlAd9OqS4vHB8487k172K_3m6gNvTr78N4-m_ZX8KdTyfT9OPZ7MMzuBtYsDo_yCPYXS3X5jnsNPn6Rbf8fgFffzHw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+pixel-oriented+k-NN+machine+learning+algorithm+performance+for+the+interannual+remote+sensing+monitoring+of+eelgrass+beds+at+the+mouth+of+the+Romaine&rft.jtitle=Environmental+monitoring+and+assessment&rft.au=Lemieux%2C+P.&rft.au=Lalumi%C3%A8re%2C+C.&rft.au=Fugaru%2C+N.&rft.au=Gilbert%2C+J.-P.&rft.date=2023-08-01&rft.pub=Springer+International+Publishing&rft.issn=0167-6369&rft.eissn=1573-2959&rft.volume=195&rft.issue=8&rft_id=info:doi/10.1007%2Fs10661-023-11468-3&rft.externalDocID=10_1007_s10661_023_11468_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6369&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6369&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6369&client=summon |