Ameliorative Effects of Zinc Oxide, in Either Conventional or Nanoformulation, Against Bisphenol A Toxicity on Reproductive Performance, Oxidative Status, Gene Expression and Histopathology in Adult Male Rats

Bisphenol A (BPA) is a widely used endocrine disruptor that represents a significant risk to male reproductive function. Zinc (Zn) is vital for appropriate development of testes and to guarantee optimal testicular function and spermatogenesis. Our goal was to investigate if zinc oxide (ZnO), either...

Full description

Saved in:
Bibliographic Details
Published in:Biological trace element research Vol. 202; no. 5; pp. 2143 - 2157
Main Authors: El-Kossi, Dina M. M. H., Ibrahim, Shawky S., Hassanin, Kamel M. A., Hamad, Nashwa, Rashed, Noha A., Abdel-Wahab, Ahmed
Format: Journal Article
Language:English
Published: New York Springer US 01-05-2024
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bisphenol A (BPA) is a widely used endocrine disruptor that represents a significant risk to male reproductive function. Zinc (Zn) is vital for appropriate development of testes and to guarantee optimal testicular function and spermatogenesis. Our goal was to investigate if zinc oxide (ZnO), either in conventional or nanoformulation, could safeguard adult male rats’ reproductive performance against the damaging effects of BPA. Signaling expression of CYP11A1 and Nrf-2 in the testis, testicular oxidant-antioxidant status, Bax/Bcl-2 apoptotic ratio, and histological examination of various reproductive organs were all evaluated. Twenty-eight adult male albino rats were divided randomly into 4 groups (7 animals each) including the control, BPA, conventional zinc oxide (cZnO) + BPA, and zinc oxide nanoparticles (ZnO-NPs) + BPA groups. The study was extended for 2 successive months. Our findings revealed strong negative effects of BPA on sperm cell characteristics such as sperm motility, viability, concentration and abnormalities. Additionally, BPA reduced serum levels of testosterone, triiodothyronine (T3), and thyroxine (T4). Also, it evoked marked oxidative stress in the testes; elevating malondialdehyde (MDA) and reducing total antioxidant capacity (TAC). BPA significantly downregulated testicular mRNA relative expression levels of CYP11A1 and Nrf-2 , compared to control. Testicular apoptosis was also prompted by increasing Bax/ Bcl-2 ratio in testicular tissue. Histopathological findings in the testes, epididymis, prostate gland, and seminal vesicle confirmed the detrimental effects of BPA. Interestingly, cZnO and ZnO-NPs significantly alleviated all negative effects of BPA, but ZnO-NPs performed better. In conclusion, our findings point to ZnO, specifically ZnO-NPs, as a viable treatment for BPA-induced testicular dysfunction.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0163-4984
1559-0720
DOI:10.1007/s12011-023-03830-w