Deep learning image reconstruction algorithm: impact on image quality in coronary computed tomography angiography

Purpose To perform a comprehensive intraindividual objective and subjective image quality evaluation of coronary CT angiography (CCTA) reconstructed with deep learning image reconstruction (DLIR) and to assess correlation with routinely applied hybrid iterative reconstruction algorithm (ASiR-V). Mat...

Full description

Saved in:
Bibliographic Details
Published in:Radiologia medica Vol. 128; no. 4; pp. 434 - 444
Main Authors: De Santis, Domenico, Polidori, Tiziano, Tremamunno, Giuseppe, Rucci, Carlotta, Piccinni, Giulia, Zerunian, Marta, Pugliese, Luca, Del Gaudio, Antonella, Guido, Gisella, Barbato, Luca, Laghi, Andrea, Caruso, Damiano
Format: Journal Article
Language:English
Published: Milan Springer Milan 01-04-2023
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose To perform a comprehensive intraindividual objective and subjective image quality evaluation of coronary CT angiography (CCTA) reconstructed with deep learning image reconstruction (DLIR) and to assess correlation with routinely applied hybrid iterative reconstruction algorithm (ASiR-V). Material and methods Fifty-one patients (29 males) undergoing clinically indicated CCTA from April to December 2021 were prospectively enrolled. Fourteen datasets were reconstructed for each patient: three DLIR strength levels (DLIR_L, DLIR_M, and DLIR_H), ASiR-V from 10% to 100% in 10%-increment, and filtered back-projection (FBP). Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) determined objective image quality. Subjective image quality was assessed with a 4-point Likert scale. Concordance between reconstruction algorithms was assessed by Pearson correlation coefficient. Results DLIR algorithm did not impact vascular attenuation ( P  ≥ 0.374). DLIR_H showed the lowest noise, comparable with ASiR-V 100% ( P  = 1) and significantly lower than other reconstructions ( P  ≤ 0.021). DLIR_H achieved the highest objective quality, with SNR and CNR comparable to ASiR-V 100% ( P  = 0.139 and 0.075, respectively). DLIR_M obtained comparable objective image quality with ASiR-V 80% and 90% ( P  ≥ 0.281), while achieved the highest subjective image quality (4, IQR: 4–4; P  ≤ 0.001). DLIR and ASiR-V datasets returned a very strong correlation in the assessment of CAD ( r  = 0.874, P  = 0.001). Conclusion DLIR_M significantly improves CCTA image quality and has very strong correlation with routinely applied ASiR-V 50% dataset in the diagnosis of CAD.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1826-6983
0033-8362
1826-6983
DOI:10.1007/s11547-023-01607-8