Application of an unsupervised artificial neural network technique to multivariant surface water quality data
Surface water contamination from agricultural and urban runoff and wastewater discharges from industrial and municipal activities is of major concern to people worldwide. Classical models can be insufficient to visualise the results because the water quality variables used to describe dynamic pollut...
Saved in:
Published in: | Ecological research Vol. 24; no. 1; pp. 163 - 173 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Japan
Japan : Springer Japan
2009
Springer Japan Blackwell Publishing Ltd |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Surface water contamination from agricultural and urban runoff and wastewater discharges from industrial and municipal activities is of major concern to people worldwide. Classical models can be insufficient to visualise the results because the water quality variables used to describe dynamic pollution sources are complex, multivariable, and nonlinearly related. Artificial intelligence techniques with the ability to analyse multivariant water quality data by means of a sophisticated visualisation capacity can offer an alternative to current models. In this study, the Kohonen self-organising feature maps (SOM) neural network was initially applied to analyse the complex nonlinear relationships among multivariable surface water quality variables using the component planes of the variables to determine the complex behaviour of water quality parameters. The dependencies between water quality variables were extracted and interpreted using the pattern analysis visualised in component planes. For further investigation, the k-means clustering algorithm was used to determine the optimal number of clusters by partitioning the maps and utilising the Davies-Bouldin clustering index, leading to seven groups or clusters corresponding to water quality variables. The results reveal that the concentrations of Na, K, Cl, NH₄-N, NO₂-N, o-PO₄, component planes of organic matter (pV), and dissolved oxygen (DO) were significantly affected by seasonal changes, and that the SOM technique is an efficient tool with which to analyse and determine the complex behaviour of multidimensional surface water quality data. These results suggest that this technique could also be applied to other environmentally sensitive areas such as air and groundwater pollution. |
---|---|
AbstractList | Surface water contamination from agricultural and urban runoff and wastewater discharges from industrial and municipal activities is of major concern to people worldwide. Classical models can be insufficient to visualise the results because the water quality variables used to describe dynamic pollution sources are complex, multivariable, and nonlinearly related. Artificial intelligence techniques with the ability to analyse multivariant water quality data by means of a sophisticated visualisation capacity can offer an alternative to current models. In this study, the Kohonen self-organising feature maps (SOM) neural network was initially applied to analyse the complex nonlinear relationships among multivariable surface water quality variables using the component planes of the variables to determine the complex behaviour of water quality parameters. The dependencies between water quality variables were extracted and interpreted using the pattern analysis visualised in component planes. For further investigation, the k-means clustering algorithm was used to determine the optimal number of clusters by partitioning the maps and utilising the Davies--Bouldin clustering index, leading to seven groups or clusters corresponding to water quality variables. The results reveal that the concentrations of Na, K, Cl, NH4-N, NO2-N, o-PO4, component planes of organic matter (pV), and dissolved oxygen (DO) were significantly affected by seasonal changes, and that the SOM technique is an efficient tool with which to analyse and determine the complex behaviour of multidimensional surface water quality data. These results suggest that this technique could also be applied to other environmentally sensitive areas such as air and groundwater pollution. Surface water contamination from agricultural and urban runoff and wastewater discharges from industrial and municipal activities is of major concern to people worldwide. Classical models can be insufficient to visualise the results because the water quality variables used to describe dynamic pollution sources are complex, multivariable, and nonlinearly related. Artificial intelligence techniques with the ability to analyse multivariant water quality data by means of a sophisticated visualisation capacity can offer an alternative to current models. In this study, the Kohonen self‐organising feature maps (SOM) neural network was initially applied to analyse the complex nonlinear relationships among multivariable surface water quality variables using the component planes of the variables to determine the complex behaviour of water quality parameters. The dependencies between water quality variables were extracted and interpreted using the pattern analysis visualised in component planes. For further investigation, the k‐means clustering algorithm was used to determine the optimal number of clusters by partitioning the maps and utilising the Davies–Bouldin clustering index, leading to seven groups or clusters corresponding to water quality variables. The results reveal that the concentrations of Na, K, Cl, NH 4 ‐N, NO 2 ‐N, o ‐PO 4 , component planes of organic matter (pV), and dissolved oxygen (DO) were significantly affected by seasonal changes, and that the SOM technique is an efficient tool with which to analyse and determine the complex behaviour of multidimensional surface water quality data. These results suggest that this technique could also be applied to other environmentally sensitive areas such as air and groundwater pollution. Surface water contamination from agricultural and urban runoff and wastewater discharges from industrial and municipal activities is of major concern to people worldwide. Classical models can be insufficient to visualise the results because the water quality variables used to describe dynamic pollution sources are complex, multivariable, and nonlinearly related. Artificial intelligence techniques with the ability to analyse multivariant water quality data by means of a sophisticated visualisation capacity can offer an alternative to current models. In this study, the Kohonen self-organising feature maps (SOM) neural network was initially applied to analyse the complex nonlinear relationships among multivariable surface water quality variables using the component planes of the variables to determine the complex behaviour of water quality parameters. The dependencies between water quality variables were extracted and interpreted using the pattern analysis visualised in component planes. For further investigation, the k-means clustering algorithm was used to determine the optimal number of clusters by partitioning the maps and utilising the Davies-Bouldin clustering index, leading to seven groups or clusters corresponding to water quality variables. The results reveal that the concentrations of Na, K, Cl, NH₄-N, NO₂-N, o-PO₄, component planes of organic matter (pV), and dissolved oxygen (DO) were significantly affected by seasonal changes, and that the SOM technique is an efficient tool with which to analyse and determine the complex behaviour of multidimensional surface water quality data. These results suggest that this technique could also be applied to other environmentally sensitive areas such as air and groundwater pollution. Surface water contamination from agricultural and urban runoff and wastewater discharges from industrial and municipal activities is of major concern to people worldwide. Classical models can be insufficient to visualise the results because the water quality variables used to describe dynamic pollution sources are complex, multivariable, and nonlinearly related. Artificial intelligence techniques with the ability to analyse multivariant water quality data by means of a sophisticated visualisation capacity can offer an alternative to current models. In this study, the Kohonen self-organising feature maps (SOM) neural network was initially applied to analyse the complex nonlinear relationships among multivariable surface water quality variables using the component planes of the variables to determine the complex behaviour of water quality parameters. The dependencies between water quality variables were extracted and interpreted using the pattern analysis visualised in component planes. For further investigation, the k-means clustering algorithm was used to determine the optimal number of clusters by partitioning the maps and utilising the Davies-Bouldin clustering index, leading to seven groups or clusters corresponding to water quality variables. The results reveal that the concentrations of Na, K, Cl, NH sub(4)-N, NO sub(2)-N, o-PO sub(4), component planes of organic matter (pV), and dissolved oxygen (DO) were significantly affected by seasonal changes, and that the SOM technique is an efficient tool with which to analyse and determine the complex behaviour of multidimensional surface water quality data. These results suggest that this technique could also be applied to other environmentally sensitive areas such as air and groundwater pollution. Surface water contamination from agricultural and urban runoff and wastewater discharges from industrial and municipal activities is of major concern to people worldwide. Classical models can be insufficient to visualise the results because the water quality variables used to describe dynamic pollution sources are complex, multivariable, and nonlinearly related. Artificial intelligence techniques with the ability to analyse multivariant water quality data by means of a sophisticated visualisation capacity can offer an alternative to current models. In this study, the Kohonen self-organising feature maps (SOM) neural network was initially applied to analyse the complex nonlinear relationships among multivariable surface water quality variables using the component planes of the variables to determine the complex behaviour of water quality parameters. The dependencies between water quality variables were extracted and interpreted using the pattern analysis visualised in component planes. For further investigation, the k-means clustering algorithm was used to determine the optimal number of clusters by partitioning the maps and utilising the Davies-Bouldin clustering index, leading to seven groups or clusters corresponding to water quality variables. The results reveal that the concentrations of Na, K, Cl, NH^sub 4^-N, NO^sub 2^-N, o-PO^sub 4^, component planes of organic matter (pV), and dissolved oxygen (DO) were significantly affected by seasonal changes, and that the SOM technique is an efficient tool with which to analyse and determine the complex behaviour of multidimensional surface water quality data. These results suggest that this technique could also be applied to other environmentally sensitive areas such as air and groundwater pollution.[PUBLICATION ABSTRACT] |
Author | Merdun, Hasan Çinar, Özer |
Author_xml | – sequence: 1 fullname: Çinar, Özer – sequence: 2 fullname: Merdun, Hasan |
BookMark | eNqFkU1v1DAQhi1UJLaFH8AJiwOcAuOPxPFxVS20UiUkKGfLm4yLS9be2k5X21-PS5CQOJTTXJ7nnRm9p-QkxICEvGbwgQGoj5kx3ssGoG9A6rZ5eEZWTEpomAJxQlagGW9Ez-QLcprzLQDjWsGK7Nb7_eQHW3wMNDpqA51DnveY7n3GkdpUvPODtxMNOKffoxxi-kkLDj-Cv5uRlkh381T8vU3ehkLznJwdkB5swUTvZjv5cqSjLfYlee7slPHVn3lGrj9trs8vmqsvny_P11fNIFW7blAD66wDsd1q4YRCJzW3sv7ZiXFwOCgltUS33TI9aj32IKBzODLmJKIWZ-T9ErtPsR6Yi9n5POA02YBxzqbXminW8raS754kOXRCd6Kv4Nt_wNs4p1CfMH3fQk0TXYXYAg0p5pzQmX3yO5uOhoF5rMksNZlak3msyTxURy3OwU94_L9gNl83wAVbV5MvZq5SuMH096Sn1r1ZJGejsTfJZ_P9GwcmgLVKcgHiF0wis10 |
CitedBy_id | crossref_primary_10_3390_ijerph15030547 crossref_primary_10_3390_ijerph13010115 crossref_primary_10_1080_03067310903094511 crossref_primary_10_1007_s10098_023_02477_4 crossref_primary_10_1016_j_imu_2022_100876 crossref_primary_10_1139_a11_001 crossref_primary_10_1007_s11707_016_0585_0 crossref_primary_10_1007_s10661_022_10907_x crossref_primary_10_3390_w16091238 crossref_primary_10_1016_j_chemosphere_2022_135003 crossref_primary_10_1007_s10646_015_1453_5 crossref_primary_10_1029_2019WR025991 crossref_primary_10_1371_journal_pone_0099618 crossref_primary_10_1080_14634988_2011_604273 crossref_primary_10_1016_j_ijheh_2021_113833 crossref_primary_10_3390_agriculture14071071 crossref_primary_10_1016_j_chemosphere_2017_08_143 crossref_primary_10_1016_j_orggeochem_2020_104165 |
Cites_doi | 10.1007/BF00337288 10.1016/S0043-1354(99)00061-5 10.1016/S0304-3800(01)00324-6 10.1109/TPAMI.1979.4766909 10.1016/S0925-2312(98)00030-7 10.1016/S0043-1354(03)00344-0 10.1016/j.jhydrol.2005.09.009 10.1016/j.engappai.2005.05.008 10.1007/BF00317973 10.1016/j.scitotenv.2004.01.014 10.1061/(ASCE)1084-0699(2000)5:2(180) 10.1016/S0043-1354(02)00494-3 10.1016/S0304-3800(01)00297-6 10.1016/j.procbio.2005.01.012 10.1016/S1462-0758(01)00045-0 10.1016/j.ecolmodel.2005.08.043 10.1016/S0043-1354(02)00557-2 10.1016/j.engappai.2004.03.004 10.1007/978-3-642-56927-2 |
ContentType | Journal Article |
Copyright | The Ecological Society of Japan 2008 2009 The Ecological Society of Japan The Ecological Society of Japan 2009 |
Copyright_xml | – notice: The Ecological Society of Japan 2008 – notice: 2009 The Ecological Society of Japan – notice: The Ecological Society of Japan 2009 |
DBID | FBQ AAYXX CITATION 3V. 7QG 7SN 7SS 7ST 7XB 8FD 8FE 8FH 8FK 8G5 ABUWG AFKRA ATCPS AZQEC BBNVY BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H95 HCIFZ L.G LK8 M2O M7P MBDVC P64 PATMY PCBAR PQEST PQQKQ PQUKI PYCSY Q9U RC3 SOI 7TG 7TV 7U6 7UA H97 KL. 7QH |
DOI | 10.1007/s11284-008-0495-z |
DatabaseName | AGRIS CrossRef ProQuest Central (Corporate) Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Agriculture & Environmental Science Database ProQuest Central Essentials Biological Science Collection ProQuest Databases ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Research Library Prep Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources SciTech Premium Collection (Proquest) (PQ_SDU_P3) Aquatic Science & Fisheries Abstracts (ASFA) Professional Biological Sciences ProQuest Research Library Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic Genetics Abstracts Environment Abstracts Meteorological & Geoastrophysical Abstracts Pollution Abstracts Sustainability Science Abstracts Water Resources Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Meteorological & Geoastrophysical Abstracts - Academic Aqualine |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Research Library Prep ProQuest Central Student Technology Research Database ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection Genetics Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection ProQuest Research Library Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Animal Behavior Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) Meteorological & Geoastrophysical Abstracts Sustainability Science Abstracts Pollution Abstracts Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Aqualine |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Zoology Forestry |
EISSN | 1440-1703 |
EndPage | 173 |
ExternalDocumentID | 2434651441 10_1007_s11284_008_0495_z ERE0231A US201301574230 |
Genre | article Feature |
GroupedDBID | -4W -56 -5G -BR -Y2 -~C -~X .86 .VR 06C 06D 0R~ 0VY 199 1N0 1OB 1OC 1SB 2.D 203 28- 29G 29~ 2J2 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 31~ 33P 3SX 3V. 4.4 408 409 40D 40E 4P2 53G 5GY 5QI 5VS 67N 67Z 6NX 78A 7XC 8-1 8CJ 8FE 8FH 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHHS AAIAL AAJKR AANLZ AANXM AARHV AARTL AASGY AATVU AAWCG AAXRX AAYIU AAYQN AAYTO ABBBX ABBXA ABCUV ABDBF ABHLI ABHUG ABJNI ABJOX ABKTR ABMNI ABNWP ABPLI ABPTK ABQBU ABTEG ABTHY ABTMW ABULA ABUWG ACAHQ ACBXY ACCFJ ACCZN ACGFS ACHXU ACKNC ACOKC ACOMO ACPOU ACPRK ACSNA ACXBN ACXQS ADBBV ADDAD ADHHG ADHIR ADIMF ADINQ ADKPE ADKYN ADMGS ADOZA ADRFC ADXAS ADZKW ADZMN ADZOD AEBTG AEEZP AEFIE AEGAL AEGNC AEIGN AEJHL AEKMD AENEX AEOHA AEPYU AEQDE AETLH AEUYR AEXYK AFEXP AFFPM AFGCZ AFGKR AFKRA AFLOW AFNRJ AFRAH AFWTZ AFZJQ AFZKB AGAYW AGGDS AGJBK AGJLS AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIIXL AIURR AIWBW AJBDE AJBLW AJRNO AKMHD ALMA_UNASSIGNED_HOLDINGS ALUQN ALWAN AMKLP AMYDB AMYQR ARMRJ ASPBG ATCPS AVWKF AZFZN AZQEC B-. B0M BA0 BBNVY BBWZM BENPR BFHJK BGNMA BHPHI BIYOS BKSAR BPHCQ CAG CCPQU CO8 COF CS3 CSCUP D1J DCZOG DL5 DRFUL DRSTM DU5 DWQXO EAD EAP EAS EBD EBO EBS EDH EJD EMK EN4 EPAXT EPL ESBYG ESX FBQ FEDTE FIGPU FNLPD FRRFC FWDCC G-Y G-Z GGCAI GGRSB GNUQQ GQ6 GQ7 GQ8 GUQSH GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- ITM IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX KDC KOV KOW KPH LAS LATKE LEEKS LH4 LK8 LW6 LYRES M2O M4Y M7P MA- MEWTI MXFUL MXSTM N2Q NB0 NDZJH NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P2W PATMY PCBAR PF0 PQQKQ PROAC PT5 PYCSY Q2X QOK QOR QOS R4E R89 R9I RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAMSI SAP SBL SDH SDM SHX SISQX SNE SNX SOJ SPISZ SSXJD SUPJJ SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A U9L UG4 VC2 W23 W48 WH7 WJK WK6 WK8 WXSBR Y6R YLTOR Z45 ZOVNA ZZTAW ~8M ~KM AAPBV AAHBH AFBBN AHBTC AITYG H13 HGLYW ZMTXR AAMNL AAYXX AAYZH CITATION 7QG 7SN 7SS 7ST 7XB 8FD 8FK C1K F1W FR3 H95 L.G MBDVC P64 PQEST PQUKI Q9U RC3 SOI 7TG 7TV 7U6 7UA H97 KL. 7QH |
ID | FETCH-LOGICAL-c475A-e9016af03bb93f37ef492a400763dcfec77494efbb19d99d80306fed11f4ee93 |
IEDL.DBID | 33P |
ISSN | 0912-3814 |
IngestDate | Fri Oct 25 00:13:39 EDT 2024 Thu Oct 24 23:46:28 EDT 2024 Tue Nov 19 04:48:38 EST 2024 Thu Nov 21 21:54:18 EST 2024 Sat Aug 24 01:08:10 EDT 2024 Sat Dec 16 12:04:43 EST 2023 Wed Dec 27 18:58:20 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Means clustering algorithm Kohonen self-organising feature maps Variable dependencies Surface water quality Clustering |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c475A-e9016af03bb93f37ef492a400763dcfec77494efbb19d99d80306fed11f4ee93 |
Notes | http://dx.doi.org/10.1007/s11284-008-0495-z ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 885071536 |
PQPubID | 23462 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_899171525 proquest_miscellaneous_20639638 proquest_journals_885071536 crossref_primary_10_1007_s11284_008_0495_z wiley_primary_10_1007_s11284_008_0495_z_ERE0231A springer_journals_10_1007_s11284_008_0495_z fao_agris_US201301574230 |
PublicationCentury | 2000 |
PublicationDate | 2009 1-2009 January 2009 2009-01-00 20090101 |
PublicationDateYYYYMMDD | 2009-01-01 |
PublicationDate_xml | – year: 2009 text: 2009 |
PublicationDecade | 2000 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | Ecological research |
PublicationTitleAbbrev | Ecol Res |
PublicationYear | 2009 |
Publisher | Japan : Springer Japan Springer Japan Blackwell Publishing Ltd |
Publisher_xml | – name: Japan : Springer Japan – name: Springer Japan – name: Blackwell Publishing Ltd |
References | Giraudel, Lek (CR3) 2001; 146 Lek, Guiresse, Giraudel (CR14) 1999; 33 López, Machón (CR16) 2004; 17 Kohonen (CR11) 1998; 21 Kohonen (CR12) 2001 Hong, Rosen, Bhamidimarri (CR7) 2003; 37 Park, Chon, Kwak, Lek (CR19) 2004; 327 Davies, Bouldin (CR2) 1979; 1 CR5 Hong, Rosen (CR6) 2001; 3 Jain, Dubes (CR8) 1988 Kohonen (CR10) 1982; 43 Park, Verdonschot, Chon, Lek (CR18) 2003; 37 Lin, Chen (CR15) 2006; 324 Machón, López (CR17) 2006; 19 Wang, Jiang, Liao, Lu (CR22) 2006; 6 CR20 Thirumalaiah, Deo (CR21) 2000; 5 Lee, Kwon, Yoo, Song, Chon (CR13) 2006; 193 Wilson, Recknagel (CR23) 2001; 146 Kohonen (CR9) 1982; 44 Ha, Srenstrom (CR4) 2003; 37 Çinar (CR1) 2005; 40 2001; 146 2001 2000; 5 2004; 17 1982b; 43 2005; 40 1998 2003; 37 1999; 33 2006; 19 2006; 6 2001; 3 1979; 1 1998; 2 2006; 193 1982a; 44 2006; 324 1998; 21 2004; 327 1988 e_1_2_5_15_1 e_1_2_5_14_1 e_1_2_5_17_1 e_1_2_5_16_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_24_1 e_1_2_5_13_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_22_1 Wang L (e_1_2_5_23_1) 2006; 6 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_19_1 e_1_2_5_18_1 Hong YS (e_1_2_5_6_1) 1998; 2 Jain AK (e_1_2_5_9_1) 1988 e_1_2_5_20_1 (e_1_2_5_21_1) 1998 |
References_xml | – start-page: 96 year: 1988 end-page: 101 ident: CR8 publication-title: Algorithms for clustering data contributor: fullname: Dubes – volume: 43 start-page: 59 year: 1982 end-page: 69 ident: CR10 article-title: Self-organised formation of topologically correct feature maps publication-title: Biol Cybern doi: 10.1007/BF00337288 contributor: fullname: Kohonen – volume: 33 start-page: 3469 year: 1999 end-page: 3478 ident: CR14 article-title: Predicting stream nitrogen concentration from watershed features using neural networks publication-title: Water Res doi: 10.1016/S0043-1354(99)00061-5 contributor: fullname: Giraudel – volume: 146 start-page: 329 year: 2001 end-page: 339 ident: CR3 article-title: A comparison of self-organising map algorithm and some conventional statistical methods for ecological community ordination publication-title: Ecol Model doi: 10.1016/S0304-3800(01)00324-6 contributor: fullname: Lek – volume: 1 start-page: 224 year: 1979 end-page: 227 ident: CR2 article-title: A cluster separation measure publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.1979.4766909 contributor: fullname: Bouldin – volume: 6 start-page: 20 year: 2006 end-page: 28 ident: CR22 article-title: A feature selection methods based on concept extraction and SOM text clustering analysis publication-title: Int J Comput Sci Network Security contributor: fullname: Lu – volume: 21 start-page: 1 year: 1998 end-page: 6 ident: CR11 article-title: The self-organising map publication-title: Neurocomputing doi: 10.1016/S0925-2312(98)00030-7 contributor: fullname: Kohonen – volume: 37 start-page: 4222 year: 2003 end-page: 4230 ident: CR4 article-title: Identification of land use with water quality data in stormwater using a neural network publication-title: Water Res doi: 10.1016/S0043-1354(03)00344-0 contributor: fullname: Srenstrom – volume: 324 start-page: 1 year: 2006 end-page: 9 ident: CR15 article-title: Identification of homogeneous regions for regional frequency analysis using the self-organising map publication-title: J Hydrol doi: 10.1016/j.jhydrol.2005.09.009 contributor: fullname: Chen – volume: 19 start-page: 19 year: 2006 end-page: 28 ident: CR17 article-title: End-point detection of the aerobic phase in a biological reactor using SOM and clustering algorithms publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2005.05.008 contributor: fullname: López – volume: 44 start-page: 135 year: 1982 end-page: 140 ident: CR9 article-title: Analysis of a simple self-organising process publication-title: Biol Cybern doi: 10.1007/BF00317973 contributor: fullname: Kohonen – volume: 327 start-page: 105 year: 2004 end-page: 122 ident: CR19 article-title: Hierarchical community classification and assessment of aquatic ecosystems using artificial neural networks publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2004.01.014 contributor: fullname: Lek – volume: 5 start-page: 180 year: 2000 end-page: 189 ident: CR21 article-title: Hydrological forecasting using neural networks publication-title: J Hydrol Eng doi: 10.1061/(ASCE)1084-0699(2000)5:2(180) contributor: fullname: Deo – volume: 37 start-page: 1608 year: 2003 end-page: 1618 ident: CR7 article-title: Analysis of municipal wastewater treatment plant using a neural network-based pattern analysis publication-title: Water Res doi: 10.1016/S0043-1354(02)00494-3 contributor: fullname: Bhamidimarri – ident: CR5 – year: 2001 ident: CR12 publication-title: Self-organising maps contributor: fullname: Kohonen – volume: 146 start-page: 69 year: 2001 end-page: 84 ident: CR23 article-title: Towards a generic artificial neural network model for dynamic predictions of algal abundance in freshwater lakes publication-title: Ecol Model doi: 10.1016/S0304-3800(01)00297-6 contributor: fullname: Recknagel – volume: 40 start-page: 2980 year: 2005 end-page: 2984 ident: CR1 article-title: New tool for evaluation of performance of wastewater treatment plant: artificial neural network publication-title: Process Biochem doi: 10.1016/j.procbio.2005.01.012 contributor: fullname: Çinar – volume: 3 start-page: 193 year: 2001 end-page: 204 ident: CR6 article-title: Intelligent characterization and diagnosis of the groundwater quality in an urban fractured-rock aquifer using an artificial neural network publication-title: Urban Water doi: 10.1016/S1462-0758(01)00045-0 contributor: fullname: Rosen – volume: 193 start-page: 602 year: 2006 end-page: 614 ident: CR13 article-title: Multivariate analysis and self-organising mapping applied to analysis of nest-site selection in Black-tailed Gulls publication-title: Ecol Model doi: 10.1016/j.ecolmodel.2005.08.043 contributor: fullname: Chon – volume: 37 start-page: 1749 year: 2003 end-page: 1758 ident: CR18 article-title: Patterning and predicting aquatic macroinvertabrate diversities using artificial neural network publication-title: Water Res doi: 10.1016/S0043-1354(02)00557-2 contributor: fullname: Lek – ident: CR20 – volume: 17 start-page: 215 issue: 3 year: 2004 end-page: 225 ident: CR16 article-title: Self-organising map and clustering for wastewater treatment monitoring publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2004.03.004 contributor: fullname: Machón – volume: 193 start-page: 602 year: 2006 end-page: 614 article-title: Multivariate analysis and self‐organising mapping applied to analysis of nest‐site selection in Black‐tailed Gulls publication-title: Ecol Model – volume: 2 start-page: 43 year: 1998 article-title: A genetic adapted neural network analysis of performance of the nutrient removal plant at Rotorua publication-title: Institute of professional engineers New Zealand (IPENZ) annual conference – volume: 146 start-page: 69 year: 2001 end-page: 84 article-title: Towards a generic artificial neural network model for dynamic predictions of algal abundance in freshwater lakes publication-title: Ecol Model – volume: 37 start-page: 1608 year: 2003 end-page: 1618 article-title: Analysis of municipal wastewater treatment plant using a neural network‐based pattern analysis publication-title: Water Res – start-page: 96 year: 1988 end-page: 101 – volume: 6 start-page: 20 year: 2006 end-page: 28 article-title: A feature selection methods based on concept extraction and SOM text clustering analysis publication-title: Int J Comput Sci Network Security – volume: 44 start-page: 135 year: 1982a end-page: 140 article-title: Analysis of a simple self‐organising process publication-title: Biol Cybern – volume: 21 start-page: 1 year: 1998 end-page: 6 article-title: The self‐organising map publication-title: Neurocomputing – volume: 327 start-page: 105 year: 2004 end-page: 122 article-title: Hierarchical community classification and assessment of aquatic ecosystems using artificial neural networks publication-title: Sci Total Environ – volume: 43 start-page: 59 year: 1982b end-page: 69 article-title: Self‐organised formation of topologically correct feature maps publication-title: Biol Cybern – volume: 3 start-page: 193 year: 2001 end-page: 204 article-title: Intelligent characterization and diagnosis of the groundwater quality in an urban fractured‐rock aquifer using an artificial neural network publication-title: Urban Water – year: 2001 – volume: 19 start-page: 19 year: 2006 end-page: 28 article-title: End‐point detection of the aerobic phase in a biological reactor using SOM and clustering algorithms publication-title: Eng Appl Artif Intell – volume: 33 start-page: 3469 year: 1999 end-page: 3478 article-title: Predicting stream nitrogen concentration from watershed features using neural networks publication-title: Water Res – volume: 37 start-page: 4222 year: 2003 end-page: 4230 article-title: Identification of land use with water quality data in stormwater using a neural network publication-title: Water Res – volume: 40 start-page: 2980 year: 2005 end-page: 2984 article-title: New tool for evaluation of performance of wastewater treatment plant: artificial neural network publication-title: Process Biochem – volume: 37 start-page: 1749 year: 2003 end-page: 1758 article-title: Patterning and predicting aquatic macroinvertabrate diversities using artificial neural network publication-title: Water Res – volume: 146 start-page: 329 year: 2001 end-page: 339 article-title: A comparison of self‐organising map algorithm and some conventional statistical methods for ecological community ordination publication-title: Ecol Model – volume: 1 start-page: 224 year: 1979 end-page: 227 article-title: A cluster separation measure publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 324 start-page: 1 year: 2006 end-page: 9 article-title: Identification of homogeneous regions for regional frequency analysis using the self‐organising map publication-title: J Hydrol – volume: 5 start-page: 180 year: 2000 end-page: 189 article-title: Hydrological forecasting using neural networks publication-title: J Hydrol Eng – year: 1998 – volume: 17 start-page: 215 issue: 3 year: 2004 end-page: 225 article-title: Self‐organising map and clustering for wastewater treatment monitoring publication-title: Eng Appl Artif Intell – ident: e_1_2_5_8_1 doi: 10.1016/S0043-1354(02)00494-3 – ident: e_1_2_5_12_1 doi: 10.1016/S0925-2312(98)00030-7 – ident: e_1_2_5_11_1 doi: 10.1007/BF00337288 – ident: e_1_2_5_5_1 doi: 10.1016/S0043-1354(03)00344-0 – ident: e_1_2_5_14_1 doi: 10.1016/j.ecolmodel.2005.08.043 – ident: e_1_2_5_20_1 doi: 10.1016/j.scitotenv.2004.01.014 – ident: e_1_2_5_15_1 doi: 10.1016/S0043-1354(99)00061-5 – ident: e_1_2_5_18_1 doi: 10.1016/j.engappai.2005.05.008 – volume-title: Standard Methods for the Examination of Water and Wastewater year: 1998 ident: e_1_2_5_21_1 – ident: e_1_2_5_22_1 doi: 10.1061/(ASCE)1084-0699(2000)5:2(180) – volume: 2 start-page: 43 year: 1998 ident: e_1_2_5_6_1 article-title: A genetic adapted neural network analysis of performance of the nutrient removal plant at Rotorua publication-title: Institute of professional engineers New Zealand (IPENZ) annual conference contributor: fullname: Hong YS – start-page: 96 volume-title: Algorithms for clustering data year: 1988 ident: e_1_2_5_9_1 contributor: fullname: Jain AK – ident: e_1_2_5_19_1 doi: 10.1016/S0043-1354(02)00557-2 – ident: e_1_2_5_16_1 doi: 10.1016/j.jhydrol.2005.09.009 – ident: e_1_2_5_24_1 doi: 10.1016/S0304-3800(01)00297-6 – ident: e_1_2_5_3_1 doi: 10.1109/TPAMI.1979.4766909 – ident: e_1_2_5_13_1 doi: 10.1007/978-3-642-56927-2 – ident: e_1_2_5_4_1 doi: 10.1016/S0304-3800(01)00324-6 – ident: e_1_2_5_7_1 doi: 10.1016/S1462-0758(01)00045-0 – ident: e_1_2_5_10_1 doi: 10.1007/BF00317973 – volume: 6 start-page: 20 year: 2006 ident: e_1_2_5_23_1 article-title: A feature selection methods based on concept extraction and SOM text clustering analysis publication-title: Int J Comput Sci Network Security contributor: fullname: Wang L – ident: e_1_2_5_17_1 doi: 10.1016/j.engappai.2004.03.004 – ident: e_1_2_5_2_1 doi: 10.1016/j.procbio.2005.01.012 |
SSID | ssj0012970 |
Score | 1.974382 |
Snippet | Surface water contamination from agricultural and urban runoff and wastewater discharges from industrial and municipal activities is of major concern to people... |
SourceID | proquest crossref wiley springer fao |
SourceType | Aggregation Database Publisher |
StartPage | 163 |
SubjectTerms | Agricultural pollution Agricultural runoff Artificial intelligence Behavioral Sciences Biomedical and Life Sciences Clustering Dissolved oxygen Ecology Evolutionary Biology Forestry Groundwater pollution k-Means clustering algorithm Kohonen self-organising feature maps Life Sciences Neural networks Organic matter Original Article Plant Sciences Pollution sources Runoff Surface water Surface water quality Urban agriculture Urban runoff Variable dependencies Wastewater discharges Water pollution Water quality Zoology |
SummonAdditionalLinks | – databaseName: SpringerLINK Complete - EKUAL dbid: AEJHL link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ja90wEB7yElpyabqFuOmiQ04tKt5tHU3r8AihhyaBkIuwtfRQaofnuCX59Z2Rl8eDNqU52cjGlj2jmU_-5G8AjvxUaVOliodVrDkiYstJAoSnFhtxBu1bx-guz7Ivl_nnkmRywvnTRfP948RIukC9_teNIil3bD2Cen63gB1MPQn69k5RnixPZ-4gFK5EHCbCkGM-iicu808X2chGC1u1G0Bz5kY3katLPcd7D-n0U3gyAk1WDJ7xDLZM8xweDaUnb3GvVOPeY6rOSSXfsPGqdY0v4EexJrZZa1nVsL7p-muKLJ3RjBxu0J5gpIjpNm49OZtFYdlNy9xyxZ84HUf7sa5f2UoZ9gvh7YoNf3PeMlqi-hLOj8vzT0s-VmbgKs6SghtEEWll_aiuRWSjzNhYoLGJ1ou0skYhqBSxsXUdCC2EzmlmYo0OAhsbI6J92G7axhwAs74SdaKt40OFyusIzyVR-0CHgTKZB-8nA8nrQX9DrpWW6e1KV0cT36688-AATSirbxgf5cVZSKxskBAX7XtwONlVjqO0k3lOaDiJUg_ezUdxeBFnUjWm7TsZEoTDGOUB-8sZOGENMqoi5cGHyQnWt7inr75zqX8_lSy_lqTSV7z6rxscwu7AfNHnotewfbPqzRtYdLp_O46Y30dsDWc priority: 102 providerName: Springer Nature |
Title | Application of an unsupervised artificial neural network technique to multivariant surface water quality data |
URI | https://link.springer.com/article/10.1007/s11284-008-0495-z https://onlinelibrary.wiley.com/doi/abs/10.1007%2Fs11284-008-0495-z https://www.proquest.com/docview/885071536 https://search.proquest.com/docview/20639638 https://search.proquest.com/docview/899171525 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB6alEIvadMHcdMkOvSUIvBrbetoUocllBKSFHITsh491Q7rOGHz6zsjr73dQlMKOdn4bY9m9I0_6RuAT2GmjVWZ5rFKDUdE7DhJgPDM4UbMoEPnGd35Zf7tuvhSkUzOyTgXZtCHmH64kWf4eE0OruruN16_iyi0ck_fI8rnDxiHMVvw0ziS84lJiIUvGIfdYsyxd0pHZtNPn_vjCht905ZT7QbsnJjSTRzrO6LTV0_yCq9hZ4VDWTk0nF14Zps38GKoTLnEtcqrWS_fws9yTXGz1jHVsL7p-huKMZ01jJreoELBSBvTL_zIcjbJw7LblvmBi3eYmKMlWdcvnNKW3SPQXbBhXueS0WDVd3B1Wl2dzPmqRgPXaT4ruUU8kSkXJnUtEpfk1qUCzU4EX2K0sxrhpUitq-tIGCFMQTmKsyaKXGqtSN7DdtM2dg-YC7WoZ8Z5ZlTook7wWJK3j0wcaZsHcDwaR94MShxyrblMH1L6ipr4IeVDAHtoPql-YKSU3y9j4mejGbHSYQD7o03lyl87WRSEi2dJFsDRtBcdjdgT1di272RMYA6jVQDsL0dg6hrlVE8qgM9jW1nf4pFnDX0j-fdbyeqiIr2-8sP_n7IPLwcijP4efYTt20VvD2CrM_2hd5hDeF5WZ_OvvwA6_RQN |
link.rule.ids | 315,782,786,1408,4028,27932,27933,27934,41073,42142,46064,46488,52153 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB41VBW99AUVhrbsgRNoJb9ie49RMUpViqoSJG4rex891UYxBoVfz8w6dhqkUiFxcuTYTtbz2G_32_0G4MBPlDZFonhYxJojIracJEB4YvEkjqB96xjd6Xl6dpkd5ySTc9zvhen0IYYJN4oMl68pwGlC-i9ivwkot3LH3yPM53cjeBkn6JC0kSP6OXAJoXAl47BjDDn2T3HPbboNdA8esdY7jWxRrwHPgStdR7KuKzp5-zyNeAdvllCUTTrfeQ8vTPUBXnXFKRf4KXeC1ost-DNZsdystqyoWFs17RWlmcZoRt7XCVEwksd0B7e4nA0Ksey6Zm7t4g2OzdGYrGnntlCG3SLWnbNua-eC0XrVbZid5LOvU74s08BVnI4n3CCkSArrR2UpIhulxsYCLU8cX6SVNQoRpoiNLctAaCF0RsMUa3QQ2NgYEX2EjaquzA4w6ytRjrV15KhQWRnhtaRwH-gwUCb14LC3jrzqxDjkSnaZXqR0RTXxRco7D3bQfrL4jclSXpyHRNEGYyKmfQ_2eqPKZcg2MssIGo-jxIP94VuMNSJQisrUbSNDwnOYsDxg_7gCR69BSiWlPDjqnWX1E4_8V995yf9bJfNfOUn2TXaffss-bE5nP07l6bez73vwuuPFaDLpE2xcz1vzGUaNbr-46LkH_tYWrg |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb5wwEB5lU7Xqpe8qNG3iQ06pLAFmAR9XCatUiaKoSaTcLPCjp8JqCa02v74zZmG7ldqqUk8gMC-PZ_yZz_4G4ChMtbFlqnlcJoYjInacJEB46vAgjqBD5xnds-vs8i4_LUgm52RYC9PrQ4w_3MgzfLwmB18Y9xOv30YUWrmn7xHl84cJPEoQjpOAvhBXI5UQS58xDvvFmGP3lAzUpl8_98sttjqniSubLdw5UqXbQNb3RPPn_-UbXsCzNRBls77lvIQdW7-Cx31qyhXuFV7OevUavs42HDdrHCtr1tVtt6Ag01rDqO31MhSMxDH9xk8tZ6M-LLtvmJ-5-A1H5mhK1nZLV2rLviPSXbJ-YeeK0WzVN3AzL25Ozvg6SQPXSTadcYuAIi1dKKpKCicy6xKJdieGTxjtrEZ8KRPrqiqSRkqT0yDFWRNFLrFWirewWze13QPmQi2rqXGeGpU6rwSWJX37yMSRtlkAx4Nx1KKX4lAb0WWqSOVTamJFqocA9tB8qvyCoVLdXsdE0EZToqXDAPYHm6q1w7YqzwkYT0UawOF4Fj2N6JOytk3XqpjQHIarANhvSuDYNcoooVQAH4e2snnEH9419I3k71-lis8FCfbN3v37JYfw5Op0ri4-XZ7vw9OeFKM_Se9h937Z2Q8waU134H3nB3kUFVQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+an+unsupervised+artificial+neural+network+technique+to+multivariant+surface+water+quality+data&rft.jtitle=Ecological+research&rft.au=%C3%87inar%2C+%C3%96zer&rft.au=Merdun%2C+Hasan&rft.date=2009&rft.pub=Japan+%3A+Springer+Japan&rft.issn=0912-3814&rft.eissn=1440-1703&rft.volume=24&rft.issue=1&rft.spage=163&rft.epage=173&rft_id=info:doi/10.1007%2Fs11284-008-0495-z&rft.externalDocID=US201301574230 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0912-3814&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0912-3814&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0912-3814&client=summon |