Application of an unsupervised artificial neural network technique to multivariant surface water quality data

Surface water contamination from agricultural and urban runoff and wastewater discharges from industrial and municipal activities is of major concern to people worldwide. Classical models can be insufficient to visualise the results because the water quality variables used to describe dynamic pollut...

Full description

Saved in:
Bibliographic Details
Published in:Ecological research Vol. 24; no. 1; pp. 163 - 173
Main Authors: Çinar, Özer, Merdun, Hasan
Format: Journal Article
Language:English
Published: Japan Japan : Springer Japan 2009
Springer Japan
Blackwell Publishing Ltd
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Surface water contamination from agricultural and urban runoff and wastewater discharges from industrial and municipal activities is of major concern to people worldwide. Classical models can be insufficient to visualise the results because the water quality variables used to describe dynamic pollution sources are complex, multivariable, and nonlinearly related. Artificial intelligence techniques with the ability to analyse multivariant water quality data by means of a sophisticated visualisation capacity can offer an alternative to current models. In this study, the Kohonen self-organising feature maps (SOM) neural network was initially applied to analyse the complex nonlinear relationships among multivariable surface water quality variables using the component planes of the variables to determine the complex behaviour of water quality parameters. The dependencies between water quality variables were extracted and interpreted using the pattern analysis visualised in component planes. For further investigation, the k-means clustering algorithm was used to determine the optimal number of clusters by partitioning the maps and utilising the Davies-Bouldin clustering index, leading to seven groups or clusters corresponding to water quality variables. The results reveal that the concentrations of Na, K, Cl, NH₄-N, NO₂-N, o-PO₄, component planes of organic matter (pV), and dissolved oxygen (DO) were significantly affected by seasonal changes, and that the SOM technique is an efficient tool with which to analyse and determine the complex behaviour of multidimensional surface water quality data. These results suggest that this technique could also be applied to other environmentally sensitive areas such as air and groundwater pollution.
AbstractList Surface water contamination from agricultural and urban runoff and wastewater discharges from industrial and municipal activities is of major concern to people worldwide. Classical models can be insufficient to visualise the results because the water quality variables used to describe dynamic pollution sources are complex, multivariable, and nonlinearly related. Artificial intelligence techniques with the ability to analyse multivariant water quality data by means of a sophisticated visualisation capacity can offer an alternative to current models. In this study, the Kohonen self-organising feature maps (SOM) neural network was initially applied to analyse the complex nonlinear relationships among multivariable surface water quality variables using the component planes of the variables to determine the complex behaviour of water quality parameters. The dependencies between water quality variables were extracted and interpreted using the pattern analysis visualised in component planes. For further investigation, the k-means clustering algorithm was used to determine the optimal number of clusters by partitioning the maps and utilising the Davies--Bouldin clustering index, leading to seven groups or clusters corresponding to water quality variables. The results reveal that the concentrations of Na, K, Cl, NH4-N, NO2-N, o-PO4, component planes of organic matter (pV), and dissolved oxygen (DO) were significantly affected by seasonal changes, and that the SOM technique is an efficient tool with which to analyse and determine the complex behaviour of multidimensional surface water quality data. These results suggest that this technique could also be applied to other environmentally sensitive areas such as air and groundwater pollution.
Surface water contamination from agricultural and urban runoff and wastewater discharges from industrial and municipal activities is of major concern to people worldwide. Classical models can be insufficient to visualise the results because the water quality variables used to describe dynamic pollution sources are complex, multivariable, and nonlinearly related. Artificial intelligence techniques with the ability to analyse multivariant water quality data by means of a sophisticated visualisation capacity can offer an alternative to current models. In this study, the Kohonen self‐organising feature maps (SOM) neural network was initially applied to analyse the complex nonlinear relationships among multivariable surface water quality variables using the component planes of the variables to determine the complex behaviour of water quality parameters. The dependencies between water quality variables were extracted and interpreted using the pattern analysis visualised in component planes. For further investigation, the k‐means clustering algorithm was used to determine the optimal number of clusters by partitioning the maps and utilising the Davies–Bouldin clustering index, leading to seven groups or clusters corresponding to water quality variables. The results reveal that the concentrations of Na, K, Cl, NH 4 ‐N, NO 2 ‐N, o ‐PO 4 , component planes of organic matter (pV), and dissolved oxygen (DO) were significantly affected by seasonal changes, and that the SOM technique is an efficient tool with which to analyse and determine the complex behaviour of multidimensional surface water quality data. These results suggest that this technique could also be applied to other environmentally sensitive areas such as air and groundwater pollution.
Surface water contamination from agricultural and urban runoff and wastewater discharges from industrial and municipal activities is of major concern to people worldwide. Classical models can be insufficient to visualise the results because the water quality variables used to describe dynamic pollution sources are complex, multivariable, and nonlinearly related. Artificial intelligence techniques with the ability to analyse multivariant water quality data by means of a sophisticated visualisation capacity can offer an alternative to current models. In this study, the Kohonen self-organising feature maps (SOM) neural network was initially applied to analyse the complex nonlinear relationships among multivariable surface water quality variables using the component planes of the variables to determine the complex behaviour of water quality parameters. The dependencies between water quality variables were extracted and interpreted using the pattern analysis visualised in component planes. For further investigation, the k-means clustering algorithm was used to determine the optimal number of clusters by partitioning the maps and utilising the Davies-Bouldin clustering index, leading to seven groups or clusters corresponding to water quality variables. The results reveal that the concentrations of Na, K, Cl, NH₄-N, NO₂-N, o-PO₄, component planes of organic matter (pV), and dissolved oxygen (DO) were significantly affected by seasonal changes, and that the SOM technique is an efficient tool with which to analyse and determine the complex behaviour of multidimensional surface water quality data. These results suggest that this technique could also be applied to other environmentally sensitive areas such as air and groundwater pollution.
Surface water contamination from agricultural and urban runoff and wastewater discharges from industrial and municipal activities is of major concern to people worldwide. Classical models can be insufficient to visualise the results because the water quality variables used to describe dynamic pollution sources are complex, multivariable, and nonlinearly related. Artificial intelligence techniques with the ability to analyse multivariant water quality data by means of a sophisticated visualisation capacity can offer an alternative to current models. In this study, the Kohonen self-organising feature maps (SOM) neural network was initially applied to analyse the complex nonlinear relationships among multivariable surface water quality variables using the component planes of the variables to determine the complex behaviour of water quality parameters. The dependencies between water quality variables were extracted and interpreted using the pattern analysis visualised in component planes. For further investigation, the k-means clustering algorithm was used to determine the optimal number of clusters by partitioning the maps and utilising the Davies-Bouldin clustering index, leading to seven groups or clusters corresponding to water quality variables. The results reveal that the concentrations of Na, K, Cl, NH sub(4)-N, NO sub(2)-N, o-PO sub(4), component planes of organic matter (pV), and dissolved oxygen (DO) were significantly affected by seasonal changes, and that the SOM technique is an efficient tool with which to analyse and determine the complex behaviour of multidimensional surface water quality data. These results suggest that this technique could also be applied to other environmentally sensitive areas such as air and groundwater pollution.
Surface water contamination from agricultural and urban runoff and wastewater discharges from industrial and municipal activities is of major concern to people worldwide. Classical models can be insufficient to visualise the results because the water quality variables used to describe dynamic pollution sources are complex, multivariable, and nonlinearly related. Artificial intelligence techniques with the ability to analyse multivariant water quality data by means of a sophisticated visualisation capacity can offer an alternative to current models. In this study, the Kohonen self-organising feature maps (SOM) neural network was initially applied to analyse the complex nonlinear relationships among multivariable surface water quality variables using the component planes of the variables to determine the complex behaviour of water quality parameters. The dependencies between water quality variables were extracted and interpreted using the pattern analysis visualised in component planes. For further investigation, the k-means clustering algorithm was used to determine the optimal number of clusters by partitioning the maps and utilising the Davies-Bouldin clustering index, leading to seven groups or clusters corresponding to water quality variables. The results reveal that the concentrations of Na, K, Cl, NH^sub 4^-N, NO^sub 2^-N, o-PO^sub 4^, component planes of organic matter (pV), and dissolved oxygen (DO) were significantly affected by seasonal changes, and that the SOM technique is an efficient tool with which to analyse and determine the complex behaviour of multidimensional surface water quality data. These results suggest that this technique could also be applied to other environmentally sensitive areas such as air and groundwater pollution.[PUBLICATION ABSTRACT]
Author Merdun, Hasan
Çinar, Özer
Author_xml – sequence: 1
  fullname: Çinar, Özer
– sequence: 2
  fullname: Merdun, Hasan
BookMark eNqFkU1v1DAQhi1UJLaFH8AJiwOcAuOPxPFxVS20UiUkKGfLm4yLS9be2k5X21-PS5CQOJTTXJ7nnRm9p-QkxICEvGbwgQGoj5kx3ssGoG9A6rZ5eEZWTEpomAJxQlagGW9Ez-QLcprzLQDjWsGK7Nb7_eQHW3wMNDpqA51DnveY7n3GkdpUvPODtxMNOKffoxxi-kkLDj-Cv5uRlkh381T8vU3ehkLznJwdkB5swUTvZjv5cqSjLfYlee7slPHVn3lGrj9trs8vmqsvny_P11fNIFW7blAD66wDsd1q4YRCJzW3sv7ZiXFwOCgltUS33TI9aj32IKBzODLmJKIWZ-T9ErtPsR6Yi9n5POA02YBxzqbXminW8raS754kOXRCd6Kv4Nt_wNs4p1CfMH3fQk0TXYXYAg0p5pzQmX3yO5uOhoF5rMksNZlak3msyTxURy3OwU94_L9gNl83wAVbV5MvZq5SuMH096Sn1r1ZJGejsTfJZ_P9GwcmgLVKcgHiF0wis10
CitedBy_id crossref_primary_10_3390_ijerph15030547
crossref_primary_10_3390_ijerph13010115
crossref_primary_10_1080_03067310903094511
crossref_primary_10_1007_s10098_023_02477_4
crossref_primary_10_1016_j_imu_2022_100876
crossref_primary_10_1139_a11_001
crossref_primary_10_1007_s11707_016_0585_0
crossref_primary_10_1007_s10661_022_10907_x
crossref_primary_10_3390_w16091238
crossref_primary_10_1016_j_chemosphere_2022_135003
crossref_primary_10_1007_s10646_015_1453_5
crossref_primary_10_1029_2019WR025991
crossref_primary_10_1371_journal_pone_0099618
crossref_primary_10_1080_14634988_2011_604273
crossref_primary_10_1016_j_ijheh_2021_113833
crossref_primary_10_3390_agriculture14071071
crossref_primary_10_1016_j_chemosphere_2017_08_143
crossref_primary_10_1016_j_orggeochem_2020_104165
Cites_doi 10.1007/BF00337288
10.1016/S0043-1354(99)00061-5
10.1016/S0304-3800(01)00324-6
10.1109/TPAMI.1979.4766909
10.1016/S0925-2312(98)00030-7
10.1016/S0043-1354(03)00344-0
10.1016/j.jhydrol.2005.09.009
10.1016/j.engappai.2005.05.008
10.1007/BF00317973
10.1016/j.scitotenv.2004.01.014
10.1061/(ASCE)1084-0699(2000)5:2(180)
10.1016/S0043-1354(02)00494-3
10.1016/S0304-3800(01)00297-6
10.1016/j.procbio.2005.01.012
10.1016/S1462-0758(01)00045-0
10.1016/j.ecolmodel.2005.08.043
10.1016/S0043-1354(02)00557-2
10.1016/j.engappai.2004.03.004
10.1007/978-3-642-56927-2
ContentType Journal Article
Copyright The Ecological Society of Japan 2008
2009 The Ecological Society of Japan
The Ecological Society of Japan 2009
Copyright_xml – notice: The Ecological Society of Japan 2008
– notice: 2009 The Ecological Society of Japan
– notice: The Ecological Society of Japan 2009
DBID FBQ
AAYXX
CITATION
3V.
7QG
7SN
7SS
7ST
7XB
8FD
8FE
8FH
8FK
8G5
ABUWG
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H95
HCIFZ
L.G
LK8
M2O
M7P
MBDVC
P64
PATMY
PCBAR
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
RC3
SOI
7TG
7TV
7U6
7UA
H97
KL.
7QH
DOI 10.1007/s11284-008-0495-z
DatabaseName AGRIS
CrossRef
ProQuest Central (Corporate)
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Agriculture & Environmental Science Database
ProQuest Central Essentials
Biological Science Collection
ProQuest Databases
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Research Library Prep
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biological Sciences
ProQuest Research Library
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
Genetics Abstracts
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Pollution Abstracts
Sustainability Science Abstracts
Water Resources Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Meteorological & Geoastrophysical Abstracts - Academic
Aqualine
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Research Library
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Animal Behavior Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
Meteorological & Geoastrophysical Abstracts
Sustainability Science Abstracts
Pollution Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Aqualine
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef


Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Zoology
Forestry
EISSN 1440-1703
EndPage 173
ExternalDocumentID 2434651441
10_1007_s11284_008_0495_z
ERE0231A
US201301574230
Genre article
Feature
GroupedDBID -4W
-56
-5G
-BR
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
199
1N0
1OB
1OC
1SB
2.D
203
28-
29G
29~
2J2
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
31~
33P
3SX
3V.
4.4
408
409
40D
40E
4P2
53G
5GY
5QI
5VS
67N
67Z
6NX
78A
7XC
8-1
8CJ
8FE
8FH
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHHS
AAIAL
AAJKR
AANLZ
AANXM
AARHV
AARTL
AASGY
AATVU
AAWCG
AAXRX
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABCUV
ABDBF
ABHLI
ABHUG
ABJNI
ABJOX
ABKTR
ABMNI
ABNWP
ABPLI
ABPTK
ABQBU
ABTEG
ABTHY
ABTMW
ABULA
ABUWG
ACAHQ
ACBXY
ACCFJ
ACCZN
ACGFS
ACHXU
ACKNC
ACOKC
ACOMO
ACPOU
ACPRK
ACSNA
ACXBN
ACXQS
ADBBV
ADDAD
ADHHG
ADHIR
ADIMF
ADINQ
ADKPE
ADKYN
ADMGS
ADOZA
ADRFC
ADXAS
ADZKW
ADZMN
ADZOD
AEBTG
AEEZP
AEFIE
AEGAL
AEGNC
AEIGN
AEJHL
AEKMD
AENEX
AEOHA
AEPYU
AEQDE
AETLH
AEUYR
AEXYK
AFEXP
AFFPM
AFGCZ
AFGKR
AFKRA
AFLOW
AFNRJ
AFRAH
AFWTZ
AFZJQ
AFZKB
AGAYW
AGGDS
AGJBK
AGJLS
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIIXL
AIURR
AIWBW
AJBDE
AJBLW
AJRNO
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALWAN
AMKLP
AMYDB
AMYQR
ARMRJ
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
B-.
B0M
BA0
BBNVY
BBWZM
BENPR
BFHJK
BGNMA
BHPHI
BIYOS
BKSAR
BPHCQ
CAG
CCPQU
CO8
COF
CS3
CSCUP
D1J
DCZOG
DL5
DRFUL
DRSTM
DU5
DWQXO
EAD
EAP
EAS
EBD
EBO
EBS
EDH
EJD
EMK
EN4
EPAXT
EPL
ESBYG
ESX
FBQ
FEDTE
FIGPU
FNLPD
FRRFC
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GNUQQ
GQ6
GQ7
GQ8
GUQSH
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
ITM
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
KDC
KOV
KOW
KPH
LAS
LATKE
LEEKS
LH4
LK8
LW6
LYRES
M2O
M4Y
M7P
MA-
MEWTI
MXFUL
MXSTM
N2Q
NB0
NDZJH
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P2W
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT5
PYCSY
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAMSI
SAP
SBL
SDH
SDM
SHX
SISQX
SNE
SNX
SOJ
SPISZ
SSXJD
SUPJJ
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
VC2
W23
W48
WH7
WJK
WK6
WK8
WXSBR
Y6R
YLTOR
Z45
ZOVNA
ZZTAW
~8M
~KM
AAPBV
AAHBH
AFBBN
AHBTC
AITYG
H13
HGLYW
ZMTXR
AAMNL
AAYXX
AAYZH
CITATION
7QG
7SN
7SS
7ST
7XB
8FD
8FK
C1K
F1W
FR3
H95
L.G
MBDVC
P64
PQEST
PQUKI
Q9U
RC3
SOI
7TG
7TV
7U6
7UA
H97
KL.
7QH
ID FETCH-LOGICAL-c475A-e9016af03bb93f37ef492a400763dcfec77494efbb19d99d80306fed11f4ee93
IEDL.DBID 33P
ISSN 0912-3814
IngestDate Fri Oct 25 00:13:39 EDT 2024
Thu Oct 24 23:46:28 EDT 2024
Tue Nov 19 04:48:38 EST 2024
Thu Nov 21 21:54:18 EST 2024
Sat Aug 24 01:08:10 EDT 2024
Sat Dec 16 12:04:43 EST 2023
Wed Dec 27 18:58:20 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Means clustering algorithm
Kohonen self-organising feature maps
Variable dependencies
Surface water quality
Clustering
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c475A-e9016af03bb93f37ef492a400763dcfec77494efbb19d99d80306fed11f4ee93
Notes http://dx.doi.org/10.1007/s11284-008-0495-z
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 885071536
PQPubID 23462
PageCount 11
ParticipantIDs proquest_miscellaneous_899171525
proquest_miscellaneous_20639638
proquest_journals_885071536
crossref_primary_10_1007_s11284_008_0495_z
wiley_primary_10_1007_s11284_008_0495_z_ERE0231A
springer_journals_10_1007_s11284_008_0495_z
fao_agris_US201301574230
PublicationCentury 2000
PublicationDate 2009
1-2009
January 2009
2009-01-00
20090101
PublicationDateYYYYMMDD 2009-01-01
PublicationDate_xml – year: 2009
  text: 2009
PublicationDecade 2000
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Ecological research
PublicationTitleAbbrev Ecol Res
PublicationYear 2009
Publisher Japan : Springer Japan
Springer Japan
Blackwell Publishing Ltd
Publisher_xml – name: Japan : Springer Japan
– name: Springer Japan
– name: Blackwell Publishing Ltd
References Giraudel, Lek (CR3) 2001; 146
Lek, Guiresse, Giraudel (CR14) 1999; 33
López, Machón (CR16) 2004; 17
Kohonen (CR11) 1998; 21
Kohonen (CR12) 2001
Hong, Rosen, Bhamidimarri (CR7) 2003; 37
Park, Chon, Kwak, Lek (CR19) 2004; 327
Davies, Bouldin (CR2) 1979; 1
CR5
Hong, Rosen (CR6) 2001; 3
Jain, Dubes (CR8) 1988
Kohonen (CR10) 1982; 43
Park, Verdonschot, Chon, Lek (CR18) 2003; 37
Lin, Chen (CR15) 2006; 324
Machón, López (CR17) 2006; 19
Wang, Jiang, Liao, Lu (CR22) 2006; 6
CR20
Thirumalaiah, Deo (CR21) 2000; 5
Lee, Kwon, Yoo, Song, Chon (CR13) 2006; 193
Wilson, Recknagel (CR23) 2001; 146
Kohonen (CR9) 1982; 44
Ha, Srenstrom (CR4) 2003; 37
Çinar (CR1) 2005; 40
2001; 146
2001
2000; 5
2004; 17
1982b; 43
2005; 40
1998
2003; 37
1999; 33
2006; 19
2006; 6
2001; 3
1979; 1
1998; 2
2006; 193
1982a; 44
2006; 324
1998; 21
2004; 327
1988
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_24_1
e_1_2_5_13_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_22_1
Wang L (e_1_2_5_23_1) 2006; 6
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_19_1
e_1_2_5_18_1
Hong YS (e_1_2_5_6_1) 1998; 2
Jain AK (e_1_2_5_9_1) 1988
e_1_2_5_20_1
(e_1_2_5_21_1) 1998
References_xml – start-page: 96
  year: 1988
  end-page: 101
  ident: CR8
  publication-title: Algorithms for clustering data
  contributor:
    fullname: Dubes
– volume: 43
  start-page: 59
  year: 1982
  end-page: 69
  ident: CR10
  article-title: Self-organised formation of topologically correct feature maps
  publication-title: Biol Cybern
  doi: 10.1007/BF00337288
  contributor:
    fullname: Kohonen
– volume: 33
  start-page: 3469
  year: 1999
  end-page: 3478
  ident: CR14
  article-title: Predicting stream nitrogen concentration from watershed features using neural networks
  publication-title: Water Res
  doi: 10.1016/S0043-1354(99)00061-5
  contributor:
    fullname: Giraudel
– volume: 146
  start-page: 329
  year: 2001
  end-page: 339
  ident: CR3
  article-title: A comparison of self-organising map algorithm and some conventional statistical methods for ecological community ordination
  publication-title: Ecol Model
  doi: 10.1016/S0304-3800(01)00324-6
  contributor:
    fullname: Lek
– volume: 1
  start-page: 224
  year: 1979
  end-page: 227
  ident: CR2
  article-title: A cluster separation measure
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.1979.4766909
  contributor:
    fullname: Bouldin
– volume: 6
  start-page: 20
  year: 2006
  end-page: 28
  ident: CR22
  article-title: A feature selection methods based on concept extraction and SOM text clustering analysis
  publication-title: Int J Comput Sci Network Security
  contributor:
    fullname: Lu
– volume: 21
  start-page: 1
  year: 1998
  end-page: 6
  ident: CR11
  article-title: The self-organising map
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(98)00030-7
  contributor:
    fullname: Kohonen
– volume: 37
  start-page: 4222
  year: 2003
  end-page: 4230
  ident: CR4
  article-title: Identification of land use with water quality data in stormwater using a neural network
  publication-title: Water Res
  doi: 10.1016/S0043-1354(03)00344-0
  contributor:
    fullname: Srenstrom
– volume: 324
  start-page: 1
  year: 2006
  end-page: 9
  ident: CR15
  article-title: Identification of homogeneous regions for regional frequency analysis using the self-organising map
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2005.09.009
  contributor:
    fullname: Chen
– volume: 19
  start-page: 19
  year: 2006
  end-page: 28
  ident: CR17
  article-title: End-point detection of the aerobic phase in a biological reactor using SOM and clustering algorithms
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2005.05.008
  contributor:
    fullname: López
– volume: 44
  start-page: 135
  year: 1982
  end-page: 140
  ident: CR9
  article-title: Analysis of a simple self-organising process
  publication-title: Biol Cybern
  doi: 10.1007/BF00317973
  contributor:
    fullname: Kohonen
– volume: 327
  start-page: 105
  year: 2004
  end-page: 122
  ident: CR19
  article-title: Hierarchical community classification and assessment of aquatic ecosystems using artificial neural networks
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2004.01.014
  contributor:
    fullname: Lek
– volume: 5
  start-page: 180
  year: 2000
  end-page: 189
  ident: CR21
  article-title: Hydrological forecasting using neural networks
  publication-title: J Hydrol Eng
  doi: 10.1061/(ASCE)1084-0699(2000)5:2(180)
  contributor:
    fullname: Deo
– volume: 37
  start-page: 1608
  year: 2003
  end-page: 1618
  ident: CR7
  article-title: Analysis of municipal wastewater treatment plant using a neural network-based pattern analysis
  publication-title: Water Res
  doi: 10.1016/S0043-1354(02)00494-3
  contributor:
    fullname: Bhamidimarri
– ident: CR5
– year: 2001
  ident: CR12
  publication-title: Self-organising maps
  contributor:
    fullname: Kohonen
– volume: 146
  start-page: 69
  year: 2001
  end-page: 84
  ident: CR23
  article-title: Towards a generic artificial neural network model for dynamic predictions of algal abundance in freshwater lakes
  publication-title: Ecol Model
  doi: 10.1016/S0304-3800(01)00297-6
  contributor:
    fullname: Recknagel
– volume: 40
  start-page: 2980
  year: 2005
  end-page: 2984
  ident: CR1
  article-title: New tool for evaluation of performance of wastewater treatment plant: artificial neural network
  publication-title: Process Biochem
  doi: 10.1016/j.procbio.2005.01.012
  contributor:
    fullname: Çinar
– volume: 3
  start-page: 193
  year: 2001
  end-page: 204
  ident: CR6
  article-title: Intelligent characterization and diagnosis of the groundwater quality in an urban fractured-rock aquifer using an artificial neural network
  publication-title: Urban Water
  doi: 10.1016/S1462-0758(01)00045-0
  contributor:
    fullname: Rosen
– volume: 193
  start-page: 602
  year: 2006
  end-page: 614
  ident: CR13
  article-title: Multivariate analysis and self-organising mapping applied to analysis of nest-site selection in Black-tailed Gulls
  publication-title: Ecol Model
  doi: 10.1016/j.ecolmodel.2005.08.043
  contributor:
    fullname: Chon
– volume: 37
  start-page: 1749
  year: 2003
  end-page: 1758
  ident: CR18
  article-title: Patterning and predicting aquatic macroinvertabrate diversities using artificial neural network
  publication-title: Water Res
  doi: 10.1016/S0043-1354(02)00557-2
  contributor:
    fullname: Lek
– ident: CR20
– volume: 17
  start-page: 215
  issue: 3
  year: 2004
  end-page: 225
  ident: CR16
  article-title: Self-organising map and clustering for wastewater treatment monitoring
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2004.03.004
  contributor:
    fullname: Machón
– volume: 193
  start-page: 602
  year: 2006
  end-page: 614
  article-title: Multivariate analysis and self‐organising mapping applied to analysis of nest‐site selection in Black‐tailed Gulls
  publication-title: Ecol Model
– volume: 2
  start-page: 43
  year: 1998
  article-title: A genetic adapted neural network analysis of performance of the nutrient removal plant at Rotorua
  publication-title: Institute of professional engineers New Zealand (IPENZ) annual conference
– volume: 146
  start-page: 69
  year: 2001
  end-page: 84
  article-title: Towards a generic artificial neural network model for dynamic predictions of algal abundance in freshwater lakes
  publication-title: Ecol Model
– volume: 37
  start-page: 1608
  year: 2003
  end-page: 1618
  article-title: Analysis of municipal wastewater treatment plant using a neural network‐based pattern analysis
  publication-title: Water Res
– start-page: 96
  year: 1988
  end-page: 101
– volume: 6
  start-page: 20
  year: 2006
  end-page: 28
  article-title: A feature selection methods based on concept extraction and SOM text clustering analysis
  publication-title: Int J Comput Sci Network Security
– volume: 44
  start-page: 135
  year: 1982a
  end-page: 140
  article-title: Analysis of a simple self‐organising process
  publication-title: Biol Cybern
– volume: 21
  start-page: 1
  year: 1998
  end-page: 6
  article-title: The self‐organising map
  publication-title: Neurocomputing
– volume: 327
  start-page: 105
  year: 2004
  end-page: 122
  article-title: Hierarchical community classification and assessment of aquatic ecosystems using artificial neural networks
  publication-title: Sci Total Environ
– volume: 43
  start-page: 59
  year: 1982b
  end-page: 69
  article-title: Self‐organised formation of topologically correct feature maps
  publication-title: Biol Cybern
– volume: 3
  start-page: 193
  year: 2001
  end-page: 204
  article-title: Intelligent characterization and diagnosis of the groundwater quality in an urban fractured‐rock aquifer using an artificial neural network
  publication-title: Urban Water
– year: 2001
– volume: 19
  start-page: 19
  year: 2006
  end-page: 28
  article-title: End‐point detection of the aerobic phase in a biological reactor using SOM and clustering algorithms
  publication-title: Eng Appl Artif Intell
– volume: 33
  start-page: 3469
  year: 1999
  end-page: 3478
  article-title: Predicting stream nitrogen concentration from watershed features using neural networks
  publication-title: Water Res
– volume: 37
  start-page: 4222
  year: 2003
  end-page: 4230
  article-title: Identification of land use with water quality data in stormwater using a neural network
  publication-title: Water Res
– volume: 40
  start-page: 2980
  year: 2005
  end-page: 2984
  article-title: New tool for evaluation of performance of wastewater treatment plant: artificial neural network
  publication-title: Process Biochem
– volume: 37
  start-page: 1749
  year: 2003
  end-page: 1758
  article-title: Patterning and predicting aquatic macroinvertabrate diversities using artificial neural network
  publication-title: Water Res
– volume: 146
  start-page: 329
  year: 2001
  end-page: 339
  article-title: A comparison of self‐organising map algorithm and some conventional statistical methods for ecological community ordination
  publication-title: Ecol Model
– volume: 1
  start-page: 224
  year: 1979
  end-page: 227
  article-title: A cluster separation measure
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 324
  start-page: 1
  year: 2006
  end-page: 9
  article-title: Identification of homogeneous regions for regional frequency analysis using the self‐organising map
  publication-title: J Hydrol
– volume: 5
  start-page: 180
  year: 2000
  end-page: 189
  article-title: Hydrological forecasting using neural networks
  publication-title: J Hydrol Eng
– year: 1998
– volume: 17
  start-page: 215
  issue: 3
  year: 2004
  end-page: 225
  article-title: Self‐organising map and clustering for wastewater treatment monitoring
  publication-title: Eng Appl Artif Intell
– ident: e_1_2_5_8_1
  doi: 10.1016/S0043-1354(02)00494-3
– ident: e_1_2_5_12_1
  doi: 10.1016/S0925-2312(98)00030-7
– ident: e_1_2_5_11_1
  doi: 10.1007/BF00337288
– ident: e_1_2_5_5_1
  doi: 10.1016/S0043-1354(03)00344-0
– ident: e_1_2_5_14_1
  doi: 10.1016/j.ecolmodel.2005.08.043
– ident: e_1_2_5_20_1
  doi: 10.1016/j.scitotenv.2004.01.014
– ident: e_1_2_5_15_1
  doi: 10.1016/S0043-1354(99)00061-5
– ident: e_1_2_5_18_1
  doi: 10.1016/j.engappai.2005.05.008
– volume-title: Standard Methods for the Examination of Water and Wastewater
  year: 1998
  ident: e_1_2_5_21_1
– ident: e_1_2_5_22_1
  doi: 10.1061/(ASCE)1084-0699(2000)5:2(180)
– volume: 2
  start-page: 43
  year: 1998
  ident: e_1_2_5_6_1
  article-title: A genetic adapted neural network analysis of performance of the nutrient removal plant at Rotorua
  publication-title: Institute of professional engineers New Zealand (IPENZ) annual conference
  contributor:
    fullname: Hong YS
– start-page: 96
  volume-title: Algorithms for clustering data
  year: 1988
  ident: e_1_2_5_9_1
  contributor:
    fullname: Jain AK
– ident: e_1_2_5_19_1
  doi: 10.1016/S0043-1354(02)00557-2
– ident: e_1_2_5_16_1
  doi: 10.1016/j.jhydrol.2005.09.009
– ident: e_1_2_5_24_1
  doi: 10.1016/S0304-3800(01)00297-6
– ident: e_1_2_5_3_1
  doi: 10.1109/TPAMI.1979.4766909
– ident: e_1_2_5_13_1
  doi: 10.1007/978-3-642-56927-2
– ident: e_1_2_5_4_1
  doi: 10.1016/S0304-3800(01)00324-6
– ident: e_1_2_5_7_1
  doi: 10.1016/S1462-0758(01)00045-0
– ident: e_1_2_5_10_1
  doi: 10.1007/BF00317973
– volume: 6
  start-page: 20
  year: 2006
  ident: e_1_2_5_23_1
  article-title: A feature selection methods based on concept extraction and SOM text clustering analysis
  publication-title: Int J Comput Sci Network Security
  contributor:
    fullname: Wang L
– ident: e_1_2_5_17_1
  doi: 10.1016/j.engappai.2004.03.004
– ident: e_1_2_5_2_1
  doi: 10.1016/j.procbio.2005.01.012
SSID ssj0012970
Score 1.974382
Snippet Surface water contamination from agricultural and urban runoff and wastewater discharges from industrial and municipal activities is of major concern to people...
SourceID proquest
crossref
wiley
springer
fao
SourceType Aggregation Database
Publisher
StartPage 163
SubjectTerms Agricultural pollution
Agricultural runoff
Artificial intelligence
Behavioral Sciences
Biomedical and Life Sciences
Clustering
Dissolved oxygen
Ecology
Evolutionary Biology
Forestry
Groundwater pollution
k-Means clustering algorithm
Kohonen self-organising feature maps
Life Sciences
Neural networks
Organic matter
Original Article
Plant Sciences
Pollution sources
Runoff
Surface water
Surface water quality
Urban agriculture
Urban runoff
Variable dependencies
Wastewater discharges
Water pollution
Water quality
Zoology
SummonAdditionalLinks – databaseName: SpringerLINK Complete - EKUAL
  dbid: AEJHL
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ja90wEB7yElpyabqFuOmiQ04tKt5tHU3r8AihhyaBkIuwtfRQaofnuCX59Z2Rl8eDNqU52cjGlj2jmU_-5G8AjvxUaVOliodVrDkiYstJAoSnFhtxBu1bx-guz7Ivl_nnkmRywvnTRfP948RIukC9_teNIil3bD2Cen63gB1MPQn69k5RnixPZ-4gFK5EHCbCkGM-iicu808X2chGC1u1G0Bz5kY3katLPcd7D-n0U3gyAk1WDJ7xDLZM8xweDaUnb3GvVOPeY6rOSSXfsPGqdY0v4EexJrZZa1nVsL7p-muKLJ3RjBxu0J5gpIjpNm49OZtFYdlNy9xyxZ84HUf7sa5f2UoZ9gvh7YoNf3PeMlqi-hLOj8vzT0s-VmbgKs6SghtEEWll_aiuRWSjzNhYoLGJ1ou0skYhqBSxsXUdCC2EzmlmYo0OAhsbI6J92G7axhwAs74SdaKt40OFyusIzyVR-0CHgTKZB-8nA8nrQX9DrpWW6e1KV0cT36688-AATSirbxgf5cVZSKxskBAX7XtwONlVjqO0k3lOaDiJUg_ezUdxeBFnUjWm7TsZEoTDGOUB-8sZOGENMqoi5cGHyQnWt7inr75zqX8_lSy_lqTSV7z6rxscwu7AfNHnotewfbPqzRtYdLp_O46Y30dsDWc
  priority: 102
  providerName: Springer Nature
Title Application of an unsupervised artificial neural network technique to multivariant surface water quality data
URI https://link.springer.com/article/10.1007/s11284-008-0495-z
https://onlinelibrary.wiley.com/doi/abs/10.1007%2Fs11284-008-0495-z
https://www.proquest.com/docview/885071536
https://search.proquest.com/docview/20639638
https://search.proquest.com/docview/899171525
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB6alEIvadMHcdMkOvSUIvBrbetoUocllBKSFHITsh491Q7rOGHz6zsjr73dQlMKOdn4bY9m9I0_6RuAT2GmjVWZ5rFKDUdE7DhJgPDM4UbMoEPnGd35Zf7tuvhSkUzOyTgXZtCHmH64kWf4eE0OruruN16_iyi0ck_fI8rnDxiHMVvw0ziS84lJiIUvGIfdYsyxd0pHZtNPn_vjCht905ZT7QbsnJjSTRzrO6LTV0_yCq9hZ4VDWTk0nF14Zps38GKoTLnEtcqrWS_fws9yTXGz1jHVsL7p-huKMZ01jJreoELBSBvTL_zIcjbJw7LblvmBi3eYmKMlWdcvnNKW3SPQXbBhXueS0WDVd3B1Wl2dzPmqRgPXaT4ruUU8kSkXJnUtEpfk1qUCzU4EX2K0sxrhpUitq-tIGCFMQTmKsyaKXGqtSN7DdtM2dg-YC7WoZ8Z5ZlTook7wWJK3j0wcaZsHcDwaR94MShxyrblMH1L6ipr4IeVDAHtoPql-YKSU3y9j4mejGbHSYQD7o03lyl87WRSEi2dJFsDRtBcdjdgT1di272RMYA6jVQDsL0dg6hrlVE8qgM9jW1nf4pFnDX0j-fdbyeqiIr2-8sP_n7IPLwcijP4efYTt20VvD2CrM_2hd5hDeF5WZ_OvvwA6_RQN
link.rule.ids 315,782,786,1408,4028,27932,27933,27934,41073,42142,46064,46488,52153
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB41VBW99AUVhrbsgRNoJb9ie49RMUpViqoSJG4rex891UYxBoVfz8w6dhqkUiFxcuTYTtbz2G_32_0G4MBPlDZFonhYxJojIracJEB4YvEkjqB96xjd6Xl6dpkd5ySTc9zvhen0IYYJN4oMl68pwGlC-i9ivwkot3LH3yPM53cjeBkn6JC0kSP6OXAJoXAl47BjDDn2T3HPbboNdA8esdY7jWxRrwHPgStdR7KuKzp5-zyNeAdvllCUTTrfeQ8vTPUBXnXFKRf4KXeC1ost-DNZsdystqyoWFs17RWlmcZoRt7XCVEwksd0B7e4nA0Ksey6Zm7t4g2OzdGYrGnntlCG3SLWnbNua-eC0XrVbZid5LOvU74s08BVnI4n3CCkSArrR2UpIhulxsYCLU8cX6SVNQoRpoiNLctAaCF0RsMUa3QQ2NgYEX2EjaquzA4w6ytRjrV15KhQWRnhtaRwH-gwUCb14LC3jrzqxDjkSnaZXqR0RTXxRco7D3bQfrL4jclSXpyHRNEGYyKmfQ_2eqPKZcg2MssIGo-jxIP94VuMNSJQisrUbSNDwnOYsDxg_7gCR69BSiWlPDjqnWX1E4_8V995yf9bJfNfOUn2TXaffss-bE5nP07l6bez73vwuuPFaDLpE2xcz1vzGUaNbr-46LkH_tYWrg
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb5wwEB5lU7Xqpe8qNG3iQ06pLAFmAR9XCatUiaKoSaTcLPCjp8JqCa02v74zZmG7ldqqUk8gMC-PZ_yZz_4G4ChMtbFlqnlcJoYjInacJEB46vAgjqBD5xnds-vs8i4_LUgm52RYC9PrQ4w_3MgzfLwmB18Y9xOv30YUWrmn7xHl84cJPEoQjpOAvhBXI5UQS58xDvvFmGP3lAzUpl8_98sttjqniSubLdw5UqXbQNb3RPPn_-UbXsCzNRBls77lvIQdW7-Cx31qyhXuFV7OevUavs42HDdrHCtr1tVtt6Ag01rDqO31MhSMxDH9xk8tZ6M-LLtvmJ-5-A1H5mhK1nZLV2rLviPSXbJ-YeeK0WzVN3AzL25Ozvg6SQPXSTadcYuAIi1dKKpKCicy6xKJdieGTxjtrEZ8KRPrqiqSRkqT0yDFWRNFLrFWirewWze13QPmQi2rqXGeGpU6rwSWJX37yMSRtlkAx4Nx1KKX4lAb0WWqSOVTamJFqocA9tB8qvyCoVLdXsdE0EZToqXDAPYHm6q1w7YqzwkYT0UawOF4Fj2N6JOytk3XqpjQHIarANhvSuDYNcoooVQAH4e2snnEH9419I3k71-lis8FCfbN3v37JYfw5Op0ri4-XZ7vw9OeFKM_Se9h937Z2Q8waU134H3nB3kUFVQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+an+unsupervised+artificial+neural+network+technique+to+multivariant+surface+water+quality+data&rft.jtitle=Ecological+research&rft.au=%C3%87inar%2C+%C3%96zer&rft.au=Merdun%2C+Hasan&rft.date=2009&rft.pub=Japan+%3A+Springer+Japan&rft.issn=0912-3814&rft.eissn=1440-1703&rft.volume=24&rft.issue=1&rft.spage=163&rft.epage=173&rft_id=info:doi/10.1007%2Fs11284-008-0495-z&rft.externalDocID=US201301574230
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0912-3814&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0912-3814&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0912-3814&client=summon