An Individualized Machine Learning Approach for Human Body Weight Estimation Using Smart Shoe Insoles

Rapid significant weight fluctuations can indicate severe health conditions such as edema due to congestive heart failure or severe dehydration that could require prompt intervention. Daily body weighing does not accurately represent the patient’s body weight fluctuations occurring within a day. The...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 23; no. 17; p. 7418
Main Authors: Sanghavi, Foram, Jinadu, Obafemi, Oludare, Victor, Panetta, Karen, Kezebou, Landry, Roberts, Susan B
Format: Journal Article
Language:English
Published: Basel MDPI AG 25-08-2023
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Rapid significant weight fluctuations can indicate severe health conditions such as edema due to congestive heart failure or severe dehydration that could require prompt intervention. Daily body weighing does not accurately represent the patient’s body weight fluctuations occurring within a day. The patient’s lack of compliance with tracking their weight measurements is also a predominant issue. Using shoe insole sensors embedded into footwear could achieve accurate real-time monitoring systems for estimating continuous body weight changes. Here, the machine learning models’ predictive capabilities for continuous real-time weight estimation using the insole data are presented. The lack of availability of public datasets to feed these models is also addressed by introducing two novel datasets. The proposed framework is designed to adapt to the patient, considering several unique factors such as shoe type, posture, foot shape, and gait pattern. The proposed framework estimates the mean absolute percentage error of 0.61% and 0.74% and the MAE of 1.009 lbs. and 1.154 lbs. for the less controlled and more controlled experimental settings, respectively. This will help researchers utilize machine learning techniques for more accurate real-time continuous weight estimation using sensor data and enable more reliable aging-in-place monitoring and telehealth.
AbstractList Rapid significant weight fluctuations can indicate severe health conditions such as edema due to congestive heart failure or severe dehydration that could require prompt intervention. Daily body weighing does not accurately represent the patient’s body weight fluctuations occurring within a day. The patient’s lack of compliance with tracking their weight measurements is also a predominant issue. Using shoe insole sensors embedded into footwear could achieve accurate real-time monitoring systems for estimating continuous body weight changes. Here, the machine learning models’ predictive capabilities for continuous real-time weight estimation using the insole data are presented. The lack of availability of public datasets to feed these models is also addressed by introducing two novel datasets. The proposed framework is designed to adapt to the patient, considering several unique factors such as shoe type, posture, foot shape, and gait pattern. The proposed framework estimates the mean absolute percentage error of 0.61% and 0.74% and the MAE of 1.009 lbs. and 1.154 lbs. for the less controlled and more controlled experimental settings, respectively. This will help researchers utilize machine learning techniques for more accurate real-time continuous weight estimation using sensor data and enable more reliable aging-in-place monitoring and telehealth.
Audience Academic
Author Oludare, Victor
Kezebou, Landry
Panetta, Karen
Sanghavi, Foram
Jinadu, Obafemi
Roberts, Susan B
AuthorAffiliation 2 Friedman School of Nutrition Science and Policy, Tufts University, Medford, MA 02155, USA; susan.roberts@tufts.edu
1 Department of Electrical and Computer Engineering, Tufts University, Medford, MA 02155, USA; obafemi.jinadu@tufts.edu (O.J.); karen@ece.tufts.edu (K.P.)
AuthorAffiliation_xml – name: 2 Friedman School of Nutrition Science and Policy, Tufts University, Medford, MA 02155, USA; susan.roberts@tufts.edu
– name: 1 Department of Electrical and Computer Engineering, Tufts University, Medford, MA 02155, USA; obafemi.jinadu@tufts.edu (O.J.); karen@ece.tufts.edu (K.P.)
Author_xml – sequence: 1
  fullname: Sanghavi, Foram
– sequence: 2
  fullname: Jinadu, Obafemi
– sequence: 3
  fullname: Oludare, Victor
– sequence: 4
  fullname: Panetta, Karen
– sequence: 5
  fullname: Kezebou, Landry
– sequence: 6
  fullname: Roberts, Susan B
BookMark eNptkk1vGyEQhldVquajPfQfIPXSHpyywC5wqpwoTSy56iGNekQYBhtrF1zYjZT--rJxZNVVxQH0zjsPMzDn1UmIAarqfY0vKZX4cya05pzV4lV1VjPCZoIQfPLX-bQ6z3mLMaGUijfVKeWt4II3ZxXMA1oE6x-9HXXnf4NF37TZ-ABoCToFH9ZovtulWETkYkJ3Y68Duor2Cf0Ev94M6CYPvteDjwE95Ml_3-s0oPtNhILOsYP8tnrtdJfh3ct-UT18vflxfTdbfr9dXM-XM8M4G2bW4lpaQxoHmmjpqJPcSMyscbItERCSao4pOEa4Jc6a2jLelq5q0XDe0ItqsefaqLdql0pd6UlF7dWzENNaldK86UA1uhFiZaxgTWEQvLISWkmEdpQ4cG1hfdmzduOqB2sgDEl3R9DjSPAbtY6PqsZM4pZOhI8vhBR_jZAH1ftsoOt0gDhmRURLiZRciGL98I91G8cUyltNLsKJnP7u4Frr0oEPLpaLzQRVc94y1jZNjYvr8j-usiz03pTJcb7oRwmf9gkmxZwTuEOTNVbTgKnDgNE_lf_BGQ
Cites_doi 10.1038/s41598-020-58815-9
10.5194/gmd-15-5481-2022
10.3928/00989134-20150814-02
10.1109/BTAS.2010.5634540
10.1016/j.jspi.2010.01.008
10.1080/02640414.2016.1161205
10.1109/TASSP.1984.1164279
10.1155/2014/879736
10.1007/s40095-014-0105-5
10.5220/0011927700003414
10.1371/journal.pone.0260742
10.1093/advances/nmab032
10.3390/s20123339
10.3390/bios12121182
10.1136/jech.53.3.149
10.1111/iwj.12224
10.1029/2021MS002681
10.1016/j.ijforecast.2015.12.003
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PIMPY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s23177418
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest One Academic
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_5a588bcd845d4720bd9e6928af32fef6
A764465510
10_3390_s23177418
GrantInformation_xml – fundername: Tufts University Spring Borad
  grantid: NA
GroupedDBID ---
123
2WC
3V.
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ABUWG
ADBBV
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
ITC
KB.
KQ8
L6V
M1P
M48
M7S
MODMG
M~E
OK1
P2P
P62
PDBOC
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
7XB
8FK
AZQEC
DWQXO
K9.
PQEST
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c474t-dd019dc25fea2a9f3f97c904dcf9619de893a703ef427d2fdc1d4762331857753
IEDL.DBID RPM
ISSN 1424-8220
IngestDate Tue Oct 22 15:13:35 EDT 2024
Tue Sep 17 21:29:45 EDT 2024
Sat Oct 05 06:10:21 EDT 2024
Thu Oct 10 18:32:19 EDT 2024
Tue Nov 19 21:43:02 EST 2024
Wed Nov 13 00:04:22 EST 2024
Thu Nov 21 21:24:31 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-dd019dc25fea2a9f3f97c904dcf9619de893a703ef427d2fdc1d4762331857753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2334-7053
0000-0003-1320-8460
0000-0003-0027-0767
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490636/
PMID 37687875
PQID 2862729023
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_5a588bcd845d4720bd9e6928af32fef6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10490636
proquest_miscellaneous_2863299788
proquest_journals_2862729023
gale_infotracmisc_A764465510
gale_infotracacademiconefile_A764465510
crossref_primary_10_3390_s23177418
PublicationCentury 2000
PublicationDate 20230825
PublicationDateYYYYMMDD 2023-08-25
PublicationDate_xml – month: 8
  year: 2023
  text: 20230825
  day: 25
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Tan (ref_6) 2018; 2
Hodson (ref_24) 2021; 13
Renaud (ref_25) 2010; 140
ref_13
Yu (ref_16) 2014; 2014
ref_11
Vafaeipour (ref_17) 2014; 5
Moon (ref_8) 2020; 10
Keast (ref_3) 2015; 12
Yahmed (ref_14) 2015; 80
ref_19
Mozaffari (ref_18) 2015; 18
Kim (ref_10) 2023; 18
Kim (ref_26) 2016; 32
Miller (ref_4) 2015; 41
Hota (ref_15) 2017; 13
Bednar (ref_21) 1984; 32
ref_22
Roberts (ref_5) 2021; 12
ref_20
ref_1
Martiner (ref_12) 2017; 35
Hodson (ref_23) 2022; 15
ref_9
Evans (ref_2) 1999; 53
ref_7
References_xml – ident: ref_11
– volume: 2
  start-page: 274
  year: 2018
  ident: ref_6
  article-title: Measurement accuracy of the body weight with smart insoles
  publication-title: Proceedings
  contributor:
    fullname: Tan
– volume: 10
  start-page: 1951
  year: 2020
  ident: ref_8
  article-title: Shoes with active insoles mitigate declines in balance after fatigue
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-58815-9
  contributor:
    fullname: Moon
– volume: 15
  start-page: 5481
  year: 2022
  ident: ref_23
  article-title: Root-mean-square error (RMSE) or mean absolute error (MAE): When to use them or not
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-15-5481-2022
  contributor:
    fullname: Hodson
– volume: 18
  start-page: 150
  year: 2015
  ident: ref_18
  article-title: Vehicle speed prediction via a sliding-window time series analysis and an evolutionary least learning machine: A case study on San Francisco urban roads
  publication-title: Eng. Sci. Technol. Int. J.
  contributor:
    fullname: Mozaffari
– volume: 41
  start-page: 8
  year: 2015
  ident: ref_4
  article-title: Dehydration in the older adult
  publication-title: J. Gerontol. Nurs.
  doi: 10.3928/00989134-20150814-02
  contributor:
    fullname: Miller
– ident: ref_9
  doi: 10.1109/BTAS.2010.5634540
– volume: 140
  start-page: 1852
  year: 2010
  ident: ref_25
  article-title: A robust coefficient of determination for regression
  publication-title: J. Stat. Plan. Inference
  doi: 10.1016/j.jspi.2010.01.008
  contributor:
    fullname: Renaud
– volume: 35
  start-page: 196
  year: 2017
  ident: ref_12
  article-title: Validation of Moticon’s OpenGo sensor insoles during gait, jumps, balance and cross-country skiing specific imitation movements
  publication-title: J. Sports Sci.
  doi: 10.1080/02640414.2016.1161205
  contributor:
    fullname: Martiner
– volume: 32
  start-page: 145
  year: 1984
  ident: ref_21
  article-title: Alpha-trimmed means and their relationship to median filters
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/TASSP.1984.1164279
  contributor:
    fullname: Bednar
– volume: 2014
  start-page: 879736
  year: 2014
  ident: ref_16
  article-title: Time series outlier detection based on sliding window prediction
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2014/879736
  contributor:
    fullname: Yu
– volume: 5
  start-page: 104
  year: 2014
  ident: ref_17
  article-title: Application of sliding window technique for prediction of wind velocity time series
  publication-title: Int. J. Energy Environ. Eng.
  doi: 10.1007/s40095-014-0105-5
  contributor:
    fullname: Vafaeipour
– ident: ref_20
  doi: 10.5220/0011927700003414
– ident: ref_1
  doi: 10.1371/journal.pone.0260742
– volume: 12
  start-page: 1438
  year: 2021
  ident: ref_5
  article-title: Healthy aging—Nutrition matters: Start early and screen often
  publication-title: Adv. Nutr.
  doi: 10.1093/advances/nmab032
  contributor:
    fullname: Roberts
– ident: ref_7
  doi: 10.3390/s20123339
– ident: ref_19
  doi: 10.3390/bios12121182
– volume: 53
  start-page: 149
  year: 1999
  ident: ref_2
  article-title: Prevalence of varicose veins and chronic venous insufficiency in men and women in the general population: Edinburgh Vein Study
  publication-title: J. Epidemiol. Community Health
  doi: 10.1136/jech.53.3.149
  contributor:
    fullname: Evans
– ident: ref_13
– volume: 80
  start-page: 2
  year: 2015
  ident: ref_14
  article-title: Adaptive sliding window algorithm for weather data segmentation
  publication-title: J. Theor. Appl. Inf. Technol.
  contributor:
    fullname: Yahmed
– volume: 12
  start-page: 328
  year: 2015
  ident: ref_3
  article-title: Chronic oedema/lymphoedema: Under-recognised and under-treated
  publication-title: Int. Wound J.
  doi: 10.1111/iwj.12224
  contributor:
    fullname: Keast
– volume: 13
  start-page: 1145
  year: 2017
  ident: ref_15
  article-title: Time series data prediction using sliding window based RBF neural network
  publication-title: Int. J. Comput. Intell. Res.
  contributor:
    fullname: Hota
– ident: ref_22
– volume: 13
  start-page: 12
  year: 2021
  ident: ref_24
  article-title: Mean squared error, deconstructed
  publication-title: J. Adv. Earth Syst. Model.
  doi: 10.1029/2021MS002681
  contributor:
    fullname: Hodson
– volume: 32
  start-page: 669
  year: 2016
  ident: ref_26
  article-title: A new metric of absolute percentage error for intermittent demand forecasts
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2015.12.003
  contributor:
    fullname: Kim
– volume: 18
  start-page: 1
  year: 2023
  ident: ref_10
  article-title: Multi-task Deep Learning for Human Activity, Speed, and Body Weight Estimation using Commercial Smart Insoles
  publication-title: IEEE Internet Things J.
  contributor:
    fullname: Kim
SSID ssj0023338
Score 2.4510882
Snippet Rapid significant weight fluctuations can indicate severe health conditions such as edema due to congestive heart failure or severe dehydration that could...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
StartPage 7418
SubjectTerms Accuracy
Analysis
Artificial intelligence
Body weight
Data collection
Edema
Footwear
human body weight estimation
Machine learning
Older people
predictive modeling
Review boards
Sensors
Shoes & boots
smart shoe insoles
Software
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1Nb9QwEIZH0BM9IKBFBAoyVaWeoib-iJ3jFrYqB7hsEdwsxx-0B7KI7R7g1zPjZKOmHLhwXXtXyUxmPa8z8xjgREelU1B1yTNUuxEYc8HLMhEsXOuKu9w-drnSn76a90vC5ExHfVFN2IAHHgx3ppwypvPBSBWk5lUX2ti03LgkeIppgG1XeiemRqklUHkNHCGBov5sg1mMJk7LbPXJkP6__4rvl0feWW8unsDjMVFki-ECn8KD2D-D_Tv4wAOIi559mBqqbn7HwD7m2sjIRmzqN7YYmeEMk1OWd-zZ-Tr8Yl_ylihbYoQPzYssFw-w1Xc0CVtdryP-9IZoT4fw-WJ59e6yHI9NKL3U8rYMAdO24LlK0XHXJpFa7dtKBp9alEshYoriMNBjklwHnoKv0bKYBlEjtUb58hz2-nUfXwDzmBGJLtUqKidV1xitUyt97IJxwgRewPHOnPbHQMewqCrI5nayeQHnZOhpAgGt8wfoZju62f7LzQWckpsshR06xbuxewCvkwBWdqGbjIKrqwKOZjMxXPx8eOdoO4brxnLUdagy8Lkp4O00TN-kErQ-rrd5jsC1Wxu8ITN7QGZ3Nh_pb64zsrumF6yNaF7-D1u8gkd06D3tbHN1BHu3P7fxNTzchO2bHAV_AAmjDaA
  priority: 102
  providerName: Directory of Open Access Journals
Title An Individualized Machine Learning Approach for Human Body Weight Estimation Using Smart Shoe Insoles
URI https://www.proquest.com/docview/2862729023
https://search.proquest.com/docview/2863299788
https://pubmed.ncbi.nlm.nih.gov/PMC10490636
https://doaj.org/article/5a588bcd845d4720bd9e6928af32fef6
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6xPaByQJSHCJTKICRO6W78iJ3jtmxVDkVIC4Kb5fjRrtRNqm73QH99x95ktaE3rrEdOeMZe77JzGeAz9ILGZwocppItUuGNucsz0MkC5dyQk0qHzufy-9_1NdZpMkp-1qYlLRv68Vxc708bhZXKbfyZmnHfZ7Y-MfFaRF_V5WsHI9ghM5hj9E7mMUQdW04hBgC-vEKPRgZOVr24Slak5Ipp3DnEEpc_Y935H-zJHeOnbMX8LzzF8l0M68DeOKbl_Bsh0XwFfhpQ75t66oW996Ri5Qi6UnHnnpJph11OEEflaTAPTlp3V_yO0VGyQwNfVPDSFIOAZkvURJkftV6fPUqkj69hl9ns5-n53l3e0JuueR3uXPovTlLRfCGmiqwUElbTbizoULU5Dx6Kgbt3QdOpaPB2cJx3BpZrKeWiGLewF7TNv4tEIuOEatDIbwwXNQoQxkqbn3tlGHK0Qw-9eLUNxuSDI3gIopfb8WfwUkU9LZD5LVOD9rbS92trhZGKFVbp7jAydBJ7SpfVlSZwGjwoczgS1wmHa0PF8WarogA5xl5rPRUlokRrphkcDjoiVZjh839QuvOaleaIrxDfUIVyuDjtjmOjJlojW_XqQ_DI1wq_CA1UJDBlw1bUJETc3evuO_-f-h72I833sewNhWHsHd3u_YfYLRy66MUTzhKxvAAPdYO3w
link.rule.ids 230,315,729,782,786,866,887,2107,27934,27935,53802,53804
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xIcF4GF9DhA0wCImnrIkdx85jt3XqxDohdQjerMQfWyWaTOv6AH89ZzepmvG219iOzr47-37O3S8AX4TlwhmexjSQaucMfc7oLHaeLFyIhJahfGw8FRe_5MnI0-TkXS1MSNrX1eyw_j0_rGfXIbfyZq4HXZ7Y4PvkOPWfq3KWD7bgMTpsQjuU3gIthrhrxSLEENIPFhjDCM_SsgNP0J-kCFmFG8dQYOv_f0--nye5cfCcPn-oyC9gtw01yXDV_hIe2foVPNsgIHwNdliTs3VJ1uyvNWQSsistaYlXr8iwZR0nGN6ScOdPjhrzh_wMl6pkhHvEqvyRhPQDMp2jRGR63Vh89cLzRe3Bj9PR5fE4bn-8EOtMZHexMRj4GU25syUtC8dcIXSRZEa7AgGXsRjklLhVWJdRYagzOjUZ7qrMl2ILBEBvYLtuavsWiMaYilUu5ZaXGa9w8YUrMm0rI0smDY3gc6cHdbPi11CIS7ze1FpvERx5Da07eErs8KC5vVLtKitecikrbWTGURiaVKaweUFl6Rh11uURfPX6Vd5xUZu6bOsPUE5PgaWGIg9kcmkSwUGvJzqc7jd3FqJah18oisgQcQraXgSf1s1-pE9iq22zDH0Ynv5C4oRkz7J6M-u3oEEF0u_OgN49fOhHeDq-nJyr87OLb_uwQ1FYfztO-QFs390u7XvYWpjlh-BL_wDHKCOi
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIlXlwBsRKGAQEqc0iR3HDrdtu6tW0KrSguBmJX60K7HJqts9wK9n7E1WG7jBNbajSebh-ZyZLwDvheXCGZ7FNJBqFwx9zug8dp4sXIiUVqF97HQqLr7Lk7GnyfnY98KEon1dzw6bH_PDZnYdaisXc530dWLJ5flx5j9XFaxIFsYlO3AXnTbNe6TegS2G2GvNJMQQ1idLzGOEZ2rZhz30KSlCZeHWVhQY-_-Oy3_WSm5tPpMH_yP2Q7jfpZxktJ7zCO7Y5jHc2yIifAJ21JCzTWvW7Jc15DxUWVrSEbBekVHHPk4wzSXh7J8cteYn-RYOV8kYY8W6DZKEMgQynaNUZHrdWrz10vNGPYWvk_GX49O4-wFDrHOR38bGYAJoNOXOVrQqHXOl0GWaG-1KBF7GYrJTYciwLqfCUGd0ZnKMrsy3ZAsEQs9gt2kb-xyIxtyK1S7jllc5r1EBwpW5trWRFZOGRvCu14VarHk2FOITrzu10V0ER15LmwmeGjtcaG-uVPemFa-4lLU2MucoDE1rU9qipLJyjDrrigg-eB0r78CoUV11fQgop6fCUiNRBFK5LI3gYDATHU8Ph3srUZ3jLxVFhIh4Be0vgrebYb_SF7M1tl2FOQyzACHxgeTAugZPNhxBowrk370Rvfj3pW9g7_Jkoj6fXXx6CfsUZfWH5JQfwO7tzcq-gp2lWb0O7vQb5RgmIg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Individualized+Machine+Learning+Approach+for+Human+Body+Weight+Estimation+Using+Smart+Shoe+Insoles&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Sanghavi%2C+am&rft.au=Jinadu%2C+Obafemi&rft.au=Oludare%2C+Victor&rft.au=Panetta%2C+Karen&rft.date=2023-08-25&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=17&rft.spage=7418&rft_id=info:doi/10.3390%2Fs23177418&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon