An Individualized Machine Learning Approach for Human Body Weight Estimation Using Smart Shoe Insoles
Rapid significant weight fluctuations can indicate severe health conditions such as edema due to congestive heart failure or severe dehydration that could require prompt intervention. Daily body weighing does not accurately represent the patient’s body weight fluctuations occurring within a day. The...
Saved in:
Published in: | Sensors (Basel, Switzerland) Vol. 23; no. 17; p. 7418 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
25-08-2023
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Rapid significant weight fluctuations can indicate severe health conditions such as edema due to congestive heart failure or severe dehydration that could require prompt intervention. Daily body weighing does not accurately represent the patient’s body weight fluctuations occurring within a day. The patient’s lack of compliance with tracking their weight measurements is also a predominant issue. Using shoe insole sensors embedded into footwear could achieve accurate real-time monitoring systems for estimating continuous body weight changes. Here, the machine learning models’ predictive capabilities for continuous real-time weight estimation using the insole data are presented. The lack of availability of public datasets to feed these models is also addressed by introducing two novel datasets. The proposed framework is designed to adapt to the patient, considering several unique factors such as shoe type, posture, foot shape, and gait pattern. The proposed framework estimates the mean absolute percentage error of 0.61% and 0.74% and the MAE of 1.009 lbs. and 1.154 lbs. for the less controlled and more controlled experimental settings, respectively. This will help researchers utilize machine learning techniques for more accurate real-time continuous weight estimation using sensor data and enable more reliable aging-in-place monitoring and telehealth. |
---|---|
AbstractList | Rapid significant weight fluctuations can indicate severe health conditions such as edema due to congestive heart failure or severe dehydration that could require prompt intervention. Daily body weighing does not accurately represent the patient’s body weight fluctuations occurring within a day. The patient’s lack of compliance with tracking their weight measurements is also a predominant issue. Using shoe insole sensors embedded into footwear could achieve accurate real-time monitoring systems for estimating continuous body weight changes. Here, the machine learning models’ predictive capabilities for continuous real-time weight estimation using the insole data are presented. The lack of availability of public datasets to feed these models is also addressed by introducing two novel datasets. The proposed framework is designed to adapt to the patient, considering several unique factors such as shoe type, posture, foot shape, and gait pattern. The proposed framework estimates the mean absolute percentage error of 0.61% and 0.74% and the MAE of 1.009 lbs. and 1.154 lbs. for the less controlled and more controlled experimental settings, respectively. This will help researchers utilize machine learning techniques for more accurate real-time continuous weight estimation using sensor data and enable more reliable aging-in-place monitoring and telehealth. |
Audience | Academic |
Author | Oludare, Victor Kezebou, Landry Panetta, Karen Sanghavi, Foram Jinadu, Obafemi Roberts, Susan B |
AuthorAffiliation | 2 Friedman School of Nutrition Science and Policy, Tufts University, Medford, MA 02155, USA; susan.roberts@tufts.edu 1 Department of Electrical and Computer Engineering, Tufts University, Medford, MA 02155, USA; obafemi.jinadu@tufts.edu (O.J.); karen@ece.tufts.edu (K.P.) |
AuthorAffiliation_xml | – name: 2 Friedman School of Nutrition Science and Policy, Tufts University, Medford, MA 02155, USA; susan.roberts@tufts.edu – name: 1 Department of Electrical and Computer Engineering, Tufts University, Medford, MA 02155, USA; obafemi.jinadu@tufts.edu (O.J.); karen@ece.tufts.edu (K.P.) |
Author_xml | – sequence: 1 fullname: Sanghavi, Foram – sequence: 2 fullname: Jinadu, Obafemi – sequence: 3 fullname: Oludare, Victor – sequence: 4 fullname: Panetta, Karen – sequence: 5 fullname: Kezebou, Landry – sequence: 6 fullname: Roberts, Susan B |
BookMark | eNptkk1vGyEQhldVquajPfQfIPXSHpyywC5wqpwoTSy56iGNekQYBhtrF1zYjZT--rJxZNVVxQH0zjsPMzDn1UmIAarqfY0vKZX4cya05pzV4lV1VjPCZoIQfPLX-bQ6z3mLMaGUijfVKeWt4II3ZxXMA1oE6x-9HXXnf4NF37TZ-ABoCToFH9ZovtulWETkYkJ3Y68Duor2Cf0Ev94M6CYPvteDjwE95Ml_3-s0oPtNhILOsYP8tnrtdJfh3ct-UT18vflxfTdbfr9dXM-XM8M4G2bW4lpaQxoHmmjpqJPcSMyscbItERCSao4pOEa4Jc6a2jLelq5q0XDe0ItqsefaqLdql0pd6UlF7dWzENNaldK86UA1uhFiZaxgTWEQvLISWkmEdpQ4cG1hfdmzduOqB2sgDEl3R9DjSPAbtY6PqsZM4pZOhI8vhBR_jZAH1ftsoOt0gDhmRURLiZRciGL98I91G8cUyltNLsKJnP7u4Frr0oEPLpaLzQRVc94y1jZNjYvr8j-usiz03pTJcb7oRwmf9gkmxZwTuEOTNVbTgKnDgNE_lf_BGQ |
Cites_doi | 10.1038/s41598-020-58815-9 10.5194/gmd-15-5481-2022 10.3928/00989134-20150814-02 10.1109/BTAS.2010.5634540 10.1016/j.jspi.2010.01.008 10.1080/02640414.2016.1161205 10.1109/TASSP.1984.1164279 10.1155/2014/879736 10.1007/s40095-014-0105-5 10.5220/0011927700003414 10.1371/journal.pone.0260742 10.1093/advances/nmab032 10.3390/s20123339 10.3390/bios12121182 10.1136/jech.53.3.149 10.1111/iwj.12224 10.1029/2021MS002681 10.1016/j.ijforecast.2015.12.003 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PIMPY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/s23177418 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest One Academic ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_5a588bcd845d4720bd9e6928af32fef6 A764465510 10_3390_s23177418 |
GrantInformation_xml | – fundername: Tufts University Spring Borad grantid: NA |
GroupedDBID | --- 123 2WC 3V. 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABJCF ABUWG ADBBV AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO ITC KB. KQ8 L6V M1P M48 M7S MODMG M~E OK1 P2P P62 PDBOC PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M 7XB 8FK AZQEC DWQXO K9. PQEST PQUKI 7X8 5PM |
ID | FETCH-LOGICAL-c474t-dd019dc25fea2a9f3f97c904dcf9619de893a703ef427d2fdc1d4762331857753 |
IEDL.DBID | RPM |
ISSN | 1424-8220 |
IngestDate | Tue Oct 22 15:13:35 EDT 2024 Tue Sep 17 21:29:45 EDT 2024 Sat Oct 05 06:10:21 EDT 2024 Thu Oct 10 18:32:19 EDT 2024 Tue Nov 19 21:43:02 EST 2024 Wed Nov 13 00:04:22 EST 2024 Thu Nov 21 21:24:31 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-dd019dc25fea2a9f3f97c904dcf9619de893a703ef427d2fdc1d4762331857753 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2334-7053 0000-0003-1320-8460 0000-0003-0027-0767 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490636/ |
PMID | 37687875 |
PQID | 2862729023 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5a588bcd845d4720bd9e6928af32fef6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10490636 proquest_miscellaneous_2863299788 proquest_journals_2862729023 gale_infotracmisc_A764465510 gale_infotracacademiconefile_A764465510 crossref_primary_10_3390_s23177418 |
PublicationCentury | 2000 |
PublicationDate | 20230825 |
PublicationDateYYYYMMDD | 2023-08-25 |
PublicationDate_xml | – month: 8 year: 2023 text: 20230825 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Tan (ref_6) 2018; 2 Hodson (ref_24) 2021; 13 Renaud (ref_25) 2010; 140 ref_13 Yu (ref_16) 2014; 2014 ref_11 Vafaeipour (ref_17) 2014; 5 Moon (ref_8) 2020; 10 Keast (ref_3) 2015; 12 Yahmed (ref_14) 2015; 80 ref_19 Mozaffari (ref_18) 2015; 18 Kim (ref_10) 2023; 18 Kim (ref_26) 2016; 32 Miller (ref_4) 2015; 41 Hota (ref_15) 2017; 13 Bednar (ref_21) 1984; 32 ref_22 Roberts (ref_5) 2021; 12 ref_20 ref_1 Martiner (ref_12) 2017; 35 Hodson (ref_23) 2022; 15 ref_9 Evans (ref_2) 1999; 53 ref_7 |
References_xml | – ident: ref_11 – volume: 2 start-page: 274 year: 2018 ident: ref_6 article-title: Measurement accuracy of the body weight with smart insoles publication-title: Proceedings contributor: fullname: Tan – volume: 10 start-page: 1951 year: 2020 ident: ref_8 article-title: Shoes with active insoles mitigate declines in balance after fatigue publication-title: Sci. Rep. doi: 10.1038/s41598-020-58815-9 contributor: fullname: Moon – volume: 15 start-page: 5481 year: 2022 ident: ref_23 article-title: Root-mean-square error (RMSE) or mean absolute error (MAE): When to use them or not publication-title: Geosci. Model Dev. doi: 10.5194/gmd-15-5481-2022 contributor: fullname: Hodson – volume: 18 start-page: 150 year: 2015 ident: ref_18 article-title: Vehicle speed prediction via a sliding-window time series analysis and an evolutionary least learning machine: A case study on San Francisco urban roads publication-title: Eng. Sci. Technol. Int. J. contributor: fullname: Mozaffari – volume: 41 start-page: 8 year: 2015 ident: ref_4 article-title: Dehydration in the older adult publication-title: J. Gerontol. Nurs. doi: 10.3928/00989134-20150814-02 contributor: fullname: Miller – ident: ref_9 doi: 10.1109/BTAS.2010.5634540 – volume: 140 start-page: 1852 year: 2010 ident: ref_25 article-title: A robust coefficient of determination for regression publication-title: J. Stat. Plan. Inference doi: 10.1016/j.jspi.2010.01.008 contributor: fullname: Renaud – volume: 35 start-page: 196 year: 2017 ident: ref_12 article-title: Validation of Moticon’s OpenGo sensor insoles during gait, jumps, balance and cross-country skiing specific imitation movements publication-title: J. Sports Sci. doi: 10.1080/02640414.2016.1161205 contributor: fullname: Martiner – volume: 32 start-page: 145 year: 1984 ident: ref_21 article-title: Alpha-trimmed means and their relationship to median filters publication-title: IEEE Trans. Acoust. Speech Signal Process. doi: 10.1109/TASSP.1984.1164279 contributor: fullname: Bednar – volume: 2014 start-page: 879736 year: 2014 ident: ref_16 article-title: Time series outlier detection based on sliding window prediction publication-title: Math. Probl. Eng. doi: 10.1155/2014/879736 contributor: fullname: Yu – volume: 5 start-page: 104 year: 2014 ident: ref_17 article-title: Application of sliding window technique for prediction of wind velocity time series publication-title: Int. J. Energy Environ. Eng. doi: 10.1007/s40095-014-0105-5 contributor: fullname: Vafaeipour – ident: ref_20 doi: 10.5220/0011927700003414 – ident: ref_1 doi: 10.1371/journal.pone.0260742 – volume: 12 start-page: 1438 year: 2021 ident: ref_5 article-title: Healthy aging—Nutrition matters: Start early and screen often publication-title: Adv. Nutr. doi: 10.1093/advances/nmab032 contributor: fullname: Roberts – ident: ref_7 doi: 10.3390/s20123339 – ident: ref_19 doi: 10.3390/bios12121182 – volume: 53 start-page: 149 year: 1999 ident: ref_2 article-title: Prevalence of varicose veins and chronic venous insufficiency in men and women in the general population: Edinburgh Vein Study publication-title: J. Epidemiol. Community Health doi: 10.1136/jech.53.3.149 contributor: fullname: Evans – ident: ref_13 – volume: 80 start-page: 2 year: 2015 ident: ref_14 article-title: Adaptive sliding window algorithm for weather data segmentation publication-title: J. Theor. Appl. Inf. Technol. contributor: fullname: Yahmed – volume: 12 start-page: 328 year: 2015 ident: ref_3 article-title: Chronic oedema/lymphoedema: Under-recognised and under-treated publication-title: Int. Wound J. doi: 10.1111/iwj.12224 contributor: fullname: Keast – volume: 13 start-page: 1145 year: 2017 ident: ref_15 article-title: Time series data prediction using sliding window based RBF neural network publication-title: Int. J. Comput. Intell. Res. contributor: fullname: Hota – ident: ref_22 – volume: 13 start-page: 12 year: 2021 ident: ref_24 article-title: Mean squared error, deconstructed publication-title: J. Adv. Earth Syst. Model. doi: 10.1029/2021MS002681 contributor: fullname: Hodson – volume: 32 start-page: 669 year: 2016 ident: ref_26 article-title: A new metric of absolute percentage error for intermittent demand forecasts publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2015.12.003 contributor: fullname: Kim – volume: 18 start-page: 1 year: 2023 ident: ref_10 article-title: Multi-task Deep Learning for Human Activity, Speed, and Body Weight Estimation using Commercial Smart Insoles publication-title: IEEE Internet Things J. contributor: fullname: Kim |
SSID | ssj0023338 |
Score | 2.4510882 |
Snippet | Rapid significant weight fluctuations can indicate severe health conditions such as edema due to congestive heart failure or severe dehydration that could... |
SourceID | doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database |
StartPage | 7418 |
SubjectTerms | Accuracy Analysis Artificial intelligence Body weight Data collection Edema Footwear human body weight estimation Machine learning Older people predictive modeling Review boards Sensors Shoes & boots smart shoe insoles Software |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1Nb9QwEIZH0BM9IKBFBAoyVaWeoib-iJ3jFrYqB7hsEdwsxx-0B7KI7R7g1zPjZKOmHLhwXXtXyUxmPa8z8xjgREelU1B1yTNUuxEYc8HLMhEsXOuKu9w-drnSn76a90vC5ExHfVFN2IAHHgx3ppwypvPBSBWk5lUX2ti03LgkeIppgG1XeiemRqklUHkNHCGBov5sg1mMJk7LbPXJkP6__4rvl0feWW8unsDjMVFki-ECn8KD2D-D_Tv4wAOIi559mBqqbn7HwD7m2sjIRmzqN7YYmeEMk1OWd-zZ-Tr8Yl_ylihbYoQPzYssFw-w1Xc0CVtdryP-9IZoT4fw-WJ59e6yHI9NKL3U8rYMAdO24LlK0XHXJpFa7dtKBp9alEshYoriMNBjklwHnoKv0bKYBlEjtUb58hz2-nUfXwDzmBGJLtUqKidV1xitUyt97IJxwgRewPHOnPbHQMewqCrI5nayeQHnZOhpAgGt8wfoZju62f7LzQWckpsshR06xbuxewCvkwBWdqGbjIKrqwKOZjMxXPx8eOdoO4brxnLUdagy8Lkp4O00TN-kErQ-rrd5jsC1Wxu8ITN7QGZ3Nh_pb64zsrumF6yNaF7-D1u8gkd06D3tbHN1BHu3P7fxNTzchO2bHAV_AAmjDaA priority: 102 providerName: Directory of Open Access Journals |
Title | An Individualized Machine Learning Approach for Human Body Weight Estimation Using Smart Shoe Insoles |
URI | https://www.proquest.com/docview/2862729023 https://search.proquest.com/docview/2863299788 https://pubmed.ncbi.nlm.nih.gov/PMC10490636 https://doaj.org/article/5a588bcd845d4720bd9e6928af32fef6 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6xPaByQJSHCJTKICRO6W78iJ3jtmxVDkVIC4Kb5fjRrtRNqm73QH99x95ktaE3rrEdOeMZe77JzGeAz9ILGZwocppItUuGNucsz0MkC5dyQk0qHzufy-9_1NdZpMkp-1qYlLRv68Vxc708bhZXKbfyZmnHfZ7Y-MfFaRF_V5WsHI9ghM5hj9E7mMUQdW04hBgC-vEKPRgZOVr24Slak5Ipp3DnEEpc_Y935H-zJHeOnbMX8LzzF8l0M68DeOKbl_Bsh0XwFfhpQ75t66oW996Ri5Qi6UnHnnpJph11OEEflaTAPTlp3V_yO0VGyQwNfVPDSFIOAZkvURJkftV6fPUqkj69hl9ns5-n53l3e0JuueR3uXPovTlLRfCGmiqwUElbTbizoULU5Dx6Kgbt3QdOpaPB2cJx3BpZrKeWiGLewF7TNv4tEIuOEatDIbwwXNQoQxkqbn3tlGHK0Qw-9eLUNxuSDI3gIopfb8WfwUkU9LZD5LVOD9rbS92trhZGKFVbp7jAydBJ7SpfVlSZwGjwoczgS1wmHa0PF8WarogA5xl5rPRUlokRrphkcDjoiVZjh839QuvOaleaIrxDfUIVyuDjtjmOjJlojW_XqQ_DI1wq_CA1UJDBlw1bUJETc3evuO_-f-h72I833sewNhWHsHd3u_YfYLRy66MUTzhKxvAAPdYO3w |
link.rule.ids | 230,315,729,782,786,866,887,2107,27934,27935,53802,53804 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xIcF4GF9DhA0wCImnrIkdx85jt3XqxDohdQjerMQfWyWaTOv6AH89ZzepmvG219iOzr47-37O3S8AX4TlwhmexjSQaucMfc7oLHaeLFyIhJahfGw8FRe_5MnI0-TkXS1MSNrX1eyw_j0_rGfXIbfyZq4HXZ7Y4PvkOPWfq3KWD7bgMTpsQjuU3gIthrhrxSLEENIPFhjDCM_SsgNP0J-kCFmFG8dQYOv_f0--nye5cfCcPn-oyC9gtw01yXDV_hIe2foVPNsgIHwNdliTs3VJ1uyvNWQSsistaYlXr8iwZR0nGN6ScOdPjhrzh_wMl6pkhHvEqvyRhPQDMp2jRGR63Vh89cLzRe3Bj9PR5fE4bn-8EOtMZHexMRj4GU25syUtC8dcIXSRZEa7AgGXsRjklLhVWJdRYagzOjUZ7qrMl2ILBEBvYLtuavsWiMaYilUu5ZaXGa9w8YUrMm0rI0smDY3gc6cHdbPi11CIS7ze1FpvERx5Da07eErs8KC5vVLtKitecikrbWTGURiaVKaweUFl6Rh11uURfPX6Vd5xUZu6bOsPUE5PgaWGIg9kcmkSwUGvJzqc7jd3FqJah18oisgQcQraXgSf1s1-pE9iq22zDH0Ynv5C4oRkz7J6M-u3oEEF0u_OgN49fOhHeDq-nJyr87OLb_uwQ1FYfztO-QFs390u7XvYWpjlh-BL_wDHKCOi |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIlXlwBsRKGAQEqc0iR3HDrdtu6tW0KrSguBmJX60K7HJqts9wK9n7E1WG7jBNbajSebh-ZyZLwDvheXCGZ7FNJBqFwx9zug8dp4sXIiUVqF97HQqLr7Lk7GnyfnY98KEon1dzw6bH_PDZnYdaisXc530dWLJ5flx5j9XFaxIFsYlO3AXnTbNe6TegS2G2GvNJMQQ1idLzGOEZ2rZhz30KSlCZeHWVhQY-_-Oy3_WSm5tPpMH_yP2Q7jfpZxktJ7zCO7Y5jHc2yIifAJ21JCzTWvW7Jc15DxUWVrSEbBekVHHPk4wzSXh7J8cteYn-RYOV8kYY8W6DZKEMgQynaNUZHrdWrz10vNGPYWvk_GX49O4-wFDrHOR38bGYAJoNOXOVrQqHXOl0GWaG-1KBF7GYrJTYciwLqfCUGd0ZnKMrsy3ZAsEQs9gt2kb-xyIxtyK1S7jllc5r1EBwpW5trWRFZOGRvCu14VarHk2FOITrzu10V0ER15LmwmeGjtcaG-uVPemFa-4lLU2MucoDE1rU9qipLJyjDrrigg-eB0r78CoUV11fQgop6fCUiNRBFK5LI3gYDATHU8Ph3srUZ3jLxVFhIh4Be0vgrebYb_SF7M1tl2FOQyzACHxgeTAugZPNhxBowrk370Rvfj3pW9g7_Jkoj6fXXx6CfsUZfWH5JQfwO7tzcq-gp2lWb0O7vQb5RgmIg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Individualized+Machine+Learning+Approach+for+Human+Body+Weight+Estimation+Using+Smart+Shoe+Insoles&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Sanghavi%2C+am&rft.au=Jinadu%2C+Obafemi&rft.au=Oludare%2C+Victor&rft.au=Panetta%2C+Karen&rft.date=2023-08-25&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=17&rft.spage=7418&rft_id=info:doi/10.3390%2Fs23177418&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |