Computationally guided high-throughput design of self-assembling drug nanoparticles
Nanoformulations of therapeutic drugs are transforming our ability to effectively deliver and treat a myriad of conditions. Often, however, they are complex to produce and exhibit low drug loading, except for nanoparticles formed via co-assembly of drugs and small molecular dyes, which display drug-...
Saved in:
Published in: | Nature nanotechnology Vol. 16; no. 6; pp. 725 - 733 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
01-06-2021
Nature Publishing Group |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Nanoformulations of therapeutic drugs are transforming our ability to effectively deliver and treat a myriad of conditions. Often, however, they are complex to produce and exhibit low drug loading, except for nanoparticles formed via co-assembly of drugs and small molecular dyes, which display drug-loading capacities of up to 95%. There is currently no understanding of which of the millions of small-molecule combinations can result in the formation of these nanoparticles. Here we report the integration of machine learning with high-throughput experimentation to enable the rapid and large-scale identification of such nanoformulations. We identified 100 self-assembling drug nanoparticles from 2.1 million pairings, each including one of 788 candidate drugs and one of 2,686 approved excipients. We further characterized two nanoparticles, sorafenib–glycyrrhizin and terbinafine–taurocholic acid both ex vivo and in vivo. We anticipate that our platform can accelerate the development of safer and more efficacious nanoformulations with high drug-loading capacities for a wide range of therapeutics.
Self-assembly of small drugs with organic dyes represents a facile route to synthesize nanoparticles with high drug-loading capability. Here the authors combine a machine learning approach with high-throughput experimental validation to identify which combinations of drugs and excipient lead to successful nanoparticle formation and characterize the therapeutic efficacy of two of them in vitro and in animal models. |
---|---|
AbstractList | Nanoformulations of therapeutic drugs are transforming our ability to effectively deliver and treat a myriad of conditions. Often, however, they are complex to produce and exhibit low drug loading, except for nanoparticles formed via co-assembly of drugs and small molecular dyes, which display drug-loading capacities of up to 95%. There is currently no understanding of which of the millions of small-molecule combinations can result in the formation of these nanoparticles. Here we report the integration of machine learning with high-throughput experimentation to enable the rapid and large-scale identification of such nanoformulations. We identified 100 self-assembling drug nanoparticles from 2.1 million pairings, each including one of 788 candidate drugs and one of 2,686 approved excipients. We further characterized two nanoparticles, sorafenib–glycyrrhizin and terbinafine–taurocholic acid both ex vivo and in vivo. We anticipate that our platform can accelerate the development of safer and more efficacious nanoformulations with high drug-loading capacities for a wide range of therapeutics.Self-assembly of small drugs with organic dyes represents a facile route to synthesize nanoparticles with high drug-loading capability. Here the authors combine a machine learning approach with high-throughput experimental validation to identify which combinations of drugs and excipient lead to successful nanoparticle formation and characterize the therapeutic efficacy of two of them in vitro and in animal models. Nanoformulations of therapeutic drugs are transforming our ability to effectively deliver and treat a myriad of conditions. Often, however, they are complex to produce and exhibit low drug loading, except for nanoparticles formed via co-assembly of drugs and small molecular dyes, which display drug-loading capacities of up to 95%. There is currently no understanding of which of the millions of small-molecule combinations can result in the formation of these nanoparticles. Here we report the integration of machine learning with high-throughput experimentation to enable the rapid and large-scale identification of such nanoformulations. We identified 100 self-assembling drug nanoparticles from 2.1 million pairings, each including one of 788 candidate drugs and one of 2,686 approved excipients. We further characterized two nanoparticles, sorafenib-glycyrrhizin and terbinafine-taurocholic acid both ex vivo and in vivo. We anticipate that our platform can accelerate the development of safer and more efficacious nanoformulations with high drug-loading capacities for a wide range of therapeutics.Nanoformulations of therapeutic drugs are transforming our ability to effectively deliver and treat a myriad of conditions. Often, however, they are complex to produce and exhibit low drug loading, except for nanoparticles formed via co-assembly of drugs and small molecular dyes, which display drug-loading capacities of up to 95%. There is currently no understanding of which of the millions of small-molecule combinations can result in the formation of these nanoparticles. Here we report the integration of machine learning with high-throughput experimentation to enable the rapid and large-scale identification of such nanoformulations. We identified 100 self-assembling drug nanoparticles from 2.1 million pairings, each including one of 788 candidate drugs and one of 2,686 approved excipients. We further characterized two nanoparticles, sorafenib-glycyrrhizin and terbinafine-taurocholic acid both ex vivo and in vivo. We anticipate that our platform can accelerate the development of safer and more efficacious nanoformulations with high drug-loading capacities for a wide range of therapeutics. Nanoformulations of therapeutic drugs are transforming our ability to effectively deliver and treat a myriad of conditions. Often, however, they are complex to produce and exhibit low drug loading, except for nanoparticles formed via co-assembly of drugs and small molecular dyes, which display drug-loading capacities of up to 95%. There is currently no understanding of which of the millions of small-molecule combinations can result in the formation of these nanoparticles. Here we report the integration of machine learning with high-throughput experimentation to enable the rapid and large-scale identification of such nanoformulations. We identified 100 self-assembling drug nanoparticles from 2.1 million pairings, each including one of 788 candidate drugs and one of 2,686 approved excipients. We further characterized two nanoparticles, sorafenib–glycyrrhizin and terbinafine–taurocholic acid both ex vivo and in vivo. We anticipate that our platform can accelerate the development of safer and more efficacious nanoformulations with high drug-loading capacities for a wide range of therapeutics. Self-assembly of small drugs with organic dyes represents a facile route to synthesize nanoparticles with high drug-loading capability. Here the authors combine a machine learning approach with high-throughput experimental validation to identify which combinations of drugs and excipient lead to successful nanoparticle formation and characterize the therapeutic efficacy of two of them in vitro and in animal models. Nanoformulations of therapeutic drugs are transforming our ability to effectively deliver and treat a myriad of conditions. Often, however, they are complex to produce and exhibit low drug loading, except for nanoparticles formed via co-assembly of drugs and small molecular dyes, which display drug-loading capacities of up to 95%. There is currently no understanding of which of the millions of small-molecule combinations can result in the formation of these nanoparticles. Here we report the integration of machine learning with high-throughput experimentation to enable the rapid and large-scale identification of such nanoformulations. We identified 100 self-assembling drug nanoparticles from 2.1 million pairings, each including one of 788 candidate drugs and one of 2,686 approved excipients. We further characterized two nanoparticles, sorafenib-glycyrrhizin and terbinafine-taurocholic acid both ex vivo and in vivo. We anticipate that our platform can accelerate the development of safer and more efficacious nanoformulations with high drug-loading capacities for a wide range of therapeutics. Nanoformulations of therapeutic drugs are transforming our ability to effectively deliver and treat a myriad of conditions. Often, however, they are complex to produce and exhibit low drug loading, except for nanoparticles formed via co-assembly of drugs and small molecular dyes, which display drug loading capacities of up to 95%. There is currently no understanding of which of the millions of small molecule combinations can result in the formation of these nanoparticles. Here, we report the integration of machine learning with high-throughput experimentation to enable the rapid and large-scale identification of such nanoformulations. We identified 100 self-assembling drug nanoparticles from 2.1 million pairings, each including one of 788 candidate drugs and one of 2686 approved excipients. We further characterized two nanoparticles, sorafenib-glycyrrhizin and terbinafine-taurocholic acid, both ex vivo and in vivo . We anticipate that our platform can accelerate the development of safer and more efficacious nanoformulations with high drug loading capacities for a wide range of therapeutics. |
Author | Traverso, Giovanni Leboeuf, Dominique von Erlach, Thomas Soule, Christian K. Smekalova, Elena M. Zhang, Rosanna M. L’Heureux, Johanna Gardner, Apolonia Tamang, Siddartha M. Rybakova, Yulia Kirtane, Ameya R. Yang, Jee Won Collins, Joy Cheah, Jaime H. Navamajiti, Natsuda Chamberlain, Paul Hess, Kaitlyn Yun, DongSoo Rogner, Jaimie Ishida, Keiko Langer, Robert Esfandiary, Tina Lytton-Jean, Abigail Hayward, Alison M. Cao, Ruonan Lopes, Aaron Reker, Daniel |
AuthorAffiliation | 5 Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330 (THA) 2 Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 (USA) 3 Division of Engineering Science, University of Toronto, Toronto, ON M5S 2E4 (CAN) 4 Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853 (USA) 7 Skolkovo Institute of Science and Technology, Moscow, 121205 (RUS) 8 Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA) 1 Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA) 6 Department of Electrical Engineering & Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA) 9 Current Address: Department of Biomedical Engineering, Duke University, Durham, NC, 27708 (USA) |
AuthorAffiliation_xml | – name: 1 Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA) – name: 7 Skolkovo Institute of Science and Technology, Moscow, 121205 (RUS) – name: 3 Division of Engineering Science, University of Toronto, Toronto, ON M5S 2E4 (CAN) – name: 6 Department of Electrical Engineering & Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA) – name: 8 Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA) – name: 2 Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 (USA) – name: 5 Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330 (THA) – name: 9 Current Address: Department of Biomedical Engineering, Duke University, Durham, NC, 27708 (USA) – name: 4 Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853 (USA) |
Author_xml | – sequence: 1 givenname: Daniel orcidid: 0000-0003-4789-7380 surname: Reker fullname: Reker, Daniel organization: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Department of Biomedical Engineering, Duke University – sequence: 2 givenname: Yulia surname: Rybakova fullname: Rybakova, Yulia organization: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology – sequence: 3 givenname: Ameya R. orcidid: 0000-0002-3779-0363 surname: Kirtane fullname: Kirtane, Ameya R. organization: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School – sequence: 4 givenname: Ruonan surname: Cao fullname: Cao, Ruonan organization: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Division of Engineering Science, University of Toronto – sequence: 5 givenname: Jee Won orcidid: 0000-0002-3257-1823 surname: Yang fullname: Yang, Jee Won organization: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University – sequence: 6 givenname: Natsuda surname: Navamajiti fullname: Navamajiti, Natsuda organization: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University – sequence: 7 givenname: Apolonia surname: Gardner fullname: Gardner, Apolonia organization: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology – sequence: 8 givenname: Rosanna M. surname: Zhang fullname: Zhang, Rosanna M. organization: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology – sequence: 9 givenname: Tina orcidid: 0000-0003-0091-6310 surname: Esfandiary fullname: Esfandiary, Tina organization: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology – sequence: 10 givenname: Johanna surname: L’Heureux fullname: L’Heureux, Johanna organization: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology – sequence: 11 givenname: Thomas surname: von Erlach fullname: von Erlach, Thomas organization: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology – sequence: 12 givenname: Elena M. surname: Smekalova fullname: Smekalova, Elena M. organization: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology – sequence: 13 givenname: Dominique surname: Leboeuf fullname: Leboeuf, Dominique organization: Skolkovo Institute of Science and Technology – sequence: 14 givenname: Kaitlyn orcidid: 0000-0003-2837-0305 surname: Hess fullname: Hess, Kaitlyn organization: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology – sequence: 15 givenname: Aaron surname: Lopes fullname: Lopes, Aaron organization: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology – sequence: 16 givenname: Jaimie surname: Rogner fullname: Rogner, Jaimie organization: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology – sequence: 17 givenname: Joy surname: Collins fullname: Collins, Joy organization: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology – sequence: 18 givenname: Siddartha M. surname: Tamang fullname: Tamang, Siddartha M. organization: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology – sequence: 19 givenname: Keiko surname: Ishida fullname: Ishida, Keiko organization: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology – sequence: 20 givenname: Paul surname: Chamberlain fullname: Chamberlain, Paul organization: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology – sequence: 21 givenname: DongSoo orcidid: 0000-0001-9495-1613 surname: Yun fullname: Yun, DongSoo organization: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology – sequence: 22 givenname: Abigail orcidid: 0000-0002-1582-0066 surname: Lytton-Jean fullname: Lytton-Jean, Abigail organization: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology – sequence: 23 givenname: Christian K. surname: Soule fullname: Soule, Christian K. organization: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology – sequence: 24 givenname: Jaime H. surname: Cheah fullname: Cheah, Jaime H. organization: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology – sequence: 25 givenname: Alison M. surname: Hayward fullname: Hayward, Alison M. organization: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School – sequence: 26 givenname: Robert orcidid: 0000-0003-4255-0492 surname: Langer fullname: Langer, Robert organization: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Department of Mechanical Engineering, Massachusetts Institute of Technology – sequence: 27 givenname: Giovanni orcidid: 0000-0001-7851-4077 surname: Traverso fullname: Traverso, Giovanni email: cgt20@mit.edu organization: Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Department of Mechanical Engineering, Massachusetts Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33767382$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1v2yAYxtGUqk26_gM9TJZ66YWND2PMpVIVdeukSDu0PSNig02EIQW7Uv77kqbLuh3GAV70_N6Hj2cBZj54DcAlRl8xovW3VGJWMYgIhgjVHMHdJzDHvKwhpYLNjnXNz8AipQ1CjAhSnoIzSnnFaU3m4GEZhu00qtEGr5zbFd1kW90Wve16OPYxTF2f9aLVyXa-CKZI2hmoUtLD2lnfFW2cusIrH7YqjrZxOn0GJ0a5pC_e13Pw9P3ucXkPV79-_FzermBT8nKETWWIEmtV4tJgpoRgnFWkwZhjQ_CacUN1TbBqRUlNI2iLDVVc5C1TCCFKz8HNwXc7rQfdNtqPUTm5jXZQcSeDsvJvxdteduFF1lhwTkQ2uH43iOF50mmUg02Ndk55HaYkCUMVqRlBOKNX_6CbMMX8ZXuKijzynClyoJoYUoraHC-DkdxnJg-ZyZyZfMtM7nLTl4_POLb8DikD9ACkLPlOxz9n_8f2FWsIpeU |
CitedBy_id | crossref_primary_10_1063_5_0057204 crossref_primary_10_1016_j_jep_2024_118268 crossref_primary_10_1016_j_matpr_2022_02_101 crossref_primary_10_3390_pharmaceutics15041064 crossref_primary_10_1016_j_tibtech_2022_09_019 crossref_primary_10_2217_nnm_2023_0345 crossref_primary_10_1016_j_jconrel_2022_12_029 crossref_primary_10_1002_anbr_202100143 crossref_primary_10_1016_j_biopha_2024_116206 crossref_primary_10_1016_j_jconrel_2023_06_040 crossref_primary_10_1016_j_molmet_2023_101730 crossref_primary_10_1039_D1TB02470A crossref_primary_10_1039_D3SC06441G crossref_primary_10_1038_s41551_022_00991_2 crossref_primary_10_1038_s41578_024_00695_w crossref_primary_10_1002_adma_202305099 crossref_primary_10_1016_j_jddst_2024_105892 crossref_primary_10_1007_s10853_023_08393_8 crossref_primary_10_1038_s41467_023_43560_0 crossref_primary_10_1063_5_0082179 crossref_primary_10_1021_acsnano_2c12140 crossref_primary_10_1016_j_tips_2021_06_002 crossref_primary_10_1002_smtd_202101405 crossref_primary_10_3389_fonc_2023_1111570 crossref_primary_10_34133_research_0406 crossref_primary_10_15541_jim20230464 crossref_primary_10_1016_j_matt_2022_03_005 crossref_primary_10_1016_j_semcancer_2023_02_005 crossref_primary_10_4155_tde_2021_0042 crossref_primary_10_1021_acs_analchem_1c04379 crossref_primary_10_1002_advs_202300311 crossref_primary_10_1016_j_addr_2022_114172 crossref_primary_10_1016_j_jconrel_2021_07_046 crossref_primary_10_1038_s41570_022_00391_9 crossref_primary_10_1016_j_bpj_2024_04_001 crossref_primary_10_1016_j_cej_2023_142971 crossref_primary_10_1016_j_eng_2023_01_014 crossref_primary_10_1016_j_semcancer_2023_01_005 crossref_primary_10_1021_acs_jcim_3c00396 crossref_primary_10_1038_s41598_023_43689_4 crossref_primary_10_1371_journal_pcbi_1012185 crossref_primary_10_1038_s41563_024_01934_9 crossref_primary_10_1016_j_cclet_2023_108861 crossref_primary_10_1016_j_addr_2021_113958 crossref_primary_10_1016_j_apsb_2024_06_018 crossref_primary_10_3390_ijms25010269 crossref_primary_10_1002_wnan_1918 crossref_primary_10_1016_j_jconrel_2022_10_043 crossref_primary_10_1016_j_molstruc_2024_138895 crossref_primary_10_1016_j_molstruc_2023_136475 crossref_primary_10_1016_j_mtbio_2021_100165 crossref_primary_10_1002_cmdc_202200562 crossref_primary_10_1038_s41565_024_01673_7 crossref_primary_10_1088_1361_665X_acf79a crossref_primary_10_1093_nsr_nwad214 crossref_primary_10_1016_j_mtbio_2024_101014 crossref_primary_10_1021_jacs_2c06288 crossref_primary_10_1002_adma_202308912 crossref_primary_10_1016_j_btre_2023_e00785 crossref_primary_10_1038_s41573_024_00914_7 crossref_primary_10_3390_mi15010163 crossref_primary_10_1002_smll_202306054 crossref_primary_10_1016_j_actbio_2023_04_026 crossref_primary_10_1002_agt2_606 crossref_primary_10_1038_s41565_023_01563_4 crossref_primary_10_1021_acssuschemeng_3c08185 crossref_primary_10_1002_smll_202106580 crossref_primary_10_1016_j_jconrel_2024_06_045 crossref_primary_10_1039_D2CS00725H crossref_primary_10_1016_j_addr_2023_114974 crossref_primary_10_1016_j_biomaterials_2022_121800 crossref_primary_10_1016_j_copbio_2023_103043 crossref_primary_10_1016_j_addr_2021_05_015 crossref_primary_10_1016_j_addr_2022_114194 |
Cites_doi | 10.1073/pnas.0706578104 10.1002/adhm.201300280 10.1093/nar/gkx1037 10.1038/s41563-017-0007-z 10.1021/cb300189b 10.1039/C5SC04272K 10.1038/nchembio718 10.1038/nnano.2011.166 10.1016/j.jaad.2018.05.1260 10.1038/s41557-019-0234-9 10.1021/la061122t 10.1073/pnas.1018382108 10.1111/j.1365-2036.2008.03857.x 10.1126/scitranslmed.aau6753 10.1056/NEJMra1713263 10.1038/nnano.2012.89 10.1093/annonc/mdn685 10.3892/or.2015.4181 10.3390/molecules170910774 10.1016/j.ijpharm.2004.07.019 10.1248/bpb.30.1898 10.1039/C5AN01884F 10.1016/S0168-3659(98)00116-3 10.1056/NEJM199903113401001 10.1016/S0168-3659(97)00046-1 10.1038/ncomms4869 10.1021/ci990307l 10.1016/S0959-8049(01)00171-X 10.1016/j.ccr.2006.03.030 10.1021/acschembio.5b00806 10.1021/acschembio.9b00032 10.1021/acs.jmedchem.5b01105 10.1038/nrd2110 10.1038/519S19a 10.1016/j.celrep.2020.02.094 10.1021/acschembio.8b00881 10.3389/fphar.2018.01283 10.1038/nrd4163 10.1016/j.ijpharm.2008.03.039 10.1016/j.yrtph.2006.06.002 10.2165/00003495-199958010-00018 10.1007/s11046-009-9212-x 10.1787/9789264284142-en 10.1038/nnano.2009.242 10.1142/9789814520652_0006 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2021 The Author(s), under exclusive licence to Springer Nature Limited 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021 – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7QO 7U5 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. L6V L7M LK8 M0S M1P M7P M7S P5Z P62 P64 PDBOC PQEST PQQKQ PQUKI PTHSS 7X8 5PM |
DOI | 10.1038/s41565-021-00870-y |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central ProQuest Engineering Collection Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database Advanced Technologies Database with Aerospace ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1748-3395 |
EndPage | 733 |
ExternalDocumentID | 10_1038_s41565_021_00870_y 33767382 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Pharmaceutical Research and Manufacturers of America Foundation (PhRMA Foundation) funderid: https://doi.org/10.13039/100001797 – fundername: Skolkovo Institute of Science and Technology (Skoltech) funderid: https://doi.org/10.13039/501100007455 – fundername: U.S. Department of Health & Human Services | National Institutes of Health (NIH) grantid: EB000244; EB000244 funderid: https://doi.org/10.13039/100000002 – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation) grantid: P2EZP3_168827; P300P2_177833 funderid: https://doi.org/10.13039/501100001711 – fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI) grantid: Grant P30-CA14051; Grant P30-CA14051; Grant P30-CA14051; Grant P30-CA14051 funderid: https://doi.org/10.13039/100000054 – fundername: NIBIB NIH HHS grantid: R01 EB000244 – fundername: Swiss National Science Foundation grantid: 168827 – fundername: NCI NIH HHS grantid: P30 CA014051 |
GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 5M7 5S5 6OB 70F 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ABVXF ACGFS ACIWK ACPRK ADBBV AENEX AFBBN AFKRA AFLOW AFRAH AFSHS AFWHJ AGAYW AGEZK AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D1I DB5 DU5 EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ I-F KB. L6V LK8 M1P M7P M7S MM. NNMJJ O9- ODYON P2P P62 PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYZH CGR CUY CVF ECM EIF NPM AAYXX ACBWK CITATION 7QO 7U5 7XB 8FD 8FK AZQEC DWQXO F28 FR3 GNUQQ K9. L7M P64 PQEST PQUKI 7X8 5PM |
ID | FETCH-LOGICAL-c474t-c6f2a9ba414f15a9957562c1171f21b57f3e821ad943fc93d1f3a79d945a00033 |
ISSN | 1748-3387 1748-3395 |
IngestDate | Tue Sep 17 21:25:51 EDT 2024 Sat Oct 26 04:53:27 EDT 2024 Mon Nov 11 03:47:21 EST 2024 Fri Nov 22 01:07:24 EST 2024 Sat Nov 02 12:29:20 EDT 2024 Fri Oct 11 20:44:50 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c474t-c6f2a9ba414f15a9957562c1171f21b57f3e821ad943fc93d1f3a79d945a00033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AUTHOR CONTRIBUTIONS D.R., R.L. and G.T. conceived the study. D.R., Y.R., A.R.K., R.L, and G.T. designed experiments. D.R. and J.W.Y. performed in silico experiments. D.R., R.C., J.W.Y., N.N., R.M.Z., T.E., J.L.H. performed in vitro experiments. D.R., R.C., A.G. performed in vivo experiments. Y.R., A.R.K., T.v.E., A.L.-J., C.K.S., J.H.C supported in vitro experiments. Y.R., A.R.K., E.M.S, D.L, J.C., S.M.T, K.I., P.C. and A.M.H. supported in vivo experiments. D.S.Y. performed TEM imaging and K.H, A.L., J.R. performed pharmaceutical analytics. D.R., R.L. and G.T. wrote the manuscript with contributions from the other authors. All authors approved the final version of this manuscript. |
ORCID | 0000-0003-0091-6310 0000-0002-3257-1823 0000-0001-7851-4077 0000-0002-1582-0066 0000-0003-2837-0305 0000-0003-4255-0492 0000-0001-9495-1613 0000-0002-3779-0363 0000-0003-4789-7380 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8197729 |
PMID | 33767382 |
PQID | 2539999539 |
PQPubID | 546299 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8197729 proquest_miscellaneous_2506285201 proquest_journals_2539999539 crossref_primary_10_1038_s41565_021_00870_y pubmed_primary_33767382 springer_journals_10_1038_s41565_021_00870_y |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature nanotechnology |
PublicationTitleAbbrev | Nat. Nanotechnol |
PublicationTitleAlternate | Nat Nanotechnol |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Lipner, Scher (CR22) 2019; 80 Pavlović (CR29) 2018; 9 Lee (CR40) 2006; 9 Westesen, Bunjes, Koch (CR8) 1997; 48 McLaughlin (CR10) 2016; 11 Cabral (CR27) 2011; 6 Owen, Doak, Wassam, Shoichet, Shoichet (CR4) 2012; 7 Sharpless, DePinho (CR41) 2006; 5 Chaparro, González Moreno, Trapero-Marugán, Medina, Moreno-Otero (CR34) 2008; 28 Basso, Brunello, Bertuzzi, Santoro (CR33) 2009; 20 Traverso, Langer (CR47) 2015; 519 CR14 CR36 CR12 Villanueva (CR30) 2019; 380 Matteucci, Hotze, Johnston, Williams (CR24) 2006; 22 Irwin (CR2) 2015; 58 Wishart (CR15) 2018; 46 Chuang, Keiser (CR20) 2018; 13 Shamay (CR11) 2018; 17 Hopkins, Keserü, Leeson, Rees, Reynolds (CR1) 2014; 13 Ganesh (CR25) 2019; 14 Zhong (CR35) 2015; 34 Tward (CR38) 2007; 104 Reker, Schneider, Schneider (CR17) 2016; 7 Lin (CR37) 2008; 359 Reker (CR16) 2020; 30 Govender, Stolnik, Garnett, Illum, Davis (CR7) 1999; 57 Kipp (CR5) 2004; 284 Gregori-Puigjane, Mestres (CR18) 2008; 11 Jayatilake, Tilakaratne, Panagoda (CR26) 2009; 168 Pohjala, Tammela, Pohjala, Tammela (CR46) 2012; 17 CR45 Feng, Shelat, Dorman, Guy, Shoichet (CR13) 2005; 1 CR21 Waidely, Al-Yuobi, Bashammakh, El-Shahawi, Leblanc (CR42) 2016; 141 Wong (CR28) 2011; 108 Bogorad (CR39) 2014; 5 Cheng, Saltzman (CR48) 2012; 7 Gelderblom, Verweij, Nooter, Sparreboom, Cremophor (CR44) 2001; 37 Lee (CR43) 2007; 30 Reker (CR9) 2019; 11 Mcdonald (CR6) 2014; 3 Wildman, Crippen (CR19) 1999; 39 McClellan, Wiseman, Markham (CR23) 1999; 58 Isbrucker, Burdock (CR32) 2006; 46 Reker, Bernardes, Rodrigues (CR3) 2019; 11 El-Serag, Mason (CR31) 1999; 340 U Basso (870_CR33) 2009; 20 870_CR12 E Gregori-Puigjane (870_CR18) 2008; 11 HB El-Serag (870_CR31) 1999; 340 H Cabral (870_CR27) 2011; 6 M Chaparro (870_CR34) 2008; 28 K Westesen (870_CR8) 1997; 48 Y Shamay (870_CR11) 2018; 17 SA Wildman (870_CR19) 1999; 39 DS Wishart (870_CR15) 2018; 46 KV Chuang (870_CR20) 2018; 13 G Traverso (870_CR47) 2015; 519 JE Kipp (870_CR5) 2004; 284 N Pavlović (870_CR29) 2018; 9 AL Hopkins (870_CR1) 2014; 13 KJ McClellan (870_CR23) 1999; 58 H Gelderblom (870_CR44) 2001; 37 JJ Irwin (870_CR2) 2015; 58 A Lin (870_CR37) 2008; 359 A Villanueva (870_CR30) 2019; 380 T Govender (870_CR7) 1999; 57 BY Feng (870_CR13) 2005; 1 JAMS Jayatilake (870_CR26) 2009; 168 C Wong (870_CR28) 2011; 108 E Waidely (870_CR42) 2016; 141 CH Lee (870_CR43) 2007; 30 SR Lipner (870_CR22) 2019; 80 SC Owen (870_CR4) 2012; 7 870_CR45 CK McLaughlin (870_CR10) 2016; 11 D Reker (870_CR3) 2019; 11 870_CR21 AN Ganesh (870_CR25) 2019; 14 CJ Cheng (870_CR48) 2012; 7 L Pohjala (870_CR46) 2012; 17 D Reker (870_CR9) 2019; 11 ME Matteucci (870_CR24) 2006; 22 AD Tward (870_CR38) 2007; 104 RL Bogorad (870_CR39) 2014; 5 J Zhong (870_CR35) 2015; 34 D Reker (870_CR17) 2016; 7 RAA Isbrucker (870_CR32) 2006; 46 TO Mcdonald (870_CR6) 2014; 3 NE Sharpless (870_CR41) 2006; 5 870_CR14 870_CR36 J Lee (870_CR40) 2006; 9 D Reker (870_CR16) 2020; 30 |
References_xml | – volume: 104 start-page: 14771 year: 2007 end-page: 14776 ident: CR38 article-title: Distinct pathways of genomic progression to benign and malignant tumors of the liver publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0706578104 contributor: fullname: Tward – ident: CR45 – volume: 3 start-page: 400 year: 2014 end-page: 411 ident: CR6 article-title: Antiretroviral solid drug nanoparticles with enhanced oral bioavailability: production, characterization, and in vitro-in vivo correlation publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201300280 contributor: fullname: Mcdonald – volume: 46 start-page: D1074 year: 2018 end-page: D1082 ident: CR15 article-title: DrugBank 5.0: a major update to the DrugBank database for 2018 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1037 contributor: fullname: Wishart – volume: 11 start-page: 669 year: 2008 end-page: 676 ident: CR18 article-title: A ligand-based approach to mining the chemogenomic space of drugs publication-title: Comb. Chem. High T. Scr. contributor: fullname: Mestres – volume: 17 start-page: 361–368 year: 2018 ident: CR11 article-title: Quantitative self-assembly prediction yields targeted nanomedicines publication-title: Nat. Mater. doi: 10.1038/s41563-017-0007-z contributor: fullname: Shamay – volume: 7 start-page: 1429 year: 2012 end-page: 1435 ident: CR4 article-title: Colloidal aggregation affects the efficacy of anticancer drugs in cell culture publication-title: ACS Chem. Biol. doi: 10.1021/cb300189b contributor: fullname: Shoichet – ident: CR14 – volume: 7 start-page: 3919 year: 2016 end-page: 3927 ident: CR17 article-title: Multi-objective active machine learning rapidly improves structure-activity models and reveals new protein-protein interaction inhibitors publication-title: Chem. Sci. doi: 10.1039/C5SC04272K contributor: fullname: Schneider – volume: 1 start-page: 146 year: 2005 end-page: 148 ident: CR13 article-title: High-throughput assays for promiscuous inhibitors publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio718 contributor: fullname: Shoichet – volume: 6 start-page: 815 year: 2011 end-page: 823 ident: CR27 article-title: Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.166 contributor: fullname: Cabral – ident: CR12 – volume: 80 start-page: 853 year: 2019 end-page: 867 ident: CR22 article-title: Onychomycosis: treatment and prevention of recurrence publication-title: J. Am. Acad. Dermatol. doi: 10.1016/j.jaad.2018.05.1260 contributor: fullname: Scher – volume: 11 start-page: 402 year: 2019 end-page: 418 ident: CR3 article-title: Computational advances in combating colloidal aggregation in drug discovery publication-title: Nat. Chem. doi: 10.1038/s41557-019-0234-9 contributor: fullname: Rodrigues – volume: 22 start-page: 8951 year: 2006 end-page: 8959 ident: CR24 article-title: Drug nanoparticles by antisolvent precipitation: mixing energy versus surfactant stabilization publication-title: Langmuir doi: 10.1021/la061122t contributor: fullname: Williams – volume: 108 start-page: 2426 year: 2011 end-page: 2431 ident: CR28 article-title: Multistage nanoparticle delivery system for deep penetration into tumor tissue publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1018382108 contributor: fullname: Wong – volume: 28 start-page: 1269 year: 2008 end-page: 1277 ident: CR34 article-title: Review article: pharmacological therapy for hepatocellular carcinoma with sorafenib and other oral agents publication-title: Aliment. Pharm. Ther. doi: 10.1111/j.1365-2036.2008.03857.x contributor: fullname: Moreno-Otero – volume: 11 start-page: eaau6753 year: 2019 ident: CR9 article-title: ‘Inactive’ ingredients in oral medications publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aau6753 contributor: fullname: Reker – volume: 380 start-page: 1450 year: 2019 end-page: 1462 ident: CR30 article-title: Hepatocellular carcinoma publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra1713263 contributor: fullname: Villanueva – volume: 7 start-page: 346 year: 2012 end-page: 347 ident: CR48 article-title: Nanomedicine: downsizing tumour therapeutics publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.89 contributor: fullname: Saltzman – volume: 20 start-page: 386 year: 2009 end-page: 387 ident: CR33 article-title: Sorafenib is active on lung metastases from synovial sarcoma publication-title: Ann. Oncol. doi: 10.1093/annonc/mdn685 contributor: fullname: Santoro – volume: 34 start-page: 2142 year: 2015 end-page: 2150 ident: CR35 article-title: Meloxicam combined with sorafenib synergistically inhibits tumor growth of human hepatocellular carcinoma cells via ER stress-related apoptosis publication-title: Oncol. Rep. doi: 10.3892/or.2015.4181 contributor: fullname: Zhong – volume: 17 start-page: 10774 year: 2012 end-page: 10790 ident: CR46 article-title: Aggregating behavior of phenolic compounds—a source of false bioassay results? publication-title: Molecules doi: 10.3390/molecules170910774 contributor: fullname: Tammela – volume: 284 start-page: 109 year: 2004 end-page: 122 ident: CR5 article-title: The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2004.07.019 contributor: fullname: Kipp – volume: 30 start-page: 1898 year: 2007 end-page: 1904 ident: CR43 article-title: Protective mechanism of glycyrrhizin on acute liver injury induced by carbon tetrachloride in mice publication-title: Biol. Pharm. Bull. doi: 10.1248/bpb.30.1898 contributor: fullname: Lee – volume: 141 start-page: 36 year: 2016 end-page: 44 ident: CR42 article-title: Serum protein biomarkers relevant to hepatocellular carcinoma and their detection publication-title: Analyst doi: 10.1039/C5AN01884F contributor: fullname: Leblanc – volume: 57 start-page: 171 year: 1999 end-page: 185 ident: CR7 article-title: PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug publication-title: J. Control. Release doi: 10.1016/S0168-3659(98)00116-3 contributor: fullname: Davis – volume: 340 start-page: 745 year: 1999 end-page: 750 ident: CR31 article-title: Rising incidence of hepatocellular carcinoma in the United States publication-title: N. Engl. J. Med. doi: 10.1056/NEJM199903113401001 contributor: fullname: Mason – ident: CR21 – volume: 48 start-page: 223 year: 1997 end-page: 236 ident: CR8 article-title: Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential publication-title: J. Control. Release doi: 10.1016/S0168-3659(97)00046-1 contributor: fullname: Koch – volume: 5 year: 2014 ident: CR39 article-title: Nanoparticle-formulated siRNA targeting integrins inhibits hepatocellular carcinoma progression in mice publication-title: Nat. Commun. doi: 10.1038/ncomms4869 contributor: fullname: Bogorad – volume: 39 start-page: 868 year: 1999 end-page: 873 ident: CR19 article-title: Prediction of physicochemical parameters by atomic contributions publication-title: J. Chem. Inf. Comp. Sci. doi: 10.1021/ci990307l contributor: fullname: Crippen – volume: 37 start-page: 1590 year: 2001 end-page: 1598 ident: CR44 article-title: The drawbacks and advantages of vehicle selection for drug formulation publication-title: Eur. J. Cancer doi: 10.1016/S0959-8049(01)00171-X contributor: fullname: Cremophor – volume: 9 start-page: 391 year: 2006 end-page: 403 ident: CR40 article-title: Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines publication-title: Cancer Cell doi: 10.1016/j.ccr.2006.03.030 contributor: fullname: Lee – volume: 11 start-page: 992 year: 2016 end-page: 1000 ident: CR10 article-title: Stable colloidal drug aggregates catch and release active enzymes publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.5b00806 contributor: fullname: McLaughlin – volume: 14 start-page: 751 year: 2019 end-page: 757 ident: CR25 article-title: Colloidal drug aggregate stability in high serum conditions and pharmacokinetic consequence publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.9b00032 contributor: fullname: Ganesh – volume: 58 start-page: 7076 year: 2015 end-page: 7087 ident: CR2 article-title: An aggregation advisor for ligand discovery publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.5b01105 contributor: fullname: Irwin – volume: 5 start-page: 741 year: 2006 end-page: 754 ident: CR41 article-title: The mighty mouse: genetically engineered mouse models in cancer drug development publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd2110 contributor: fullname: DePinho – volume: 519 start-page: S19 year: 2015 ident: CR47 article-title: Perspective: special delivery for the gut publication-title: Nature doi: 10.1038/519S19a contributor: fullname: Langer – volume: 30 start-page: 3710 year: 2020 end-page: 3716.e4 ident: CR16 article-title: Machine learning uncovers food- and excipient-drug interactions publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.02.094 contributor: fullname: Reker – volume: 13 start-page: 2819 year: 2018 end-page: 2821 ident: CR20 article-title: Adversarial controls for scientific machine learning publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.8b00881 contributor: fullname: Keiser – volume: 9 start-page: 1283 year: 2018 ident: CR29 article-title: Bile acids and their derivatives as potential modifiers of drug release and pharmacokinetic profiles publication-title: Front. Pharmacol. doi: 10.3389/fphar.2018.01283 contributor: fullname: Pavlović – ident: CR36 – volume: 13 start-page: 105 year: 2014 end-page: 121 ident: CR1 article-title: The role of ligand efficiency metrics in drug discovery publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd4163 contributor: fullname: Reynolds – volume: 359 start-page: 247 year: 2008 end-page: 253 ident: CR37 article-title: Glycyrrhizin surface-modified chitosan nanoparticles for hepatocyte-targeted delivery publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2008.03.039 contributor: fullname: Lin – volume: 46 start-page: 167 year: 2006 end-page: 192 ident: CR32 article-title: Risk and safety assessment on the consumption of Licorice root (Glycyrrhiza sp.), its extract and powder as a food ingredient, with emphasis on the pharmacology and toxicology of glycyrrhizin publication-title: Regul. Toxicol. Pharm. doi: 10.1016/j.yrtph.2006.06.002 contributor: fullname: Burdock – volume: 58 start-page: 179 year: 1999 end-page: 202 ident: CR23 article-title: Terbinafine publication-title: Drugs doi: 10.2165/00003495-199958010-00018 contributor: fullname: Markham – volume: 168 start-page: 165 year: 2009 end-page: 173 ident: CR26 article-title: Candidal onychomycosis: a mini-review publication-title: Mycopathologia doi: 10.1007/s11046-009-9212-x contributor: fullname: Panagoda – volume: 5 start-page: 741 year: 2006 ident: 870_CR41 publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd2110 contributor: fullname: NE Sharpless – volume: 58 start-page: 7076 year: 2015 ident: 870_CR2 publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.5b01105 contributor: fullname: JJ Irwin – volume: 80 start-page: 853 year: 2019 ident: 870_CR22 publication-title: J. Am. Acad. Dermatol. doi: 10.1016/j.jaad.2018.05.1260 contributor: fullname: SR Lipner – volume: 58 start-page: 179 year: 1999 ident: 870_CR23 publication-title: Drugs doi: 10.2165/00003495-199958010-00018 contributor: fullname: KJ McClellan – volume: 104 start-page: 14771 year: 2007 ident: 870_CR38 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0706578104 contributor: fullname: AD Tward – volume: 7 start-page: 346 year: 2012 ident: 870_CR48 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.89 contributor: fullname: CJ Cheng – volume: 57 start-page: 171 year: 1999 ident: 870_CR7 publication-title: J. Control. Release doi: 10.1016/S0168-3659(98)00116-3 contributor: fullname: T Govender – volume: 17 start-page: 10774 year: 2012 ident: 870_CR46 publication-title: Molecules doi: 10.3390/molecules170910774 contributor: fullname: L Pohjala – volume: 37 start-page: 1590 year: 2001 ident: 870_CR44 publication-title: Eur. J. Cancer doi: 10.1016/S0959-8049(01)00171-X contributor: fullname: H Gelderblom – volume: 13 start-page: 105 year: 2014 ident: 870_CR1 publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd4163 contributor: fullname: AL Hopkins – volume: 46 start-page: 167 year: 2006 ident: 870_CR32 publication-title: Regul. Toxicol. Pharm. doi: 10.1016/j.yrtph.2006.06.002 contributor: fullname: RAA Isbrucker – volume: 141 start-page: 36 year: 2016 ident: 870_CR42 publication-title: Analyst doi: 10.1039/C5AN01884F contributor: fullname: E Waidely – volume: 340 start-page: 745 year: 1999 ident: 870_CR31 publication-title: N. Engl. J. Med. doi: 10.1056/NEJM199903113401001 contributor: fullname: HB El-Serag – volume: 359 start-page: 247 year: 2008 ident: 870_CR37 publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2008.03.039 contributor: fullname: A Lin – volume: 3 start-page: 400 year: 2014 ident: 870_CR6 publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201300280 contributor: fullname: TO Mcdonald – ident: 870_CR21 doi: 10.1787/9789264284142-en – volume: 48 start-page: 223 year: 1997 ident: 870_CR8 publication-title: J. Control. Release doi: 10.1016/S0168-3659(97)00046-1 contributor: fullname: K Westesen – volume: 7 start-page: 3919 year: 2016 ident: 870_CR17 publication-title: Chem. Sci. doi: 10.1039/C5SC04272K contributor: fullname: D Reker – volume: 20 start-page: 386 year: 2009 ident: 870_CR33 publication-title: Ann. Oncol. doi: 10.1093/annonc/mdn685 contributor: fullname: U Basso – volume: 28 start-page: 1269 year: 2008 ident: 870_CR34 publication-title: Aliment. Pharm. Ther. doi: 10.1111/j.1365-2036.2008.03857.x contributor: fullname: M Chaparro – volume: 9 start-page: 391 year: 2006 ident: 870_CR40 publication-title: Cancer Cell doi: 10.1016/j.ccr.2006.03.030 contributor: fullname: J Lee – volume: 22 start-page: 8951 year: 2006 ident: 870_CR24 publication-title: Langmuir doi: 10.1021/la061122t contributor: fullname: ME Matteucci – ident: 870_CR12 – volume: 39 start-page: 868 year: 1999 ident: 870_CR19 publication-title: J. Chem. Inf. Comp. Sci. doi: 10.1021/ci990307l contributor: fullname: SA Wildman – volume: 380 start-page: 1450 year: 2019 ident: 870_CR30 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra1713263 contributor: fullname: A Villanueva – ident: 870_CR14 – volume: 14 start-page: 751 year: 2019 ident: 870_CR25 publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.9b00032 contributor: fullname: AN Ganesh – volume: 46 start-page: D1074 year: 2018 ident: 870_CR15 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1037 contributor: fullname: DS Wishart – volume: 11 start-page: 402 year: 2019 ident: 870_CR3 publication-title: Nat. Chem. doi: 10.1038/s41557-019-0234-9 contributor: fullname: D Reker – volume: 168 start-page: 165 year: 2009 ident: 870_CR26 publication-title: Mycopathologia doi: 10.1007/s11046-009-9212-x contributor: fullname: JAMS Jayatilake – volume: 7 start-page: 1429 year: 2012 ident: 870_CR4 publication-title: ACS Chem. Biol. doi: 10.1021/cb300189b contributor: fullname: SC Owen – volume: 519 start-page: S19 year: 2015 ident: 870_CR47 publication-title: Nature doi: 10.1038/519S19a contributor: fullname: G Traverso – volume: 13 start-page: 2819 year: 2018 ident: 870_CR20 publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.8b00881 contributor: fullname: KV Chuang – volume: 1 start-page: 146 year: 2005 ident: 870_CR13 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio718 contributor: fullname: BY Feng – volume: 9 start-page: 1283 year: 2018 ident: 870_CR29 publication-title: Front. Pharmacol. doi: 10.3389/fphar.2018.01283 contributor: fullname: N Pavlović – volume: 6 start-page: 815 year: 2011 ident: 870_CR27 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.166 contributor: fullname: H Cabral – volume: 30 start-page: 1898 year: 2007 ident: 870_CR43 publication-title: Biol. Pharm. Bull. doi: 10.1248/bpb.30.1898 contributor: fullname: CH Lee – volume: 11 start-page: 992 year: 2016 ident: 870_CR10 publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.5b00806 contributor: fullname: CK McLaughlin – ident: 870_CR36 doi: 10.1038/nnano.2009.242 – volume: 5 year: 2014 ident: 870_CR39 publication-title: Nat. Commun. doi: 10.1038/ncomms4869 contributor: fullname: RL Bogorad – volume: 284 start-page: 109 year: 2004 ident: 870_CR5 publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2004.07.019 contributor: fullname: JE Kipp – volume: 11 start-page: 669 year: 2008 ident: 870_CR18 publication-title: Comb. Chem. High T. Scr. contributor: fullname: E Gregori-Puigjane – volume: 11 start-page: eaau6753 year: 2019 ident: 870_CR9 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aau6753 contributor: fullname: D Reker – volume: 17 start-page: 361–368 year: 2018 ident: 870_CR11 publication-title: Nat. Mater. doi: 10.1038/s41563-017-0007-z contributor: fullname: Y Shamay – volume: 34 start-page: 2142 year: 2015 ident: 870_CR35 publication-title: Oncol. Rep. doi: 10.3892/or.2015.4181 contributor: fullname: J Zhong – volume: 108 start-page: 2426 year: 2011 ident: 870_CR28 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1018382108 contributor: fullname: C Wong – volume: 30 start-page: 3710 year: 2020 ident: 870_CR16 publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.02.094 contributor: fullname: D Reker – ident: 870_CR45 doi: 10.1142/9789814520652_0006 |
SSID | ssj0052924 |
Score | 2.6416872 |
Snippet | Nanoformulations of therapeutic drugs are transforming our ability to effectively deliver and treat a myriad of conditions. Often, however, they are complex to... |
SourceID | pubmedcentral proquest crossref pubmed springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 725 |
SubjectTerms | 119/118 631/61/350/354 631/61/54/152 639/301/1034/1037 639/638/898 639/925/350/2093 Animal models Animals Candida albicans - drug effects Chemistry and Materials Science Computer Simulation Drug Carriers - chemical synthesis Drug Carriers - chemistry Drug Design Drug development Drug Evaluation, Preclinical - methods Drugs Dyes Dynamic Light Scattering Excipients Excipients - chemistry Experimentation Female Glycyrrhizic Acid - chemistry Glycyrrhizin High-Throughput Screening Assays - methods Humans Learning algorithms Machine Learning Materials Science Mice Mice, Inbred Strains Nanoparticles Nanoparticles - chemistry Nanotechnology Nanotechnology and Microengineering Self-assembly Skin Absorption Sorafenib - chemistry Sorafenib - pharmacokinetics Sorafenib - pharmacology Taurocholic acid Taurocholic Acid - chemistry Terbinafine Terbinafine - chemistry Terbinafine - pharmacology Tissue Distribution Xenograft Model Antitumor Assays |
Title | Computationally guided high-throughput design of self-assembling drug nanoparticles |
URI | https://link.springer.com/article/10.1038/s41565-021-00870-y https://www.ncbi.nlm.nih.gov/pubmed/33767382 https://www.proquest.com/docview/2539999539 https://www.proquest.com/docview/2506285201 https://pubmed.ncbi.nlm.nih.gov/PMC8197729 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1Oq2F3hA3AkMFCTegmGJnTh55FI0qVKRuk2Cp8iJ7a2iS9HaIOXvOb7k0kaT2AMvUWsfJXbOybn5XBB6p8udhqIQOBFpgikTCS54wjHnqkjT8iRRJn3s9IzNf6Rfp3Q6mbQdqvqx_4ppGANc68zZO2C7uykMwG_AOVwB63D9J7zbNg3Oxbdqgst6KUCp1GWJsWvKA_OBMJEbWlXcyJXCoELL68Kkpoub-jKoeAXWtAuaGyqwc1MI1MxvR175hXQxGjZxvRtuCv5r_ceoqT_r1bKTBLMl6P7OpXotGx4sPvRnIsaHu6hhG9XQNRENQqjayt56Rfv-tOBiNmC4jKYYzGQrdOVwzDbf7Lh0MqDGIctlNnHaSW9my2qMBIMtA7_R5qrOSIelngCnwk0vBrvgRHMsT9LcAucAnBvgvDlARxHwM2CnR59ns_n3VuTHUWa7J7ebcdlZcJeP40fuakAjs2Ycnbt3RG80n_OH6IEzWfxPlhoeoYmsHqP7g0KWT9DZHtX5lur8ParzLdX5a-XvUZ2vqc7fobqn6OLb9PzLKXbtOnBJGd3iMlERzwpOQ6rCmGcZWAJJVIYhC1UUFjFTRKZRyEVGiSozIkJFOMvgb8y1aU6eocNqXckXyKekLBJSxiQpJVVCpiwCvZrSFKyHUKjYQ0H7CvPftipLfjvaPHTcvuXcfambPNIlmWGNJPPQ224aeKs-MAPSX9caxmQYg47soecWKd3jiC6DRNLIQ2wHXR2Artu-O1Mtr0z9dlDCtU3rofctYvtl3b6Ll3cDf4Xu9Z_kMTrc3tTyNTrYiPqNo96_NuPG8A |
link.rule.ids | 230,315,782,786,887,27933,27934,48346,48347,48361,49651,49652,49666 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6V5dByoE8gdGldqbfWKn7Edo6Ih7bqlgtUgpPlxDZFgixiyWH_PbaTLF0oBzhGthJnxo_5PDPfAHyNdKfElhYLqwTm0gpcGmGwMb5UqtoWPqWPjY7k4Yna2480ObzPhUnR7r1LMu3UbWK4-jGNUCNmEwf4ux1mGZ4twXJkO6cDWN45OT3d63fgnBZtMVvJFQ4QTHbJMv9_y-KB9MDKfBgsec9jmg6ig9fP-4U3sNoZnminnSlv4YWr38HKP3SE7-GoLfHQXQ9ezNBZc26dRZHSGHcFfUI7sinqA008mroLj4P57S7LmNaO7HVzhmpTByTeBdx9gD8H-8e7I9wVXcAVl_wGV8JTU5SGE-5Jbooi2HOCVoRI4ikpc-mZU5QYW3Dmq4JZ4pmRRXjMTQRYbA0G9aR2G4A4q0rBqpyJynFvnZIB3bGAB4MNSKzPM_jWS15ftdwaOvnEmdKtqHQQlU6i0rMMhr1ydLfOpppGYt0wRlZk8GXeHFZIdHuY2k2a2CfliQZLJ4P1Vpfzz7FIZsMUzUAuaHneIbJvL7bU538TC3cwpSIyyeB7r-u7YT3-F5tP6_4ZXo6Of4_1-Ofhr4_wiqapE6-AhjC4uW7cFixNbfOpWwC3gy4B0w |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3RVkJw4LsQKGAkbmC1jh3bOQLtqmjRglSQuFlObJdKJVt1N4f994wdZ2EpHBDHyFZie8bxPM_MG4CXke6UucZR6bSkQjlJGysttTY0WrcHMqT0seMTNfuqD48iTc46iz9Fu48uySGnIbI0dcv9CxdykrjeX0TYETOLEQofoMbR1RbsxGsx1PGdt9Pp7OP4N67Keihsq4SmCMdUTpz581s2D6crFufVwMnfvKfpUJrc_v_p3IFb2SAlbwYNugvXfHcPbv5CU3gfTobSD_na8HxFTvsz5x2JVMc0F_rBduJSNAiZB7Lw54GiWe6_NzHdnbjL_pR0tkOEngPxHsCXydHnd8c0F2OgrVBiSVsZSls3VjARWGXrGu08WbaMKRZK1lQqcK9LZl0teGhr7ljgVtX4WNkIvPgubHfzzj8CInjbSN5WXLZeBOe1QtTHESeibchcqAp4NUrBXAycGyb5yrk2w1IZXCqTlsqsCtgbBWXy_luYMhLu4hh5XcCLdTPunOgOsZ2f97FPyh9FC6iAh4Nc15_jkeSG67IAtSHxdYfIyr3Z0p19S-zcaGJFxFLA61HuP4f191k8_rfuz-H6p8OJ-fB-Nn0CN8qkOfFmaA-2l5e9fwpbC9c_y3vhB7u-CoA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computationally+guided+high-throughput+design+of+self-assembling+drug+nanoparticles&rft.jtitle=Nature+nanotechnology&rft.au=Reker%2C+Daniel&rft.au=Rybakova%2C+Yulia&rft.au=Kirtane%2C+Ameya+R.&rft.au=Cao%2C+Ruonan&rft.date=2021-06-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=16&rft.issue=6&rft.spage=725&rft.epage=733&rft_id=info:doi/10.1038%2Fs41565-021-00870-y&rft.externalDocID=10_1038_s41565_021_00870_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon |