A stochastic SEIHR model for COVID-19 data fluctuations
Although deterministic compartmental models are useful for predicting the general trend of a disease’s spread, they are unable to describe the random daily fluctuations in the number of new infections and hospitalizations, which is crucial in determining the necessary healthcare capacity for a speci...
Saved in:
Published in: | Nonlinear dynamics Vol. 106; no. 2; pp. 1311 - 1323 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Dordrecht
Springer Netherlands
01-10-2021
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Although deterministic compartmental models are useful for predicting the general trend of a disease’s spread, they are unable to describe the random daily fluctuations in the number of new infections and hospitalizations, which is crucial in determining the necessary healthcare capacity for a specified level of risk. In this paper, we propose a stochastic SEIHR (sSEIHR) model to describe such random fluctuations and provide sufficient conditions for stochastic stability of the disease-free equilibrium, based on the basic reproduction number that we estimated. Our extensive numerical results demonstrate strong threshold behavior near the estimated basic reproduction number, suggesting that the necessary conditions for stochastic stability are close to the sufficient conditions derived. Furthermore, we found that increasing the noise level slightly reduces the final proportion of infected individuals. In addition, we analyze COVID-19 data from various regions worldwide and demonstrate that by changing only a few parameter values, our sSEIHR model can accurately describe both the general trend and the random fluctuations in the number of daily new cases in each region, allowing governments and hospitals to make more accurate caseload predictions using fewer compartments and parameters than other comparable stochastic compartmental models. |
---|---|
AbstractList | Although deterministic compartmental models are useful for predicting the general trend of a disease’s spread, they are unable to describe the random daily fluctuations in the number of new infections and hospitalizations, which is crucial in determining the necessary healthcare capacity for a specified level of risk. In this paper, we propose a stochastic SEIHR (sSEIHR) model to describe such random fluctuations and provide sufficient conditions for stochastic stability of the disease-free equilibrium, based on the basic reproduction number that we estimated. Our extensive numerical results demonstrate strong threshold behavior near the estimated basic reproduction number, suggesting that the necessary conditions for stochastic stability are close to the sufficient conditions derived. Furthermore, we found that increasing the noise level slightly reduces the final proportion of infected individuals. In addition, we analyze COVID-19 data from various regions worldwide and demonstrate that by changing only a few parameter values, our sSEIHR model can accurately describe both the general trend and the random fluctuations in the number of daily new cases in each region, allowing governments and hospitals to make more accurate caseload predictions using fewer compartments and parameters than other comparable stochastic compartmental models. |
Author | Chan, Yin-Chi Wong, Eric W. M. Niu, Ruiwu Chen, Guanrong van Wyk, Michaël Antonie |
Author_xml | – sequence: 1 givenname: Ruiwu surname: Niu fullname: Niu, Ruiwu organization: College of Mathematics and Statistics, Shenzhen University – sequence: 2 givenname: Yin-Chi surname: Chan fullname: Chan, Yin-Chi organization: Department of Electrical Engineering, City University of Hong Kong – sequence: 3 givenname: Eric W. M. orcidid: 0000-0002-1641-6903 surname: Wong fullname: Wong, Eric W. M. email: eeewong@cityu.edu.hk organization: Department of Electrical Engineering, City University of Hong Kong – sequence: 4 givenname: Michaël Antonie surname: van Wyk fullname: van Wyk, Michaël Antonie organization: School of Electrical and Information Engineering, University of the Witwatersrand – sequence: 5 givenname: Guanrong surname: Chen fullname: Chen, Guanrong organization: Department of Electrical Engineering, City University of Hong Kong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34248280$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtP3DAUhS1EBTPT_gEWVSQ2bFKuX3G8qYQGWkZCQqIPsbMc52YIysRgJ0j8ezzMlEcXLCzLut85916fKdntfY-EHFD4RgHUcaQUFM2BpVMUnOZ6h0yoVDxnhb7eJRPQTOSg4XqfTGO8BQDOoNwj-1wwUbISJkSdZHHw7sbGoXXZr7PF-VW28jV2WeNDNr_8uzjNqc5qO9is6UY3jHZofR8_k0-N7SJ-2d4z8ufH2e_5eX5x-XMxP7nInVBiyF1hqa4kukYxWVu00KAWMj3BcVU1zKITFSisNbdQM42qEFKKCqFOCsln5PvG926sVlg77IdgO3MX2pUNj8bb1ryv9O2NWfoHUzKpRPqVGTnaGgR_P2IczKqNDrvO9ujHaFITKDiThUjo4X_orR9Dn9ZLVAm0pIVYU2xDueBjDNi8DEPBrHMxm1xMysU852J0En19u8aL5F8QCeAbIKZSv8Tw2vsD2yeAKZku |
CitedBy_id | crossref_primary_10_1016_j_idm_2023_03_004 crossref_primary_10_1016_j_ifacol_2023_10_302 crossref_primary_10_3390_fractalfract6080410 crossref_primary_10_1016_j_chaos_2023_113696 crossref_primary_10_1016_j_apm_2023_11_017 crossref_primary_10_1007_s11071_021_06900_7 crossref_primary_10_3390_v14071482 crossref_primary_10_3390_fractalfract6040197 crossref_primary_10_1109_TSMC_2023_3283091 crossref_primary_10_1186_s13662_023_03792_2 crossref_primary_10_3390_e24010014 crossref_primary_10_1016_j_compbiomed_2023_106693 crossref_primary_10_1142_S0218539323500316 crossref_primary_10_1007_s11071_022_07471_x |
Cites_doi | 10.1073/pnas.2006520117 10.1533/9780857099402 10.1109/ACCESS.2020.3032584 10.1016/0025-5564(76)90132-2 10.1371/journal.pone.0241171 10.1136/bmj.m2815 10.1016/j.energy.2020.118750 10.1038/s41467-020-20314-w 10.2196/18880 10.1016/0025-5564(94)00069-C 10.1016/j.cnsns.2020.105303 10.1016/j.asoc.2020.106996 10.1109/TCT.1959.1086610 10.1016/j.physa.2005.02.057 10.1007/978-1-4939-9828-9 10.1098/rspa.1927.0118 10.1007/978-3-642-93048-5_1 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2021 The Author(s), under exclusive licence to Springer Nature B.V. 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021 – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021. |
DBID | NPM AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PQEST PQQKQ PQUKI PRINS PTHSS 7X8 5PM |
DOI | 10.1007/s11071-021-06631-9 |
DatabaseName | PubMed CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Database (Proquest) ProQuest Central AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Engineering Collection Engineering Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef Engineering Database Technology Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection MEDLINE - Academic |
DatabaseTitleList | PubMed Engineering Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1573-269X |
EndPage | 1323 |
ExternalDocumentID | 10_1007_s11071_021_06631_9 34248280 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Health and Medical Research Fund grantid: 16171921 funderid: http://dx.doi.org/10.13039/501100005847 – fundername: ; grantid: 16171921 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKAG ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADMVV ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEKVL AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFFNX AFGCZ AFKRA AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9T PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z85 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8W Z8Z Z92 ZMTXR _50 ~A9 ~EX AACDK AAEOY AAJBT AASML AAYZH ABAKF ABYXP ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU H13 NPM AAYXX CITATION DWQXO PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c474t-c6a19b5ecf725daea0fe945cf70c37bf2aec4b07ed93a0d29e764554be0d72553 |
IEDL.DBID | AEJHL |
ISSN | 0924-090X |
IngestDate | Tue Sep 17 21:23:28 EDT 2024 Fri Oct 25 23:14:20 EDT 2024 Mon Nov 04 11:27:29 EST 2024 Thu Sep 12 19:20:01 EDT 2024 Sat Nov 02 12:28:00 EDT 2024 Sat Dec 16 12:08:46 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | COVID-19 Data fluctuation Stochastic stability SEIHR model Stochastic differential equation |
Language | English |
License | The Author(s), under exclusive licence to Springer Nature B.V. 2021. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-c6a19b5ecf725daea0fe945cf70c37bf2aec4b07ed93a0d29e764554be0d72553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1641-6903 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8257466 |
PMID | 34248280 |
PQID | 2580181644 |
PQPubID | 2043746 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8257466 proquest_miscellaneous_2550632564 proquest_journals_2580181644 crossref_primary_10_1007_s11071_021_06631_9 pubmed_primary_34248280 springer_journals_10_1007_s11071_021_06631_9 |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht – name: Netherlands |
PublicationSubtitle | An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems |
PublicationTitle | Nonlinear dynamics |
PublicationTitleAbbrev | Nonlinear Dyn |
PublicationTitleAlternate | Nonlinear Dyn |
PublicationYear | 2021 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Bertozzi, Franco, George, Short, Sledge (CR7) 2020; 117 Karasu, Altan, Bekiros, Ahmad (CR2) 2020; 212 Feng, Thieme (CR13) 1995; 128 CR17 Tian, Li, Qi, Tang, Tang, Liu, Li, Cheng, Li, Shi (CR4) 2021; 12 CR9 CR16 Mao (CR19) 2008 CR12 Altan, Karasu, Zio (CR3) 2021; 100 Hethcote (CR11) 1976; 28 CR10 Niu, Wong, Chan, van Wyk, Chen (CR8) 2020; 8 Zhan, Tse, Lai, Chen, Mo (CR6) 2020; 6 Ivorra, Ferrández, Vela-Pérez, Ramos (CR14) 2020; 88 Tornatore, Buccellato, Vetro (CR15) 2005; 354 Bertram, Sarachik (CR18) 1959; 6 Zhan, Tse, Fu, Lai, Zhang (CR5) 2020; 15 Mahase (CR1) 2020; 370 L Tian (6631_CR4) 2021; 12 A Altan (6631_CR3) 2021; 100 J Bertram (6631_CR18) 1959; 6 E Tornatore (6631_CR15) 2005; 354 R Niu (6631_CR8) 2020; 8 C Zhan (6631_CR5) 2020; 15 S Karasu (6631_CR2) 2020; 212 6631_CR10 AL Bertozzi (6631_CR7) 2020; 117 X Mao (6631_CR19) 2008 6631_CR16 6631_CR17 6631_CR12 HW Hethcote (6631_CR11) 1976; 28 Z Feng (6631_CR13) 1995; 128 E Mahase (6631_CR1) 2020; 370 C Zhan (6631_CR6) 2020; 6 6631_CR9 B Ivorra (6631_CR14) 2020; 88 |
References_xml | – volume: 117 start-page: 16732 issue: 29 year: 2020 end-page: 16738 ident: CR7 article-title: The challenges of modeling and forecasting the spread of COVID-19 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.2006520117 contributor: fullname: Sledge – year: 2008 ident: CR19 publication-title: Stochastic Differential Equations and Applications doi: 10.1533/9780857099402 contributor: fullname: Mao – volume: 8 start-page: 195503 year: 2020 end-page: 195514 ident: CR8 article-title: Modeling the COVID-19 pandemic using an SEIHR model with human migration publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3032584 contributor: fullname: Chen – volume: 28 start-page: 335 issue: 3–4 year: 1976 end-page: 356 ident: CR11 article-title: Qualitative analyses of communicable disease models publication-title: Math. Biosci. doi: 10.1016/0025-5564(76)90132-2 contributor: fullname: Hethcote – volume: 15 start-page: e0241171 issue: 10 year: 2020 ident: CR5 article-title: Modeling and prediction of the 2019 coronavirus disease spreading in china incorporating human migration data publication-title: PLOS ONE doi: 10.1371/journal.pone.0241171 contributor: fullname: Zhang – volume: 370 start-page: m2815 year: 2020 ident: CR1 article-title: Covid-19: What do we know about long covid? publication-title: BMJ doi: 10.1136/bmj.m2815 contributor: fullname: Mahase – volume: 212 start-page: 118750 year: 2020 ident: CR2 article-title: A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series publication-title: Energy doi: 10.1016/j.energy.2020.118750 contributor: fullname: Ahmad – volume: 12 start-page: 1 issue: 1 year: 2021 end-page: 12 ident: CR4 article-title: Harnessing peak transmission around symptom onset for non-pharmaceutical intervention and containment of the COVID-19 pandemic publication-title: Nat. Commun. doi: 10.1038/s41467-020-20314-w contributor: fullname: Shi – ident: CR16 – volume: 6 start-page: e18880 issue: 3 year: 2020 ident: CR6 article-title: General model for COVID-19 spreading with consideration of intercity migration, insufficient testing, and active intervention: Modeling study of pandemic progression in japan and the united states publication-title: JMIR Public Health Surveill. doi: 10.2196/18880 contributor: fullname: Mo – ident: CR12 – ident: CR17 – ident: CR10 – ident: CR9 – volume: 128 start-page: 93 issue: 1–2 year: 1995 end-page: 130 ident: CR13 article-title: Recurrent outbreaks of childhood diseases revisited: the impact of isolation publication-title: Math. Biosci. doi: 10.1016/0025-5564(94)00069-C contributor: fullname: Thieme – volume: 88 start-page: 105303 year: 2020 ident: CR14 article-title: Mathematical modeling of the spread of the coronavirus disease 2019 (COVID-19) taking into account the undetected infections. The case of China. publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2020.105303 contributor: fullname: Ramos – volume: 100 start-page: 106996d year: 2021 ident: CR3 article-title: A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106996 contributor: fullname: Zio – volume: 6 start-page: 260 issue: 5 year: 1959 end-page: 270 ident: CR18 article-title: Stability of circuits with randomly time-varying parameters publication-title: IRE Trans. Circuit Theory doi: 10.1109/TCT.1959.1086610 contributor: fullname: Sarachik – volume: 354 start-page: 111 year: 2005 end-page: 126 ident: CR15 article-title: Stability of a stochastic SIR system publication-title: Physica A doi: 10.1016/j.physa.2005.02.057 contributor: fullname: Vetro – ident: 6631_CR16 – volume: 100 start-page: 106996d year: 2021 ident: 6631_CR3 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106996 contributor: fullname: A Altan – volume: 15 start-page: e0241171 issue: 10 year: 2020 ident: 6631_CR5 publication-title: PLOS ONE doi: 10.1371/journal.pone.0241171 contributor: fullname: C Zhan – volume: 370 start-page: m2815 year: 2020 ident: 6631_CR1 publication-title: BMJ doi: 10.1136/bmj.m2815 contributor: fullname: E Mahase – volume: 6 start-page: e18880 issue: 3 year: 2020 ident: 6631_CR6 publication-title: JMIR Public Health Surveill. doi: 10.2196/18880 contributor: fullname: C Zhan – ident: 6631_CR10 doi: 10.1007/978-1-4939-9828-9 – volume: 128 start-page: 93 issue: 1–2 year: 1995 ident: 6631_CR13 publication-title: Math. Biosci. doi: 10.1016/0025-5564(94)00069-C contributor: fullname: Z Feng – volume: 88 start-page: 105303 year: 2020 ident: 6631_CR14 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2020.105303 contributor: fullname: B Ivorra – ident: 6631_CR9 doi: 10.1098/rspa.1927.0118 – volume-title: Stochastic Differential Equations and Applications year: 2008 ident: 6631_CR19 doi: 10.1533/9780857099402 contributor: fullname: X Mao – volume: 12 start-page: 1 issue: 1 year: 2021 ident: 6631_CR4 publication-title: Nat. Commun. doi: 10.1038/s41467-020-20314-w contributor: fullname: L Tian – volume: 28 start-page: 335 issue: 3–4 year: 1976 ident: 6631_CR11 publication-title: Math. Biosci. doi: 10.1016/0025-5564(76)90132-2 contributor: fullname: HW Hethcote – volume: 117 start-page: 16732 issue: 29 year: 2020 ident: 6631_CR7 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.2006520117 contributor: fullname: AL Bertozzi – volume: 6 start-page: 260 issue: 5 year: 1959 ident: 6631_CR18 publication-title: IRE Trans. Circuit Theory doi: 10.1109/TCT.1959.1086610 contributor: fullname: J Bertram – volume: 212 start-page: 118750 year: 2020 ident: 6631_CR2 publication-title: Energy doi: 10.1016/j.energy.2020.118750 contributor: fullname: S Karasu – ident: 6631_CR12 doi: 10.1007/978-3-642-93048-5_1 – volume: 354 start-page: 111 year: 2005 ident: 6631_CR15 publication-title: Physica A doi: 10.1016/j.physa.2005.02.057 contributor: fullname: E Tornatore – volume: 8 start-page: 195503 year: 2020 ident: 6631_CR8 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3032584 contributor: fullname: R Niu – ident: 6631_CR17 |
SSID | ssj0003208 |
Score | 2.4671004 |
Snippet | Although deterministic compartmental models are useful for predicting the general trend of a disease’s spread, they are unable to describe the random daily... Although deterministic compartmental models are useful for predicting the general trend of a disease's spread, they are unable to describe the random daily... |
SourceID | pubmedcentral proquest crossref pubmed springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1311 |
SubjectTerms | Automotive Engineering Classical Mechanics Control Coronaviruses COVID-19 Dynamical Systems Engineering Mathematical models Mechanical Engineering Noise levels Original Paper Parameters Risk levels Stability Vibration |
Title | A stochastic SEIHR model for COVID-19 data fluctuations |
URI | https://link.springer.com/article/10.1007/s11071-021-06631-9 https://www.ncbi.nlm.nih.gov/pubmed/34248280 https://www.proquest.com/docview/2580181644 https://search.proquest.com/docview/2550632564 https://pubmed.ncbi.nlm.nih.gov/PMC8257466 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BucCBfQmbjMQNghwvcXKsoKggBBKbuEWO46gIFBCl_8_YTVPKcoBjFGfxzNh-4xm_AdhPNDWpCw06dqwQZz8V6kjTUPHYRhYxhS18EdsbdfmQnHQcTQ5vti6qp6NRRNJP1OOzbuiooOfLXKJOzKMwnYYZXHukbMFMu3PevWgmYM58ITqKroXbhnioz8r8_JbJ9egbyPyeK_klYOrXodOFf_VgEeZr2EnaQztZgilbLcNCDUFJPcD7yzD3iZ9wBVSbIDY0Pe3InMlN56x7TXzpHIJQlxxf3Z-dhFFKXJYpKZ8H7iyKN-NVuDvt3B53w7rSQmiEEu-hiXWU5tKaUjFZaKtpaVMh8ZIarvKSaWtETpUtUq5pwVKrYoFAJLe0wCckX4NW9VLZDSAa8VlihI6SwlUYj7WMRYIgxeTKMp6XARyM5J29Dgk1sjF1spNQhhLKvISyNIDtkUqyenD1MyYTRzOGSC6AveY2DgsX69CVfRm4NhLBF-I5bLM-1GDzOS6YQEeTBqAmdNs0cJTbk3eqx56n3kZ_Wok4DuBwpOLxb_3ei82_Nd-CWeasxKcMbkPr_W1gd2C6Xwx2a1P_ALuX9Ps |
link.rule.ids | 230,315,782,786,887,27935,27936,41075,42144,48346,48349,49651,49654,52155 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHIADj_EqzyBxg0ppmjbtcdqGNjFAYoDGqUrTVCChghj7_zhZuzEeBzhWcR-JneRzY38GOIkkVbE5GjTsWC6ufsKVnqSu8EPtacQUOrNFbPviahC12oYmh1e5MDbavTqStCv1NNkNPRV0fZmJ1Al9z43nYcGwnfMaLDQGDw-tyQrsM1uJjqJvYf5DDMpkmZ-fMrshfUOZ34Mlv5yY2o3ofPV_XViDlRJ4ksbYUtZhThd1WC1BKCmn-LAOy58YCjdANAiiQ_UoDZ0z6be7nRtii-cQBLukeX3fbbleTEycKcmfRyYbxRryJtydt2-bHbesteAqLvi7q0LpxWmgVS5YkEktaa5jHuAlVb5Icya14ikVOot9STMWaxFyhCKpphneEfhbUCteCr0DRCJCixSXXpSZGuOhDEIeIUxRqdDMT3MHTqsBT17HlBrJlDzZjFCCI5TYEUpiB_YrnSTl9BomLIgM0RhiOQeOJ804Mcxphyz0y8jIBAi_ENGhzPZYhZPX-ZxxdDWpA2JGuRMBQ7o921I8PVrybfSoBQ9DB84qFU8_6_de7P5N_AgWO7eXvaTXvbrYgyVmLMYGEO5D7f1tpA9gfpiNDku7_wDUXfkt |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT-MwEB5xSCt44FqOcHol3nYjHMeJk8eKtlCB2BXHirfIcRyBhAKi7f9nxk1TyvGAeIzsHPbMON_YM98AHCaam5SOBokdy8fVT_k60NxXYWwDi5jCFq6I7ZW6uE3aHaLJabL4XbT7-EhylNNALE3V4OipKI8miW_otaAbLChqJw4DP52FedoWQx2fb_WuT7rNahwKV5WOo59BexK3deLMx0-Z_jm9Q5zvAyffnJ66n1J3-fvDWYGlGpCy1kiDVmHGVmuwXINTVpt-fw0WXzEX_gTVYogazZ0mmmd21emdXjJXVIchCGbHf__32n6QMoo_ZeXDkLJUnIKvw023c3186tc1GHwjlRz4JtZBmkfWlEpEhbaalzaVEV5yE6q8FNoamXNlizTUvBCpVbFEiJJbXuAdUbgBc9VjZbeAaURuiZE6SAqqPR7rKEaRBcrkyoowLz34PZ787GlEtZFNSJVphjKcoczNUJZ6sDuWT1abXT8TUUIEZIjxPPjVNKPB0CmIruzjkPpECMsQ6WGfzZE4m9eFUkh0QbkHakrQTQci455uqe7vHCk3etpKxrEHf8binnzW56PY_lr3A_jxr93NznsXZzuwIEhhXFzhLswNnod2D2b7xXC_NoEXgXQB0w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+stochastic+SEIHR+model+for+COVID-19+data+fluctuations&rft.jtitle=Nonlinear+dynamics&rft.au=Niu%2C+Ruiwu&rft.au=Chan%2C+Yin-Chi&rft.au=Wong%2C+Eric+W.+M.&rft.au=van+Wyk%2C+Micha%C3%ABl+Antonie&rft.date=2021-10-01&rft.pub=Springer+Netherlands&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=106&rft.issue=2&rft.spage=1311&rft.epage=1323&rft_id=info:doi/10.1007%2Fs11071-021-06631-9&rft.externalDocID=10_1007_s11071_021_06631_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon |