A stochastic SEIHR model for COVID-19 data fluctuations

Although deterministic compartmental models are useful for predicting the general trend of a disease’s spread, they are unable to describe the random daily fluctuations in the number of new infections and hospitalizations, which is crucial in determining the necessary healthcare capacity for a speci...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear dynamics Vol. 106; no. 2; pp. 1311 - 1323
Main Authors: Niu, Ruiwu, Chan, Yin-Chi, Wong, Eric W. M., van Wyk, Michaël Antonie, Chen, Guanrong
Format: Journal Article
Language:English
Published: Dordrecht Springer Netherlands 01-10-2021
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Although deterministic compartmental models are useful for predicting the general trend of a disease’s spread, they are unable to describe the random daily fluctuations in the number of new infections and hospitalizations, which is crucial in determining the necessary healthcare capacity for a specified level of risk. In this paper, we propose a stochastic SEIHR (sSEIHR) model to describe such random fluctuations and provide sufficient conditions for stochastic stability of the disease-free equilibrium, based on the basic reproduction number that we estimated. Our extensive numerical results demonstrate strong threshold behavior near the estimated basic reproduction number, suggesting that the necessary conditions for stochastic stability are close to the sufficient conditions derived. Furthermore, we found that increasing the noise level slightly reduces the final proportion of infected individuals. In addition, we analyze COVID-19 data from various regions worldwide and demonstrate that by changing only a few parameter values, our sSEIHR model can accurately describe both the general trend and the random fluctuations in the number of daily new cases in each region, allowing governments and hospitals to make more accurate caseload predictions using fewer compartments and parameters than other comparable stochastic compartmental models.
AbstractList Although deterministic compartmental models are useful for predicting the general trend of a disease’s spread, they are unable to describe the random daily fluctuations in the number of new infections and hospitalizations, which is crucial in determining the necessary healthcare capacity for a specified level of risk. In this paper, we propose a stochastic SEIHR (sSEIHR) model to describe such random fluctuations and provide sufficient conditions for stochastic stability of the disease-free equilibrium, based on the basic reproduction number that we estimated. Our extensive numerical results demonstrate strong threshold behavior near the estimated basic reproduction number, suggesting that the necessary conditions for stochastic stability are close to the sufficient conditions derived. Furthermore, we found that increasing the noise level slightly reduces the final proportion of infected individuals. In addition, we analyze COVID-19 data from various regions worldwide and demonstrate that by changing only a few parameter values, our sSEIHR model can accurately describe both the general trend and the random fluctuations in the number of daily new cases in each region, allowing governments and hospitals to make more accurate caseload predictions using fewer compartments and parameters than other comparable stochastic compartmental models.
Author Chan, Yin-Chi
Wong, Eric W. M.
Niu, Ruiwu
Chen, Guanrong
van Wyk, Michaël Antonie
Author_xml – sequence: 1
  givenname: Ruiwu
  surname: Niu
  fullname: Niu, Ruiwu
  organization: College of Mathematics and Statistics, Shenzhen University
– sequence: 2
  givenname: Yin-Chi
  surname: Chan
  fullname: Chan, Yin-Chi
  organization: Department of Electrical Engineering, City University of Hong Kong
– sequence: 3
  givenname: Eric W. M.
  orcidid: 0000-0002-1641-6903
  surname: Wong
  fullname: Wong, Eric W. M.
  email: eeewong@cityu.edu.hk
  organization: Department of Electrical Engineering, City University of Hong Kong
– sequence: 4
  givenname: Michaël Antonie
  surname: van Wyk
  fullname: van Wyk, Michaël Antonie
  organization: School of Electrical and Information Engineering, University of the Witwatersrand
– sequence: 5
  givenname: Guanrong
  surname: Chen
  fullname: Chen, Guanrong
  organization: Department of Electrical Engineering, City University of Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34248280$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtP3DAUhS1EBTPT_gEWVSQ2bFKuX3G8qYQGWkZCQqIPsbMc52YIysRgJ0j8ezzMlEcXLCzLut85916fKdntfY-EHFD4RgHUcaQUFM2BpVMUnOZ6h0yoVDxnhb7eJRPQTOSg4XqfTGO8BQDOoNwj-1wwUbISJkSdZHHw7sbGoXXZr7PF-VW28jV2WeNDNr_8uzjNqc5qO9is6UY3jHZofR8_k0-N7SJ-2d4z8ufH2e_5eX5x-XMxP7nInVBiyF1hqa4kukYxWVu00KAWMj3BcVU1zKITFSisNbdQM42qEFKKCqFOCsln5PvG926sVlg77IdgO3MX2pUNj8bb1ryv9O2NWfoHUzKpRPqVGTnaGgR_P2IczKqNDrvO9ujHaFITKDiThUjo4X_orR9Dn9ZLVAm0pIVYU2xDueBjDNi8DEPBrHMxm1xMysU852J0En19u8aL5F8QCeAbIKZSv8Tw2vsD2yeAKZku
CitedBy_id crossref_primary_10_1016_j_idm_2023_03_004
crossref_primary_10_1016_j_ifacol_2023_10_302
crossref_primary_10_3390_fractalfract6080410
crossref_primary_10_1016_j_chaos_2023_113696
crossref_primary_10_1016_j_apm_2023_11_017
crossref_primary_10_1007_s11071_021_06900_7
crossref_primary_10_3390_v14071482
crossref_primary_10_3390_fractalfract6040197
crossref_primary_10_1109_TSMC_2023_3283091
crossref_primary_10_1186_s13662_023_03792_2
crossref_primary_10_3390_e24010014
crossref_primary_10_1016_j_compbiomed_2023_106693
crossref_primary_10_1142_S0218539323500316
crossref_primary_10_1007_s11071_022_07471_x
Cites_doi 10.1073/pnas.2006520117
10.1533/9780857099402
10.1109/ACCESS.2020.3032584
10.1016/0025-5564(76)90132-2
10.1371/journal.pone.0241171
10.1136/bmj.m2815
10.1016/j.energy.2020.118750
10.1038/s41467-020-20314-w
10.2196/18880
10.1016/0025-5564(94)00069-C
10.1016/j.cnsns.2020.105303
10.1016/j.asoc.2020.106996
10.1109/TCT.1959.1086610
10.1016/j.physa.2005.02.057
10.1007/978-1-4939-9828-9
10.1098/rspa.1927.0118
10.1007/978-3-642-93048-5_1
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2021
The Author(s), under exclusive licence to Springer Nature B.V. 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021
– notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021.
DBID NPM
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOI 10.1007/s11071-021-06631-9
DatabaseName PubMed
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Database (Proquest)
ProQuest Central
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
MEDLINE - Academic
DatabaseTitleList

PubMed
Engineering Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1573-269X
EndPage 1323
ExternalDocumentID 10_1007_s11071_021_06631_9
34248280
Genre Journal Article
GrantInformation_xml – fundername: Health and Medical Research Fund
  grantid: 16171921
  funderid: http://dx.doi.org/10.13039/501100005847
– fundername: ;
  grantid: 16171921
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAG
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADMVV
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEKVL
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
_50
~A9
~EX
AACDK
AAEOY
AAJBT
AASML
AAYZH
ABAKF
ABYXP
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
H13
NPM
AAYXX
CITATION
DWQXO
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c474t-c6a19b5ecf725daea0fe945cf70c37bf2aec4b07ed93a0d29e764554be0d72553
IEDL.DBID AEJHL
ISSN 0924-090X
IngestDate Tue Sep 17 21:23:28 EDT 2024
Fri Oct 25 23:14:20 EDT 2024
Mon Nov 04 11:27:29 EST 2024
Thu Sep 12 19:20:01 EDT 2024
Sat Nov 02 12:28:00 EDT 2024
Sat Dec 16 12:08:46 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords COVID-19
Data fluctuation
Stochastic stability
SEIHR model
Stochastic differential equation
Language English
License The Author(s), under exclusive licence to Springer Nature B.V. 2021.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-c6a19b5ecf725daea0fe945cf70c37bf2aec4b07ed93a0d29e764554be0d72553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1641-6903
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8257466
PMID 34248280
PQID 2580181644
PQPubID 2043746
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8257466
proquest_miscellaneous_2550632564
proquest_journals_2580181644
crossref_primary_10_1007_s11071_021_06631_9
pubmed_primary_34248280
springer_journals_10_1007_s11071_021_06631_9
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Netherlands
PublicationSubtitle An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems
PublicationTitle Nonlinear dynamics
PublicationTitleAbbrev Nonlinear Dyn
PublicationTitleAlternate Nonlinear Dyn
PublicationYear 2021
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Bertozzi, Franco, George, Short, Sledge (CR7) 2020; 117
Karasu, Altan, Bekiros, Ahmad (CR2) 2020; 212
Feng, Thieme (CR13) 1995; 128
CR17
Tian, Li, Qi, Tang, Tang, Liu, Li, Cheng, Li, Shi (CR4) 2021; 12
CR9
CR16
Mao (CR19) 2008
CR12
Altan, Karasu, Zio (CR3) 2021; 100
Hethcote (CR11) 1976; 28
CR10
Niu, Wong, Chan, van Wyk, Chen (CR8) 2020; 8
Zhan, Tse, Lai, Chen, Mo (CR6) 2020; 6
Ivorra, Ferrández, Vela-Pérez, Ramos (CR14) 2020; 88
Tornatore, Buccellato, Vetro (CR15) 2005; 354
Bertram, Sarachik (CR18) 1959; 6
Zhan, Tse, Fu, Lai, Zhang (CR5) 2020; 15
Mahase (CR1) 2020; 370
L Tian (6631_CR4) 2021; 12
A Altan (6631_CR3) 2021; 100
J Bertram (6631_CR18) 1959; 6
E Tornatore (6631_CR15) 2005; 354
R Niu (6631_CR8) 2020; 8
C Zhan (6631_CR5) 2020; 15
S Karasu (6631_CR2) 2020; 212
6631_CR10
AL Bertozzi (6631_CR7) 2020; 117
X Mao (6631_CR19) 2008
6631_CR16
6631_CR17
6631_CR12
HW Hethcote (6631_CR11) 1976; 28
Z Feng (6631_CR13) 1995; 128
E Mahase (6631_CR1) 2020; 370
C Zhan (6631_CR6) 2020; 6
6631_CR9
B Ivorra (6631_CR14) 2020; 88
References_xml – volume: 117
  start-page: 16732
  issue: 29
  year: 2020
  end-page: 16738
  ident: CR7
  article-title: The challenges of modeling and forecasting the spread of COVID-19
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.2006520117
  contributor:
    fullname: Sledge
– year: 2008
  ident: CR19
  publication-title: Stochastic Differential Equations and Applications
  doi: 10.1533/9780857099402
  contributor:
    fullname: Mao
– volume: 8
  start-page: 195503
  year: 2020
  end-page: 195514
  ident: CR8
  article-title: Modeling the COVID-19 pandemic using an SEIHR model with human migration
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3032584
  contributor:
    fullname: Chen
– volume: 28
  start-page: 335
  issue: 3–4
  year: 1976
  end-page: 356
  ident: CR11
  article-title: Qualitative analyses of communicable disease models
  publication-title: Math. Biosci.
  doi: 10.1016/0025-5564(76)90132-2
  contributor:
    fullname: Hethcote
– volume: 15
  start-page: e0241171
  issue: 10
  year: 2020
  ident: CR5
  article-title: Modeling and prediction of the 2019 coronavirus disease spreading in china incorporating human migration data
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0241171
  contributor:
    fullname: Zhang
– volume: 370
  start-page: m2815
  year: 2020
  ident: CR1
  article-title: Covid-19: What do we know about long covid?
  publication-title: BMJ
  doi: 10.1136/bmj.m2815
  contributor:
    fullname: Mahase
– volume: 212
  start-page: 118750
  year: 2020
  ident: CR2
  article-title: A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118750
  contributor:
    fullname: Ahmad
– volume: 12
  start-page: 1
  issue: 1
  year: 2021
  end-page: 12
  ident: CR4
  article-title: Harnessing peak transmission around symptom onset for non-pharmaceutical intervention and containment of the COVID-19 pandemic
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20314-w
  contributor:
    fullname: Shi
– ident: CR16
– volume: 6
  start-page: e18880
  issue: 3
  year: 2020
  ident: CR6
  article-title: General model for COVID-19 spreading with consideration of intercity migration, insufficient testing, and active intervention: Modeling study of pandemic progression in japan and the united states
  publication-title: JMIR Public Health Surveill.
  doi: 10.2196/18880
  contributor:
    fullname: Mo
– ident: CR12
– ident: CR17
– ident: CR10
– ident: CR9
– volume: 128
  start-page: 93
  issue: 1–2
  year: 1995
  end-page: 130
  ident: CR13
  article-title: Recurrent outbreaks of childhood diseases revisited: the impact of isolation
  publication-title: Math. Biosci.
  doi: 10.1016/0025-5564(94)00069-C
  contributor:
    fullname: Thieme
– volume: 88
  start-page: 105303
  year: 2020
  ident: CR14
  article-title: Mathematical modeling of the spread of the coronavirus disease 2019 (COVID-19) taking into account the undetected infections. The case of China.
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2020.105303
  contributor:
    fullname: Ramos
– volume: 100
  start-page: 106996d
  year: 2021
  ident: CR3
  article-title: A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106996
  contributor:
    fullname: Zio
– volume: 6
  start-page: 260
  issue: 5
  year: 1959
  end-page: 270
  ident: CR18
  article-title: Stability of circuits with randomly time-varying parameters
  publication-title: IRE Trans. Circuit Theory
  doi: 10.1109/TCT.1959.1086610
  contributor:
    fullname: Sarachik
– volume: 354
  start-page: 111
  year: 2005
  end-page: 126
  ident: CR15
  article-title: Stability of a stochastic SIR system
  publication-title: Physica A
  doi: 10.1016/j.physa.2005.02.057
  contributor:
    fullname: Vetro
– ident: 6631_CR16
– volume: 100
  start-page: 106996d
  year: 2021
  ident: 6631_CR3
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106996
  contributor:
    fullname: A Altan
– volume: 15
  start-page: e0241171
  issue: 10
  year: 2020
  ident: 6631_CR5
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0241171
  contributor:
    fullname: C Zhan
– volume: 370
  start-page: m2815
  year: 2020
  ident: 6631_CR1
  publication-title: BMJ
  doi: 10.1136/bmj.m2815
  contributor:
    fullname: E Mahase
– volume: 6
  start-page: e18880
  issue: 3
  year: 2020
  ident: 6631_CR6
  publication-title: JMIR Public Health Surveill.
  doi: 10.2196/18880
  contributor:
    fullname: C Zhan
– ident: 6631_CR10
  doi: 10.1007/978-1-4939-9828-9
– volume: 128
  start-page: 93
  issue: 1–2
  year: 1995
  ident: 6631_CR13
  publication-title: Math. Biosci.
  doi: 10.1016/0025-5564(94)00069-C
  contributor:
    fullname: Z Feng
– volume: 88
  start-page: 105303
  year: 2020
  ident: 6631_CR14
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2020.105303
  contributor:
    fullname: B Ivorra
– ident: 6631_CR9
  doi: 10.1098/rspa.1927.0118
– volume-title: Stochastic Differential Equations and Applications
  year: 2008
  ident: 6631_CR19
  doi: 10.1533/9780857099402
  contributor:
    fullname: X Mao
– volume: 12
  start-page: 1
  issue: 1
  year: 2021
  ident: 6631_CR4
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20314-w
  contributor:
    fullname: L Tian
– volume: 28
  start-page: 335
  issue: 3–4
  year: 1976
  ident: 6631_CR11
  publication-title: Math. Biosci.
  doi: 10.1016/0025-5564(76)90132-2
  contributor:
    fullname: HW Hethcote
– volume: 117
  start-page: 16732
  issue: 29
  year: 2020
  ident: 6631_CR7
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.2006520117
  contributor:
    fullname: AL Bertozzi
– volume: 6
  start-page: 260
  issue: 5
  year: 1959
  ident: 6631_CR18
  publication-title: IRE Trans. Circuit Theory
  doi: 10.1109/TCT.1959.1086610
  contributor:
    fullname: J Bertram
– volume: 212
  start-page: 118750
  year: 2020
  ident: 6631_CR2
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118750
  contributor:
    fullname: S Karasu
– ident: 6631_CR12
  doi: 10.1007/978-3-642-93048-5_1
– volume: 354
  start-page: 111
  year: 2005
  ident: 6631_CR15
  publication-title: Physica A
  doi: 10.1016/j.physa.2005.02.057
  contributor:
    fullname: E Tornatore
– volume: 8
  start-page: 195503
  year: 2020
  ident: 6631_CR8
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3032584
  contributor:
    fullname: R Niu
– ident: 6631_CR17
SSID ssj0003208
Score 2.4671004
Snippet Although deterministic compartmental models are useful for predicting the general trend of a disease’s spread, they are unable to describe the random daily...
Although deterministic compartmental models are useful for predicting the general trend of a disease's spread, they are unable to describe the random daily...
SourceID pubmedcentral
proquest
crossref
pubmed
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1311
SubjectTerms Automotive Engineering
Classical Mechanics
Control
Coronaviruses
COVID-19
Dynamical Systems
Engineering
Mathematical models
Mechanical Engineering
Noise levels
Original Paper
Parameters
Risk levels
Stability
Vibration
Title A stochastic SEIHR model for COVID-19 data fluctuations
URI https://link.springer.com/article/10.1007/s11071-021-06631-9
https://www.ncbi.nlm.nih.gov/pubmed/34248280
https://www.proquest.com/docview/2580181644
https://search.proquest.com/docview/2550632564
https://pubmed.ncbi.nlm.nih.gov/PMC8257466
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BucCBfQmbjMQNghwvcXKsoKggBBKbuEWO46gIFBCl_8_YTVPKcoBjFGfxzNh-4xm_AdhPNDWpCw06dqwQZz8V6kjTUPHYRhYxhS18EdsbdfmQnHQcTQ5vti6qp6NRRNJP1OOzbuiooOfLXKJOzKMwnYYZXHukbMFMu3PevWgmYM58ITqKroXbhnioz8r8_JbJ9egbyPyeK_klYOrXodOFf_VgEeZr2EnaQztZgilbLcNCDUFJPcD7yzD3iZ9wBVSbIDY0Pe3InMlN56x7TXzpHIJQlxxf3Z-dhFFKXJYpKZ8H7iyKN-NVuDvt3B53w7rSQmiEEu-hiXWU5tKaUjFZaKtpaVMh8ZIarvKSaWtETpUtUq5pwVKrYoFAJLe0wCckX4NW9VLZDSAa8VlihI6SwlUYj7WMRYIgxeTKMp6XARyM5J29Dgk1sjF1spNQhhLKvISyNIDtkUqyenD1MyYTRzOGSC6AveY2DgsX69CVfRm4NhLBF-I5bLM-1GDzOS6YQEeTBqAmdNs0cJTbk3eqx56n3kZ_Wok4DuBwpOLxb_3ei82_Nd-CWeasxKcMbkPr_W1gd2C6Xwx2a1P_ALuX9Ps
link.rule.ids 230,315,782,786,887,27935,27936,41075,42144,48346,48349,49651,49654,52155
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHIADj_EqzyBxg0ppmjbtcdqGNjFAYoDGqUrTVCChghj7_zhZuzEeBzhWcR-JneRzY38GOIkkVbE5GjTsWC6ufsKVnqSu8EPtacQUOrNFbPviahC12oYmh1e5MDbavTqStCv1NNkNPRV0fZmJ1Al9z43nYcGwnfMaLDQGDw-tyQrsM1uJjqJvYf5DDMpkmZ-fMrshfUOZ34Mlv5yY2o3ofPV_XViDlRJ4ksbYUtZhThd1WC1BKCmn-LAOy58YCjdANAiiQ_UoDZ0z6be7nRtii-cQBLukeX3fbbleTEycKcmfRyYbxRryJtydt2-bHbesteAqLvi7q0LpxWmgVS5YkEktaa5jHuAlVb5Icya14ikVOot9STMWaxFyhCKpphneEfhbUCteCr0DRCJCixSXXpSZGuOhDEIeIUxRqdDMT3MHTqsBT17HlBrJlDzZjFCCI5TYEUpiB_YrnSTl9BomLIgM0RhiOQeOJ804Mcxphyz0y8jIBAi_ENGhzPZYhZPX-ZxxdDWpA2JGuRMBQ7o921I8PVrybfSoBQ9DB84qFU8_6_de7P5N_AgWO7eXvaTXvbrYgyVmLMYGEO5D7f1tpA9gfpiNDku7_wDUXfkt
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT-MwEB5xSCt44FqOcHol3nYjHMeJk8eKtlCB2BXHirfIcRyBhAKi7f9nxk1TyvGAeIzsHPbMON_YM98AHCaam5SOBokdy8fVT_k60NxXYWwDi5jCFq6I7ZW6uE3aHaLJabL4XbT7-EhylNNALE3V4OipKI8miW_otaAbLChqJw4DP52FedoWQx2fb_WuT7rNahwKV5WOo59BexK3deLMx0-Z_jm9Q5zvAyffnJ66n1J3-fvDWYGlGpCy1kiDVmHGVmuwXINTVpt-fw0WXzEX_gTVYogazZ0mmmd21emdXjJXVIchCGbHf__32n6QMoo_ZeXDkLJUnIKvw023c3186tc1GHwjlRz4JtZBmkfWlEpEhbaalzaVEV5yE6q8FNoamXNlizTUvBCpVbFEiJJbXuAdUbgBc9VjZbeAaURuiZE6SAqqPR7rKEaRBcrkyoowLz34PZ787GlEtZFNSJVphjKcoczNUJZ6sDuWT1abXT8TUUIEZIjxPPjVNKPB0CmIruzjkPpECMsQ6WGfzZE4m9eFUkh0QbkHakrQTQci455uqe7vHCk3etpKxrEHf8binnzW56PY_lr3A_jxr93NznsXZzuwIEhhXFzhLswNnod2D2b7xXC_NoEXgXQB0w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+stochastic+SEIHR+model+for+COVID-19+data+fluctuations&rft.jtitle=Nonlinear+dynamics&rft.au=Niu%2C+Ruiwu&rft.au=Chan%2C+Yin-Chi&rft.au=Wong%2C+Eric+W.+M.&rft.au=van+Wyk%2C+Micha%C3%ABl+Antonie&rft.date=2021-10-01&rft.pub=Springer+Netherlands&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=106&rft.issue=2&rft.spage=1311&rft.epage=1323&rft_id=info:doi/10.1007%2Fs11071-021-06631-9&rft.externalDocID=10_1007_s11071_021_06631_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon