Domain-specific cues improve robustness of deep learning-based segmentation of CT volumes
Machine learning has considerably improved medical image analysis in the past years. Although data-driven approaches are intrinsically adaptive and thus, generic, they often do not perform the same way on data from different imaging modalities. In particular computed tomography (CT) data poses many...
Saved in:
Published in: | Scientific reports Vol. 10; no. 1; p. 10712 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
01-07-2020
Nature Publishing Group |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Machine learning has considerably improved medical image analysis in the past years. Although data-driven approaches are intrinsically adaptive and thus, generic, they often do not perform the same way on data from different imaging modalities. In particular computed tomography (CT) data poses many challenges to medical image segmentation based on convolutional neural networks (CNNs), mostly due to the broad dynamic range of intensities and the varying number of recorded slices of CT volumes. In this paper, we address these issues with a framework that adds domain-specific data preprocessing and augmentation to state-of-the-art CNN architectures. Our major focus is to stabilise the prediction performance over samples as a mandatory requirement for use in automated and semi-automated workflows in the clinical environment. To validate the architecture-independent effects of our approach we compare a neural architecture based on dilated convolutions for parallel multi-scale processing (a modified Mixed-Scale Dense Network: MS-D Net) to traditional scaling operations (a modified U-Net). Finally, we show that an ensemble model combines the strengths across different individual methods. Our framework is simple to implement into existing deep learning pipelines for CT analysis. It performs well on a range of tasks such as liver and kidney segmentation, without significant differences in prediction performance on strongly differing volume sizes and varying slice thickness. Thus our framework is an essential step towards performing robust segmentation of unknown real-world samples. |
---|---|
AbstractList | Machine learning has considerably improved medical image analysis in the past years. Although data-driven approaches are intrinsically adaptive and thus, generic, they often do not perform the same way on data from different imaging modalities. In particular computed tomography (CT) data poses many challenges to medical image segmentation based on convolutional neural networks (CNNs), mostly due to the broad dynamic range of intensities and the varying number of recorded slices of CT volumes. In this paper, we address these issues with a framework that adds domain-specific data preprocessing and augmentation to state-of-the-art CNN architectures. Our major focus is to stabilise the prediction performance over samples as a mandatory requirement for use in automated and semi-automated workflows in the clinical environment. To validate the architecture-independent effects of our approach we compare a neural architecture based on dilated convolutions for parallel multi-scale processing (a modified Mixed-Scale Dense Network: MS-D Net) to traditional scaling operations (a modified U-Net). Finally, we show that an ensemble model combines the strengths across different individual methods. Our framework is simple to implement into existing deep learning pipelines for CT analysis. It performs well on a range of tasks such as liver and kidney segmentation, without significant differences in prediction performance on strongly differing volume sizes and varying slice thickness. Thus our framework is an essential step towards performing robust segmentation of unknown real-world samples. |
ArticleNumber | 10712 |
Author | Lampe, Leonie Niehaus, Sebastian Scherf, Nico Reinelt, Janis Roeder, Ingo Merola, Alberto Kloenne, Marie |
Author_xml | – sequence: 1 givenname: Marie surname: Kloenne fullname: Kloenne, Marie organization: AICURA medical, Technische Fakultät, Universität Bielefeld – sequence: 2 givenname: Sebastian surname: Niehaus fullname: Niehaus, Sebastian organization: AICURA medical, Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden – sequence: 3 givenname: Leonie surname: Lampe fullname: Lampe, Leonie organization: AICURA medical – sequence: 4 givenname: Alberto surname: Merola fullname: Merola, Alberto organization: AICURA medical – sequence: 5 givenname: Janis surname: Reinelt fullname: Reinelt, Janis organization: AICURA medical – sequence: 6 givenname: Ingo surname: Roeder fullname: Roeder, Ingo organization: Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, National Center of Tumor Diseases (NCT) Partner Site Dresden – sequence: 7 givenname: Nico surname: Scherf fullname: Scherf, Nico email: nico.scherf@tu-dresden.de organization: Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Max Planck Institute for Human Cognitive and Brain Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32612129$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFv1DAQhS1UREvpH-CAInHhYrAnTmxfkNACLVIlLuXAyXKcyeIqsYOdrLT_Hm-3lMIBX2xpvnnzxu85OQkxICEvOXvLWa3eZcEbrSgDRlvZCEH3T8gZMNFQqAFOHr1PyUXOt6ycBrTg-hk5raHlwEGfke8f42R9oHlG5wfvKrdirvw0p7jDKsVuzUvAnKs4VD3iXI1oU_BhSzubsa8ybicMi118DAdmc1Pt4rhOmF-Qp4MdM17c3-fk2-dPN5srev318svmwzV1QoqFioZB1xZj2lohsGVD3XKrVW0FdFJIxRhvettrpZRD2cIgLUPEplNWOaHqc_L-qDuv3YS9K26SHc2c_GTT3kTrzd-V4H-YbdwZWYNW7UHgzb1Aij_L9ouZfHY4jjZgXLOB8meSA2hd0Nf_oLdxTaGsd0cBk8AOgnCkXIo5JxwezHBmDuGZY3imhGfuwjP70vTq8RoPLb-jKkB9BHIphS2mP7P_I_sLjimn1Q |
CitedBy_id | crossref_primary_10_1089_end_2022_0722 crossref_primary_10_1007_s42979_021_00815_1 crossref_primary_10_3389_fninf_2023_852105 crossref_primary_10_1016_j_compbiomed_2021_105107 |
Cites_doi | 10.7150/jca.6259 10.1038/s41598-017-17765-5 10.1155/2018/7068349 10.1038/s41592-019-0403-1DO9 10.1016/S0009-9260(05)81130-4 10.1056/nejmra072149 10.1073/pnas.1715832114 10.1016/j.compbiomed.2018.10.012 10.1007/978-3-319-75238-9_38 10.1007/978-3-319-75541-0_12 10.1007/978-3-658-25326-4_7 10.1007/978-3-319-46723-8_49 10.1007/978-3-319-75541-0_13 10.1118/1.4948498 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C NPM AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PIMPY PQEST PQQKQ PQUKI Q9U 7X8 5PM |
DOI | 10.1038/s41598-020-67544-y |
DatabaseName | Springer_OA刊 PubMed CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Biological Science Database Publicly Available Content Database (Proquest) (PQ_SDU_P3) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Publicly Available Content Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 10712 |
ExternalDocumentID | 10_1038_s41598_020_67544_y 32612129 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ADBBV ADRAZ AENEX AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RIG RNT RNTTT RPM SNYQT UKHRP NPM AAYXX CITATION 7XB 8FK K9. PQEST PQUKI Q9U 7X8 5PM AFPKN |
ID | FETCH-LOGICAL-c474t-4502b62949aa44e60f361a983a42b74780015dad9888ce762f7a0eee5b8a8c483 |
IEDL.DBID | RPM |
ISSN | 2045-2322 |
IngestDate | Tue Sep 17 21:07:27 EDT 2024 Sat Oct 26 06:00:40 EDT 2024 Sat Nov 09 13:40:26 EST 2024 Thu Nov 21 21:08:51 EST 2024 Sat Nov 02 12:01:16 EDT 2024 Fri Oct 11 20:44:45 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third-party material in this article is included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-4502b62949aa44e60f361a983a42b74780015dad9888ce762f7a0eee5b8a8c483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7329868/ |
PMID | 32612129 |
PQID | 2419207208 |
PQPubID | 2041939 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7329868 proquest_miscellaneous_2419712299 proquest_journals_2419207208 crossref_primary_10_1038_s41598_020_67544_y pubmed_primary_32612129 springer_journals_10_1038_s41598_020_67544_y |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Harris, Adams, Lloyd, Harvey (CR9) 1993; 47 Krizhevsky, Sutskever, Hinton (CR1) 2012; 25 CR19 CR18 CR17 CR16 CR15 CR14 CR13 CR12 CR11 Chlebus, Schenk, Moltz, van Ginneken, Hahn (CR5) 2018; 8 Brenner (CR7) 2007; 357 Pelt, Sethian (CR10) 2017; 115 Minnemaa (CR4) 2018; 103 Voulodimos, Doulamis, Doulamis, Protopapadakis (CR2) 2018 CR27 Broder (CR6) 2011 CR26 Costelloe (CR8) 2013; 4 CR25 CR24 CR23 CR22 CR21 CR20 Moen (CR3) 2019 K Harris (67544_CR9) 1993; 47 G Chlebus (67544_CR5) 2018; 8 67544_CR19 67544_CR17 E Moen (67544_CR3) 2019 67544_CR18 67544_CR22 67544_CR23 67544_CR20 67544_CR21 DM Pelt (67544_CR10) 2017; 115 67544_CR26 67544_CR27 67544_CR24 67544_CR25 J Minnemaa (67544_CR4) 2018; 103 J Broder (67544_CR6) 2011 J Brenner (67544_CR7) 2007; 357 67544_CR11 A Krizhevsky (67544_CR1) 2012; 25 67544_CR12 67544_CR15 67544_CR16 67544_CR13 67544_CR14 A Voulodimos (67544_CR2) 2018 CM Costelloe (67544_CR8) 2013; 4 |
References_xml | – ident: CR22 – volume: 4 start-page: 524 issue: 7 year: 2013 end-page: 530 ident: CR8 article-title: Bone windows for distinguishing malignant from benign primary bone tumors on FDG PET/CT publication-title: J. Cancer doi: 10.7150/jca.6259 contributor: fullname: Costelloe – ident: CR18 – volume: 8 start-page: 1 year: 2018 end-page: 17 ident: CR5 article-title: Automatic liver tumor segmentation in ct with fully convolutional neural networks and object-based postprocessing publication-title: Nat. Sci. Rep. doi: 10.1038/s41598-017-17765-5 contributor: fullname: Hahn – ident: CR14 – ident: CR16 – year: 2018 ident: CR2 article-title: Deep learning for computer vision: a brief review publication-title: Comput. Intell. Neurosci. doi: 10.1155/2018/7068349 contributor: fullname: Protopapadakis – ident: CR12 – volume: 25 start-page: 1097 year: 2012 end-page: 1105 ident: CR1 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. contributor: fullname: Hinton – year: 2019 ident: CR3 article-title: Deep learning for cellular image analysis publication-title: Nat. Methods doi: 10.1038/s41592-019-0403-1DO9 contributor: fullname: Moen – volume: 47 start-page: 241 year: 1993 end-page: 244 ident: CR9 article-title: The effect on apparent size of simulated pulmonary nodules of using three standard CT window settings publication-title: Clin. Radiol. doi: 10.1016/S0009-9260(05)81130-4 contributor: fullname: Harvey – ident: CR25 – ident: CR27 – ident: CR23 – volume: 357 start-page: 2277 issue: 22 year: 2007 end-page: 2284 ident: CR7 article-title: Computed tomography—an increasing source of radiation exposure publication-title: N. Engl. J. Med. doi: 10.1056/nejmra072149 contributor: fullname: Brenner – ident: CR21 – ident: CR19 – volume: 115 start-page: 254 issue: 2 year: 2017 end-page: 259 ident: CR10 article-title: A mixed-scale dense convolutional neural network for image analysis publication-title: PNAS doi: 10.1073/pnas.1715832114 contributor: fullname: Sethian – ident: CR15 – year: 2011 ident: CR6 publication-title: Chapter 9—Imaging of Nontraumatic Abdominal Conditions contributor: fullname: Broder – ident: CR17 – ident: CR13 – ident: CR11 – volume: 103 start-page: 130 year: 2018 end-page: 139 ident: CR4 article-title: CT image segmentation of bone for medical additive manufacturing using a convolutional neural network publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.10.012 contributor: fullname: Minnemaa – ident: CR26 – ident: CR24 – ident: CR20 – ident: 67544_CR26 – ident: 67544_CR23 doi: 10.1007/978-3-319-75238-9_38 – ident: 67544_CR18 – ident: 67544_CR16 – volume: 103 start-page: 130 year: 2018 ident: 67544_CR4 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.10.012 contributor: fullname: J Minnemaa – ident: 67544_CR13 – year: 2018 ident: 67544_CR2 publication-title: Comput. Intell. Neurosci. doi: 10.1155/2018/7068349 contributor: fullname: A Voulodimos – ident: 67544_CR15 – volume: 8 start-page: 1 year: 2018 ident: 67544_CR5 publication-title: Nat. Sci. Rep. doi: 10.1038/s41598-017-17765-5 contributor: fullname: G Chlebus – ident: 67544_CR20 doi: 10.1007/978-3-319-75541-0_12 – ident: 67544_CR11 doi: 10.1007/978-3-658-25326-4_7 – year: 2019 ident: 67544_CR3 publication-title: Nat. Methods doi: 10.1038/s41592-019-0403-1DO9 contributor: fullname: E Moen – volume: 115 start-page: 254 issue: 2 year: 2017 ident: 67544_CR10 publication-title: PNAS doi: 10.1073/pnas.1715832114 contributor: fullname: DM Pelt – ident: 67544_CR22 – ident: 67544_CR27 – ident: 67544_CR12 doi: 10.1007/978-3-319-46723-8_49 – volume: 4 start-page: 524 issue: 7 year: 2013 ident: 67544_CR8 publication-title: J. Cancer doi: 10.7150/jca.6259 contributor: fullname: CM Costelloe – ident: 67544_CR19 – ident: 67544_CR17 – volume: 357 start-page: 2277 issue: 22 year: 2007 ident: 67544_CR7 publication-title: N. Engl. J. Med. doi: 10.1056/nejmra072149 contributor: fullname: J Brenner – ident: 67544_CR14 – volume-title: Chapter 9—Imaging of Nontraumatic Abdominal Conditions year: 2011 ident: 67544_CR6 contributor: fullname: J Broder – volume: 47 start-page: 241 year: 1993 ident: 67544_CR9 publication-title: Clin. Radiol. doi: 10.1016/S0009-9260(05)81130-4 contributor: fullname: K Harris – ident: 67544_CR21 doi: 10.1007/978-3-319-75541-0_13 – ident: 67544_CR24 doi: 10.1118/1.4948498 – ident: 67544_CR25 – volume: 25 start-page: 1097 year: 2012 ident: 67544_CR1 publication-title: Adv. Neural Inf. Process. Syst. contributor: fullname: A Krizhevsky |
SSID | ssj0000529419 |
Score | 2.4138808 |
Snippet | Machine learning has considerably improved medical image analysis in the past years. Although data-driven approaches are intrinsically adaptive and thus,... |
SourceID | pubmedcentral proquest crossref pubmed springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 10712 |
SubjectTerms | 631/114/1305 631/114/1564 692/700/1421 692/700/1421/1846 692/700/1421/2025 Automation Computed tomography Deep learning Humanities and Social Sciences Image processing Learning algorithms Machine learning multidisciplinary Neural networks Science Science (multidisciplinary) Segmentation |
Title | Domain-specific cues improve robustness of deep learning-based segmentation of CT volumes |
URI | https://link.springer.com/article/10.1038/s41598-020-67544-y https://www.ncbi.nlm.nih.gov/pubmed/32612129 https://www.proquest.com/docview/2419207208 https://search.proquest.com/docview/2419712299 https://pubmed.ncbi.nlm.nih.gov/PMC7329868 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-tSEO8TPuALcCQJ-0NTFPbjZ1HVEC8bJq0IsFTZDs2q7QmFWkf-t_v7CRdAe1lzz7Fzt3Zd-e7-xngK_Oej6wcUzQGmgopU2o0BiuWGwzG8tSXEbvz5qf8fqcurwJMzrjvhYlF-9bMzqvf8_Nq9ivWVi7mdtjXiQ1_fJtIznKVqeEABugbboXoLaA3y8Uo7xpkUq6GDRqp0EgWAqWA90bXe7DLI3ZW9Cy37NELJ_NlreSzhGm0Q9dv4U3nQJKLdqHv4JWr3sPr9knJ9Qe4v6znGOzT0EEZqoCIxYnILF4dOPJYm1WzDKcbqT0pnVuQ7tmIBxrsWUka9zDv2pGqQDOZkvYAa_bh9vpqOrmh3fMJ1AopllSMU2YyZEautRAuSz3PRjpXXAtmAmx-8JdKXeYYBFuHh6KXOnXOjY3SygrFD2Cnqiv3CQjnghvvMyGtFMZzVaIXiLGaKbX2SJ_Aac_EYtGiZBQxu81V0XK_QO4XkfvFOoHjns9Ft2OagoV0dCpZih_7shlGXQ8JDF25etXSyBFDC5rAx1Ysm-l6eSYgnwhsQxBwtJ-OoHpFPO1OnRI460X7d1n__ovD_57oCPZYUMZY9HsMO8vHlfsMg6ZcncQrgZOo0H8A2FX4vw |
link.rule.ids | 230,315,729,782,786,866,887,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB7RIqAX3o-lBYzEDdw4trP2Hqu0VRBthUSQ4GTZXrtEIrtRNznk32N7d0Mf6qVnj9aPz_bM7Mx8BvhEvWdDK0Y4KAONuRAEGx2cFctMcMYK4svE3Tn5Ic5-ycOjSJMz6mthUtK-NbP96u98v5r9SbmVi7kd9Hlig--nY8FoIXM52IL74bwScslJbym9acGHRVciQ5gcNEFNxVKy6CpFxje83oGHLLFnJdvykka6YWbezJa8FjJNmuj4yR3n8BQed6YnOmibn8E9Vz2HB-1jlOsX8PuwnutZhWPtZcwfQjYMEM3STweHLmqzapbxXkS1R6VzC9Q9OHGOoyYsUePO510hUxVlxlPUXn3NS_h5fDQdT3D38AK2XPAl5iNCTR4WsdCac5cTz_KhLiTTnJpIuB8trVKXRXCfrQvXqReaOOdGRmppuWSvYLuqK_cGEGOcGe9zLqzgxjNZBvsxeHmm1NoH-Qw-94uvFi2_hkpxcSZVi5oKqKmEmlpnsNfjo7qz1igaA9lEUBI-9nHTHE5JDH3oytWrVkYMadC9Gbxu4dx01--DDMQVoDcCkYH7aksANTFxdyBm8KXfEv-Hdfss3t65ow_waDI9PVEnX8--7cIOjRs6pQ7vwfbyYuXewVZTrt6n4_APx48NbA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIqpeeBcCBYzEDdJ4bW_sHNFuV0VAVYkiwcnys6zEJqtm97D_HttJlpaKC5wziu18Hs9MZuYzwBviPR0ZPs6DMVA54xznWoVgxVAdgrEKe5u4O0--8NNvYnocaXK2V32lon2j50f1z8VRPf-RaiuXC1MMdWLF2ecJp6QSpSiW1hc7cDvoLCZXAvWO1ptUbFT1bTKYiqINpiq2k8VwKbK-5Zt92KOJQSv5l1es0g1X82bF5B9p02SNZvf-Yx334W7vgqL3ncgDuOXqh3Cnu5Ry8wi-T5uFmtd57MGMdUTIhEmiefr54NBlo9ftKp6PqPHIOrdE_cUTF3m0iBa17mLRNzTVUWZyjrojsH0MX2fH55OTvL-AITeMs1XOxpjoMnzISinGXIk9LUeqElQxoiPxfvS4rLJVCKONC8eq5wo758ZaKGGYoAewWze1ewqIUka19yXjhjPtqbDBjwzRnrZK-SCfwdsBALnseDZkyo9TITvkZEBOJuTkJoPDASPZ61wrSUxoY05weNnr7eOgLTEFomrXrDsZPiLBBmfwpIN0O9ywFzLg18DeCkQm7utPArCJkbsHMoN3w7b4Pa2_r-LZPw_0CvbOpjP56cPpx-ewT-KeThXEh7C7uly7F7DT2vXLpBG_AE0SD-w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Domain-specific+cues+improve+robustness+of+deep+learning-based+segmentation+of+CT+volumes&rft.jtitle=Scientific+reports&rft.au=Kloenne%2C+Marie&rft.au=Niehaus%2C+Sebastian&rft.au=Lampe%2C+Leonie&rft.au=Merola%2C+Alberto&rft.date=2020-07-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-020-67544-y&rft.externalDocID=10_1038_s41598_020_67544_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |