Domain-specific cues improve robustness of deep learning-based segmentation of CT volumes

Machine learning has considerably improved medical image analysis in the past years. Although data-driven approaches are intrinsically adaptive and thus, generic, they often do not perform the same way on data from different imaging modalities. In particular computed tomography (CT) data poses many...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 10; no. 1; p. 10712
Main Authors: Kloenne, Marie, Niehaus, Sebastian, Lampe, Leonie, Merola, Alberto, Reinelt, Janis, Roeder, Ingo, Scherf, Nico
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 01-07-2020
Nature Publishing Group
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Machine learning has considerably improved medical image analysis in the past years. Although data-driven approaches are intrinsically adaptive and thus, generic, they often do not perform the same way on data from different imaging modalities. In particular computed tomography (CT) data poses many challenges to medical image segmentation based on convolutional neural networks (CNNs), mostly due to the broad dynamic range of intensities and the varying number of recorded slices of CT volumes. In this paper, we address these issues with a framework that adds domain-specific data preprocessing and augmentation to state-of-the-art CNN architectures. Our major focus is to stabilise the prediction performance over samples as a mandatory requirement for use in automated and semi-automated workflows in the clinical environment. To validate the architecture-independent effects of our approach we compare a neural architecture based on dilated convolutions for parallel multi-scale processing (a modified Mixed-Scale Dense Network: MS-D Net) to traditional scaling operations (a modified U-Net). Finally, we show that an ensemble model combines the strengths across different individual methods. Our framework is simple to implement into existing deep learning pipelines for CT analysis. It performs well on a range of tasks such as liver and kidney segmentation, without significant differences in prediction performance on strongly differing volume sizes and varying slice thickness. Thus our framework is an essential step towards performing robust segmentation of unknown real-world samples.
AbstractList Machine learning has considerably improved medical image analysis in the past years. Although data-driven approaches are intrinsically adaptive and thus, generic, they often do not perform the same way on data from different imaging modalities. In particular computed tomography (CT) data poses many challenges to medical image segmentation based on convolutional neural networks (CNNs), mostly due to the broad dynamic range of intensities and the varying number of recorded slices of CT volumes. In this paper, we address these issues with a framework that adds domain-specific data preprocessing and augmentation to state-of-the-art CNN architectures. Our major focus is to stabilise the prediction performance over samples as a mandatory requirement for use in automated and semi-automated workflows in the clinical environment. To validate the architecture-independent effects of our approach we compare a neural architecture based on dilated convolutions for parallel multi-scale processing (a modified Mixed-Scale Dense Network: MS-D Net) to traditional scaling operations (a modified U-Net). Finally, we show that an ensemble model combines the strengths across different individual methods. Our framework is simple to implement into existing deep learning pipelines for CT analysis. It performs well on a range of tasks such as liver and kidney segmentation, without significant differences in prediction performance on strongly differing volume sizes and varying slice thickness. Thus our framework is an essential step towards performing robust segmentation of unknown real-world samples.
ArticleNumber 10712
Author Lampe, Leonie
Niehaus, Sebastian
Scherf, Nico
Reinelt, Janis
Roeder, Ingo
Merola, Alberto
Kloenne, Marie
Author_xml – sequence: 1
  givenname: Marie
  surname: Kloenne
  fullname: Kloenne, Marie
  organization: AICURA medical, Technische Fakultät, Universität Bielefeld
– sequence: 2
  givenname: Sebastian
  surname: Niehaus
  fullname: Niehaus, Sebastian
  organization: AICURA medical, Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden
– sequence: 3
  givenname: Leonie
  surname: Lampe
  fullname: Lampe, Leonie
  organization: AICURA medical
– sequence: 4
  givenname: Alberto
  surname: Merola
  fullname: Merola, Alberto
  organization: AICURA medical
– sequence: 5
  givenname: Janis
  surname: Reinelt
  fullname: Reinelt, Janis
  organization: AICURA medical
– sequence: 6
  givenname: Ingo
  surname: Roeder
  fullname: Roeder, Ingo
  organization: Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, National Center of Tumor Diseases (NCT) Partner Site Dresden
– sequence: 7
  givenname: Nico
  surname: Scherf
  fullname: Scherf, Nico
  email: nico.scherf@tu-dresden.de
  organization: Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Max Planck Institute for Human Cognitive and Brain Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32612129$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFv1DAQhS1UREvpH-CAInHhYrAnTmxfkNACLVIlLuXAyXKcyeIqsYOdrLT_Hm-3lMIBX2xpvnnzxu85OQkxICEvOXvLWa3eZcEbrSgDRlvZCEH3T8gZMNFQqAFOHr1PyUXOt6ycBrTg-hk5raHlwEGfke8f42R9oHlG5wfvKrdirvw0p7jDKsVuzUvAnKs4VD3iXI1oU_BhSzubsa8ybicMi118DAdmc1Pt4rhOmF-Qp4MdM17c3-fk2-dPN5srev318svmwzV1QoqFioZB1xZj2lohsGVD3XKrVW0FdFJIxRhvettrpZRD2cIgLUPEplNWOaHqc_L-qDuv3YS9K26SHc2c_GTT3kTrzd-V4H-YbdwZWYNW7UHgzb1Aij_L9ouZfHY4jjZgXLOB8meSA2hd0Nf_oLdxTaGsd0cBk8AOgnCkXIo5JxwezHBmDuGZY3imhGfuwjP70vTq8RoPLb-jKkB9BHIphS2mP7P_I_sLjimn1Q
CitedBy_id crossref_primary_10_1089_end_2022_0722
crossref_primary_10_1007_s42979_021_00815_1
crossref_primary_10_3389_fninf_2023_852105
crossref_primary_10_1016_j_compbiomed_2021_105107
Cites_doi 10.7150/jca.6259
10.1038/s41598-017-17765-5
10.1155/2018/7068349
10.1038/s41592-019-0403-1DO9
10.1016/S0009-9260(05)81130-4
10.1056/nejmra072149
10.1073/pnas.1715832114
10.1016/j.compbiomed.2018.10.012
10.1007/978-3-319-75238-9_38
10.1007/978-3-319-75541-0_12
10.1007/978-3-658-25326-4_7
10.1007/978-3-319-46723-8_49
10.1007/978-3-319-75541-0_13
10.1118/1.4948498
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
NPM
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PIMPY
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOI 10.1038/s41598-020-67544-y
DatabaseName Springer_OA刊
PubMed
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
Publicly Available Content Database (Proquest) (PQ_SDU_P3)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE - Academic
PubMed
Publicly Available Content Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 10712
ExternalDocumentID 10_1038_s41598_020_67544_y
32612129
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ADBBV
ADRAZ
AENEX
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNT
RNTTT
RPM
SNYQT
UKHRP
NPM
AAYXX
CITATION
7XB
8FK
K9.
PQEST
PQUKI
Q9U
7X8
5PM
AFPKN
ID FETCH-LOGICAL-c474t-4502b62949aa44e60f361a983a42b74780015dad9888ce762f7a0eee5b8a8c483
IEDL.DBID RPM
ISSN 2045-2322
IngestDate Tue Sep 17 21:07:27 EDT 2024
Sat Oct 26 06:00:40 EDT 2024
Sat Nov 09 13:40:26 EST 2024
Thu Nov 21 21:08:51 EST 2024
Sat Nov 02 12:01:16 EDT 2024
Fri Oct 11 20:44:45 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third-party material in this article is included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-4502b62949aa44e60f361a983a42b74780015dad9888ce762f7a0eee5b8a8c483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7329868/
PMID 32612129
PQID 2419207208
PQPubID 2041939
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7329868
proquest_miscellaneous_2419712299
proquest_journals_2419207208
crossref_primary_10_1038_s41598_020_67544_y
pubmed_primary_32612129
springer_journals_10_1038_s41598_020_67544_y
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Harris, Adams, Lloyd, Harvey (CR9) 1993; 47
Krizhevsky, Sutskever, Hinton (CR1) 2012; 25
CR19
CR18
CR17
CR16
CR15
CR14
CR13
CR12
CR11
Chlebus, Schenk, Moltz, van Ginneken, Hahn (CR5) 2018; 8
Brenner (CR7) 2007; 357
Pelt, Sethian (CR10) 2017; 115
Minnemaa (CR4) 2018; 103
Voulodimos, Doulamis, Doulamis, Protopapadakis (CR2) 2018
CR27
Broder (CR6) 2011
CR26
Costelloe (CR8) 2013; 4
CR25
CR24
CR23
CR22
CR21
CR20
Moen (CR3) 2019
K Harris (67544_CR9) 1993; 47
G Chlebus (67544_CR5) 2018; 8
67544_CR19
67544_CR17
E Moen (67544_CR3) 2019
67544_CR18
67544_CR22
67544_CR23
67544_CR20
67544_CR21
DM Pelt (67544_CR10) 2017; 115
67544_CR26
67544_CR27
67544_CR24
67544_CR25
J Minnemaa (67544_CR4) 2018; 103
J Broder (67544_CR6) 2011
J Brenner (67544_CR7) 2007; 357
67544_CR11
A Krizhevsky (67544_CR1) 2012; 25
67544_CR12
67544_CR15
67544_CR16
67544_CR13
67544_CR14
A Voulodimos (67544_CR2) 2018
CM Costelloe (67544_CR8) 2013; 4
References_xml – ident: CR22
– volume: 4
  start-page: 524
  issue: 7
  year: 2013
  end-page: 530
  ident: CR8
  article-title: Bone windows for distinguishing malignant from benign primary bone tumors on FDG PET/CT
  publication-title: J. Cancer
  doi: 10.7150/jca.6259
  contributor:
    fullname: Costelloe
– ident: CR18
– volume: 8
  start-page: 1
  year: 2018
  end-page: 17
  ident: CR5
  article-title: Automatic liver tumor segmentation in ct with fully convolutional neural networks and object-based postprocessing
  publication-title: Nat. Sci. Rep.
  doi: 10.1038/s41598-017-17765-5
  contributor:
    fullname: Hahn
– ident: CR14
– ident: CR16
– year: 2018
  ident: CR2
  article-title: Deep learning for computer vision: a brief review
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2018/7068349
  contributor:
    fullname: Protopapadakis
– ident: CR12
– volume: 25
  start-page: 1097
  year: 2012
  end-page: 1105
  ident: CR1
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: Hinton
– year: 2019
  ident: CR3
  article-title: Deep learning for cellular image analysis
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0403-1DO9
  contributor:
    fullname: Moen
– volume: 47
  start-page: 241
  year: 1993
  end-page: 244
  ident: CR9
  article-title: The effect on apparent size of simulated pulmonary nodules of using three standard CT window settings
  publication-title: Clin. Radiol.
  doi: 10.1016/S0009-9260(05)81130-4
  contributor:
    fullname: Harvey
– ident: CR25
– ident: CR27
– ident: CR23
– volume: 357
  start-page: 2277
  issue: 22
  year: 2007
  end-page: 2284
  ident: CR7
  article-title: Computed tomography—an increasing source of radiation exposure
  publication-title: N. Engl. J. Med.
  doi: 10.1056/nejmra072149
  contributor:
    fullname: Brenner
– ident: CR21
– ident: CR19
– volume: 115
  start-page: 254
  issue: 2
  year: 2017
  end-page: 259
  ident: CR10
  article-title: A mixed-scale dense convolutional neural network for image analysis
  publication-title: PNAS
  doi: 10.1073/pnas.1715832114
  contributor:
    fullname: Sethian
– ident: CR15
– year: 2011
  ident: CR6
  publication-title: Chapter 9—Imaging of Nontraumatic Abdominal Conditions
  contributor:
    fullname: Broder
– ident: CR17
– ident: CR13
– ident: CR11
– volume: 103
  start-page: 130
  year: 2018
  end-page: 139
  ident: CR4
  article-title: CT image segmentation of bone for medical additive manufacturing using a convolutional neural network
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.10.012
  contributor:
    fullname: Minnemaa
– ident: CR26
– ident: CR24
– ident: CR20
– ident: 67544_CR26
– ident: 67544_CR23
  doi: 10.1007/978-3-319-75238-9_38
– ident: 67544_CR18
– ident: 67544_CR16
– volume: 103
  start-page: 130
  year: 2018
  ident: 67544_CR4
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.10.012
  contributor:
    fullname: J Minnemaa
– ident: 67544_CR13
– year: 2018
  ident: 67544_CR2
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2018/7068349
  contributor:
    fullname: A Voulodimos
– ident: 67544_CR15
– volume: 8
  start-page: 1
  year: 2018
  ident: 67544_CR5
  publication-title: Nat. Sci. Rep.
  doi: 10.1038/s41598-017-17765-5
  contributor:
    fullname: G Chlebus
– ident: 67544_CR20
  doi: 10.1007/978-3-319-75541-0_12
– ident: 67544_CR11
  doi: 10.1007/978-3-658-25326-4_7
– year: 2019
  ident: 67544_CR3
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0403-1DO9
  contributor:
    fullname: E Moen
– volume: 115
  start-page: 254
  issue: 2
  year: 2017
  ident: 67544_CR10
  publication-title: PNAS
  doi: 10.1073/pnas.1715832114
  contributor:
    fullname: DM Pelt
– ident: 67544_CR22
– ident: 67544_CR27
– ident: 67544_CR12
  doi: 10.1007/978-3-319-46723-8_49
– volume: 4
  start-page: 524
  issue: 7
  year: 2013
  ident: 67544_CR8
  publication-title: J. Cancer
  doi: 10.7150/jca.6259
  contributor:
    fullname: CM Costelloe
– ident: 67544_CR19
– ident: 67544_CR17
– volume: 357
  start-page: 2277
  issue: 22
  year: 2007
  ident: 67544_CR7
  publication-title: N. Engl. J. Med.
  doi: 10.1056/nejmra072149
  contributor:
    fullname: J Brenner
– ident: 67544_CR14
– volume-title: Chapter 9—Imaging of Nontraumatic Abdominal Conditions
  year: 2011
  ident: 67544_CR6
  contributor:
    fullname: J Broder
– volume: 47
  start-page: 241
  year: 1993
  ident: 67544_CR9
  publication-title: Clin. Radiol.
  doi: 10.1016/S0009-9260(05)81130-4
  contributor:
    fullname: K Harris
– ident: 67544_CR21
  doi: 10.1007/978-3-319-75541-0_13
– ident: 67544_CR24
  doi: 10.1118/1.4948498
– ident: 67544_CR25
– volume: 25
  start-page: 1097
  year: 2012
  ident: 67544_CR1
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: A Krizhevsky
SSID ssj0000529419
Score 2.4138808
Snippet Machine learning has considerably improved medical image analysis in the past years. Although data-driven approaches are intrinsically adaptive and thus,...
SourceID pubmedcentral
proquest
crossref
pubmed
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 10712
SubjectTerms 631/114/1305
631/114/1564
692/700/1421
692/700/1421/1846
692/700/1421/2025
Automation
Computed tomography
Deep learning
Humanities and Social Sciences
Image processing
Learning algorithms
Machine learning
multidisciplinary
Neural networks
Science
Science (multidisciplinary)
Segmentation
Title Domain-specific cues improve robustness of deep learning-based segmentation of CT volumes
URI https://link.springer.com/article/10.1038/s41598-020-67544-y
https://www.ncbi.nlm.nih.gov/pubmed/32612129
https://www.proquest.com/docview/2419207208
https://search.proquest.com/docview/2419712299
https://pubmed.ncbi.nlm.nih.gov/PMC7329868
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-tSEO8TPuALcCQJ-0NTFPbjZ1HVEC8bJq0IsFTZDs2q7QmFWkf-t_v7CRdAe1lzz7Fzt3Zd-e7-xngK_Oej6wcUzQGmgopU2o0BiuWGwzG8tSXEbvz5qf8fqcurwJMzrjvhYlF-9bMzqvf8_Nq9ivWVi7mdtjXiQ1_fJtIznKVqeEABugbboXoLaA3y8Uo7xpkUq6GDRqp0EgWAqWA90bXe7DLI3ZW9Cy37NELJ_NlreSzhGm0Q9dv4U3nQJKLdqHv4JWr3sPr9knJ9Qe4v6znGOzT0EEZqoCIxYnILF4dOPJYm1WzDKcbqT0pnVuQ7tmIBxrsWUka9zDv2pGqQDOZkvYAa_bh9vpqOrmh3fMJ1AopllSMU2YyZEautRAuSz3PRjpXXAtmAmx-8JdKXeYYBFuHh6KXOnXOjY3SygrFD2Cnqiv3CQjnghvvMyGtFMZzVaIXiLGaKbX2SJ_Aac_EYtGiZBQxu81V0XK_QO4XkfvFOoHjns9Ft2OagoV0dCpZih_7shlGXQ8JDF25etXSyBFDC5rAx1Ysm-l6eSYgnwhsQxBwtJ-OoHpFPO1OnRI460X7d1n__ovD_57oCPZYUMZY9HsMO8vHlfsMg6ZcncQrgZOo0H8A2FX4vw
link.rule.ids 230,315,729,782,786,866,887,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB7RIqAX3o-lBYzEDdw4trP2Hqu0VRBthUSQ4GTZXrtEIrtRNznk32N7d0Mf6qVnj9aPz_bM7Mx8BvhEvWdDK0Y4KAONuRAEGx2cFctMcMYK4svE3Tn5Ic5-ycOjSJMz6mthUtK-NbP96u98v5r9SbmVi7kd9Hlig--nY8FoIXM52IL74bwScslJbym9acGHRVciQ5gcNEFNxVKy6CpFxje83oGHLLFnJdvykka6YWbezJa8FjJNmuj4yR3n8BQed6YnOmibn8E9Vz2HB-1jlOsX8PuwnutZhWPtZcwfQjYMEM3STweHLmqzapbxXkS1R6VzC9Q9OHGOoyYsUePO510hUxVlxlPUXn3NS_h5fDQdT3D38AK2XPAl5iNCTR4WsdCac5cTz_KhLiTTnJpIuB8trVKXRXCfrQvXqReaOOdGRmppuWSvYLuqK_cGEGOcGe9zLqzgxjNZBvsxeHmm1NoH-Qw-94uvFi2_hkpxcSZVi5oKqKmEmlpnsNfjo7qz1igaA9lEUBI-9nHTHE5JDH3oytWrVkYMadC9Gbxu4dx01--DDMQVoDcCkYH7aksANTFxdyBm8KXfEv-Hdfss3t65ow_waDI9PVEnX8--7cIOjRs6pQ7vwfbyYuXewVZTrt6n4_APx48NbA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIqpeeBcCBYzEDdJ4bW_sHNFuV0VAVYkiwcnys6zEJqtm97D_HttJlpaKC5wziu18Hs9MZuYzwBviPR0ZPs6DMVA54xznWoVgxVAdgrEKe5u4O0--8NNvYnocaXK2V32lon2j50f1z8VRPf-RaiuXC1MMdWLF2ecJp6QSpSiW1hc7cDvoLCZXAvWO1ptUbFT1bTKYiqINpiq2k8VwKbK-5Zt92KOJQSv5l1es0g1X82bF5B9p02SNZvf-Yx334W7vgqL3ncgDuOXqh3Cnu5Ry8wi-T5uFmtd57MGMdUTIhEmiefr54NBlo9ftKp6PqPHIOrdE_cUTF3m0iBa17mLRNzTVUWZyjrojsH0MX2fH55OTvL-AITeMs1XOxpjoMnzISinGXIk9LUeqElQxoiPxfvS4rLJVCKONC8eq5wo758ZaKGGYoAewWze1ewqIUka19yXjhjPtqbDBjwzRnrZK-SCfwdsBALnseDZkyo9TITvkZEBOJuTkJoPDASPZ61wrSUxoY05weNnr7eOgLTEFomrXrDsZPiLBBmfwpIN0O9ywFzLg18DeCkQm7utPArCJkbsHMoN3w7b4Pa2_r-LZPw_0CvbOpjP56cPpx-ewT-KeThXEh7C7uly7F7DT2vXLpBG_AE0SD-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Domain-specific+cues+improve+robustness+of+deep+learning-based+segmentation+of+CT+volumes&rft.jtitle=Scientific+reports&rft.au=Kloenne%2C+Marie&rft.au=Niehaus%2C+Sebastian&rft.au=Lampe%2C+Leonie&rft.au=Merola%2C+Alberto&rft.date=2020-07-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-020-67544-y&rft.externalDocID=10_1038_s41598_020_67544_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon