Maximum power point estimation and tracking using power converter input resistance control

•MPP identification of a PV module is presented utilizing the Lambert W-Function.•Boost converter operating point control is presented for input resistance control.•Resistive behavior of boost converter is utilized to track the MPP of a PV module.•The performance of the controller has been verified...

Full description

Saved in:
Bibliographic Details
Published in:Solar energy Vol. 96; pp. 177 - 186
Main Authors: Roshan, Yaser M., Moallem, M.
Format: Journal Article
Language:English
Published: Kidlington Elsevier Ltd 01-10-2013
Elsevier
Pergamon Press Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •MPP identification of a PV module is presented utilizing the Lambert W-Function.•Boost converter operating point control is presented for input resistance control.•Resistive behavior of boost converter is utilized to track the MPP of a PV module.•The performance of the controller has been verified in terms of accuracy and speed. In this paper, the idea of controlling the input resistance of a switching power converter is proposed to track the maximum power point of a photovoltaic (PV) module. To this end, an inversion-based control technique is presented based on the nonlinear input resistance model of a boost converter operating in the discontinuous conduction mode. A method is also presented to estimate the resistance of the PV module at the maximum power point by means of the Lambert W-Function. Furthermore, the resistance information is utilized to control the input resistance of the converter for achieving maximum power transfer. Simulation and experimental results indicate that the PV system, working under the proposed controller, can successfully track different maximum power points under rapidly changing irradiance and load conditions.
AbstractList In this paper, the idea of controlling the input resistance of a switching power converter is proposed to track the maximum power point of a photovoltaic (PV) module. To this end, an inversion-based control technique is presented based on the nonlinear input resistance model of a boost converter operating in the discontinuous conduction mode. A method is also presented to estimate the resistance of the PV module at the maximum power point by means of the Lambert W-Function. Furthermore, the resistance information is utilized to control the input resistance of the converter for achieving maximum power transfer. Simulation and experimental results indicate that the PV system, working under the proposed controller, can successfully track different maximum power points under rapidly changing irradiance and load conditions. [PUBLICATION ABSTRACT]
•MPP identification of a PV module is presented utilizing the Lambert W-Function.•Boost converter operating point control is presented for input resistance control.•Resistive behavior of boost converter is utilized to track the MPP of a PV module.•The performance of the controller has been verified in terms of accuracy and speed. In this paper, the idea of controlling the input resistance of a switching power converter is proposed to track the maximum power point of a photovoltaic (PV) module. To this end, an inversion-based control technique is presented based on the nonlinear input resistance model of a boost converter operating in the discontinuous conduction mode. A method is also presented to estimate the resistance of the PV module at the maximum power point by means of the Lambert W-Function. Furthermore, the resistance information is utilized to control the input resistance of the converter for achieving maximum power transfer. Simulation and experimental results indicate that the PV system, working under the proposed controller, can successfully track different maximum power points under rapidly changing irradiance and load conditions.
In this paper, the idea of controlling the input resistance of a switching power converter is proposed to track the maximum power point of a photovoltaic (PV) module. To this end, an inversion-based control technique is presented based on the nonlinear input resistance model of a boost converter operating in the discontinuous conduction mode. A method is also presented to estimate the resistance of the PV module at the maximum power point by means of the Lambert W-Function. Furthermore, the resistance information is utilized to control the input resistance of the converter for achieving maximum power transfer. Simulation and experimental results indicate that the PV system, working under the proposed controller, can successfully track different maximum power points under rapidly changing irradiance and load conditions.
Author Roshan, Yaser M.
Moallem, M.
Author_xml – sequence: 1
  givenname: Yaser M.
  surname: Roshan
  fullname: Roshan, Yaser M.
  email: yaserm@sfu.ca
– sequence: 2
  givenname: M.
  surname: Moallem
  fullname: Moallem, M.
  email: mmoallem@sfu.ca
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27745476$$DView record in Pascal Francis
BookMark eNqFkU2L1TAUhoOM4J3RnyAURHDTepK0SbsSGfwYGHGjIG5Cmp5Krr3JNUlH_feeci8uZjObk8B5ztf7XrKLEAMy9pxDw4Gr1_smxwUDpkYAlw3oBgQ8Yjveal5z0ekLtgOQfQ2D-PaEXea8B-Ca93rHvn-yf_xhPVTH-BsTRR9Khbn4gy0-hsqGqSrJup8-_KjWvMUT6WK4w1To58NxLVXC7HOxweGWKikuT9nj2S4Zn53fK_b1_bsv1x_r288fbq7f3tau1W2phVR2HDSME7iZDsBhcKOwUqhhpIScOgIUwjSNAlFNuudC6n4QUvK5HZS8Yq9OfY8p_lppd3Pw2eGy2IBxzYZ30MkOFMUH0Va1XdsL3hP64h66j2sKdAhRUvSq5S0Q1Z0ol2LOCWdzTCRd-ms4mM0cszdnc8xmjgFtyByqe3nubrOzy5xIOJ__FwutaQ-93fbmxCEJeOepS3YeSeTJJ3TFTNE_MOkfoKGpyQ
CODEN SRENA4
CitedBy_id crossref_primary_10_1016_j_esd_2017_01_003
crossref_primary_10_1080_15325008_2019_1630693
crossref_primary_10_3390_app6050130
crossref_primary_10_1016_j_solener_2014_01_042
crossref_primary_10_1016_j_solener_2013_09_025
crossref_primary_10_1016_j_solener_2014_03_031
crossref_primary_10_1080_01430750_2019_1566176
crossref_primary_10_1016_j_rser_2016_07_034
crossref_primary_10_1016_j_solener_2015_04_022
crossref_primary_10_1109_TPEL_2014_2357333
crossref_primary_10_1016_j_enconman_2015_09_055
crossref_primary_10_1088_1361_665X_aad711
crossref_primary_10_1049_iet_pel_2016_0616
crossref_primary_10_1016_j_solener_2016_11_017
crossref_primary_10_1016_j_ifacol_2016_07_201
crossref_primary_10_1155_2018_3420649
Cites_doi 10.1016/j.solmat.2007.05.021
10.1109/TPEL.2010.2090903
10.1109/TIE.2008.920550
10.1016/j.renene.2011.11.037
10.1109/TIE.2010.2064275
10.1016/j.renene.2007.08.015
10.1109/TEC.2006.874230
10.1049/ip-epa:19990116
10.1016/j.solener.2012.05.006
10.1109/TPEL.2010.2078519
10.1109/TPEL.2011.2157707
10.1016/j.renene.2006.08.004
10.1016/j.renene.2009.10.018
10.1109/TEC.2010.2041551
10.1049/iet-rpg.2009.0006
10.1016/j.solener.2012.11.017
10.1016/j.solener.2003.08.038
10.1016/j.solener.2009.10.011
10.1109/TPEL.2011.2161775
10.1109/TEC.2011.2159268
10.1109/PVSC.2011.6186310
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2014 INIST-CNRS
Copyright Pergamon Press Inc. Oct 2013
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2014 INIST-CNRS
– notice: Copyright Pergamon Press Inc. Oct 2013
DBID IQODW
AAYXX
CITATION
7SP
7ST
8FD
C1K
FR3
KR7
L7M
SOI
7TG
KL.
DOI 10.1016/j.solener.2013.07.020
DatabaseName Pascal-Francis
CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Civil Engineering Abstracts

Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1471-1257
Editor Stefanakos, EK
Editor_xml – fullname: Stefanakos, EK
EndPage 186
ExternalDocumentID 3072929731
10_1016_j_solener_2013_07_020
27745476
S0038092X13002855
Genre Feature
GroupedDBID --K
--M
-ET
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABTAH
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACGOD
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
AZFZN
BELTK
BKOJK
BKOMP
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JARJE
KOM
LY6
M41
MAGPM
MO0
N9A
NEJ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SAC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSM
SSR
SSZ
T5K
TAE
TN5
UKR
VOH
WH7
WUQ
XOL
XPP
YNT
ZMT
ZY4
~02
~A~
~G-
~KM
~S-
08R
8W4
AALMO
ABFLS
ABPIF
ABPTK
ADALY
IPNFZ
IQODW
PQEST
TAF
AAXKI
AAYXX
ABDPE
AFJKZ
AKRWK
CITATION
7SP
7ST
8FD
C1K
FR3
KR7
L7M
SOI
7TG
KL.
ID FETCH-LOGICAL-c474t-236ab970bd0cf201e99cb2a3269bab93d536a6e0ddb2ee6d781237892331f4963
ISSN 0038-092X
IngestDate Fri Oct 25 00:32:30 EDT 2024
Fri Oct 25 09:31:09 EDT 2024
Thu Oct 10 19:12:36 EDT 2024
Fri Nov 22 00:37:11 EST 2024
Fri Nov 25 13:52:51 EST 2022
Fri Feb 23 02:18:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lambert W-Function
Photovoltaic module
Boost converter
Maximum power point tracking
Power converter
Up converter
Control system
Power transmission
Photovoltaic system
Inversion
Power electronics
Switching convertors
Irradiance
Experimental study
Discontinuous mode
Non linear model
Electric power
Optimal operation
Photovoltaic array
System simulation
Power input
Energy transfer
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c474t-236ab970bd0cf201e99cb2a3269bab93d536a6e0ddb2ee6d781237892331f4963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1432864140
PQPubID 23462
PageCount 10
ParticipantIDs proquest_miscellaneous_1505350605
proquest_miscellaneous_1464548218
proquest_journals_1432864140
crossref_primary_10_1016_j_solener_2013_07_020
pascalfrancis_primary_27745476
elsevier_sciencedirect_doi_10_1016_j_solener_2013_07_020
PublicationCentury 2000
PublicationDate 2013-10-01
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: New York
PublicationTitle Solar energy
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Pergamon Press Inc
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
– name: Pergamon Press Inc
References Yu, Jung, Choi, Kim (b0125) 2004
Mei, Shan, Liu, Guerrero (b0085) 2011; 58
Erickson (b0045) 1997
Tafticht, Agbossou, Doumbia, Cheritin (b0110) 2008
Gow, Manning (b0060) 1999; 146
Liu, Liu, Huang, Chen (b0080) 2013
Roshan, Y.M., Moallem, M., 2011. Maximum power point tracking control using resistive input behavior of the power converter. In: IEEE Photovoltaic Specialists Conf., Seattle, USA.
Sabzehgar, Moallem (b0105) 2012; 99
Zhou, Chen, Guo, Jia (b0130) 2011; 26
Alajmi, Ahmed, Finney, Williams (b0010) 2011; 26
Esram, Chapman (b0050) 2007; 22
Toledo, Blanes, Garrigos, Martinez (b0115) 2012
Abete, A., Scapino, F., Spertino, F., Tommasini, R., 2000. Aging effect on the performance of A-SI photovoltaic modules in a grid connected system: experimental data and simulation results. IN: IEEE Photovoltaic Specialists Conference, Anchorage, USA.
Petrone, Spagnoulo, Vitelli (b0090) 2007; 91
Enrique, Andujar, Bohorquez (b0040) 2010
Chatterjee, Keyhani, Kapoor (b0025) 2011; 26
Kulaksiz, Akkaya (b0065) 2012
Lin, Hong, Chen (b0070) 2011; 26
Chun, Kwasinski (b0035) 2011; 26
Castaner, Silvestre (b0020) 2002
Garrigos, Blanes, Carrasco, Ejea (b0055) 2007
Xiao, W., Dunford, W.G., 2004. A modified adaptive hill climbing MPPT method for photovoltaic power systems. In: IEEE Power Electronics Specialists Conf., Aachen, Germany.
Piegari, Rizzo (b0095) 2010; 4
Chiu (b0030) 2010; 25
Armstrong, Hurley (b0015) 2010
Liu, Duan, Liu, Lie, Kang (b0075) 2008; 55
Enrique (10.1016/j.solener.2013.07.020_b0040) 2010
Castaner (10.1016/j.solener.2013.07.020_b0020) 2002
Chatterjee (10.1016/j.solener.2013.07.020_b0025) 2011; 26
Gow (10.1016/j.solener.2013.07.020_b0060) 1999; 146
Mei (10.1016/j.solener.2013.07.020_b0085) 2011; 58
Armstrong (10.1016/j.solener.2013.07.020_b0015) 2010
Lin (10.1016/j.solener.2013.07.020_b0070) 2011; 26
Liu (10.1016/j.solener.2013.07.020_b0080) 2013
10.1016/j.solener.2013.07.020_b0120
Chun (10.1016/j.solener.2013.07.020_b0035) 2011; 26
Toledo (10.1016/j.solener.2013.07.020_b0115) 2012
Yu (10.1016/j.solener.2013.07.020_b0125) 2004
Petrone (10.1016/j.solener.2013.07.020_b0090) 2007; 91
Alajmi (10.1016/j.solener.2013.07.020_b0010) 2011; 26
Chiu (10.1016/j.solener.2013.07.020_b0030) 2010; 25
Sabzehgar (10.1016/j.solener.2013.07.020_b0105) 2012; 99
Esram (10.1016/j.solener.2013.07.020_b0050) 2007; 22
Liu (10.1016/j.solener.2013.07.020_b0075) 2008; 55
Garrigos (10.1016/j.solener.2013.07.020_b0055) 2007
Tafticht (10.1016/j.solener.2013.07.020_b0110) 2008
Piegari (10.1016/j.solener.2013.07.020_b0095) 2010; 4
Zhou (10.1016/j.solener.2013.07.020_b0130) 2011; 26
Erickson (10.1016/j.solener.2013.07.020_b0045) 1997
10.1016/j.solener.2013.07.020_b0100
10.1016/j.solener.2013.07.020_b0005
Kulaksiz (10.1016/j.solener.2013.07.020_b0065) 2012
References_xml – volume: 26
  start-page: 3730
  year: 2011
  end-page: 3743
  ident: b0035
  article-title: Analysis of classical root-finding methods applied to digital maximum power point tracking for sustainable photovoltaic energy generation
  publication-title: Power Electron. IEEE Trans.
  contributor:
    fullname: Kwasinski
– start-page: 83
  year: 2012
  end-page: 89
  ident: b0115
  article-title: Analytical resolution of the electrical four-parameters model of a photovoltaic module using small perturbation around the operating point
  publication-title: Renew. Energy
  contributor:
    fullname: Martinez
– start-page: 2366
  year: 2012
  end-page: 2375
  ident: b0065
  article-title: A genetic algorithm optimized ANN-based MPPT algorithm for a stand-alone PV system with induction motor drive
  publication-title: Sol. Energy
  contributor:
    fullname: Akkaya
– start-page: 42
  year: 2013
  end-page: 53
  ident: b0080
  article-title: Neural-network-based maximum power point tracking methods for photovoltaic systems operating under fast changing environments
  publication-title: Sol. Energy
  contributor:
    fullname: Chen
– start-page: 780
  year: 2010
  end-page: 787
  ident: b0015
  article-title: A new methodology to optimize solar energy extraction under cloudy conditions
  publication-title: Renew. Energy
  contributor:
    fullname: Hurley
– volume: 91
  start-page: 1652
  year: 2007
  end-page: 1657
  ident: b0090
  article-title: Analytical model of mismatched photovoltaic fields by means of Lambert W-function
  publication-title: Sol. Energy Mater. Sol. Cells
  contributor:
    fullname: Vitelli
– year: 2002
  ident: b0020
  article-title: Modeling Photovoltaic Systems Using PSpice
  contributor:
    fullname: Silvestre
– volume: 26
  start-page: 3571
  year: 2011
  end-page: 3581
  ident: b0070
  article-title: Neural-Network-Based MPPT control of a stand-alone hybrid power generation system
  publication-title: Power Electron. IEEE Trans.
  contributor:
    fullname: Chen
– volume: 99
  year: 2012
  ident: b0105
  article-title: A boost-type power converter for energy-regenerative damping
  publication-title: Mechatronics IEEE/ASME Trans.
  contributor:
    fullname: Moallem
– volume: 55
  start-page: 2622
  year: 2008
  end-page: 2628
  ident: b0075
  article-title: A variable step size INC MPPT method for PV systems
  publication-title: Ind. Electron. IEEE Trans.
  contributor:
    fullname: Kang
– volume: 4
  start-page: 317
  year: 2010
  end-page: 328
  ident: b0095
  article-title: Adaptive perturb and observe algorithm for photovoltaic maximum power point tracking
  publication-title: Renew. Power Gener. IET
  contributor:
    fullname: Rizzo
– start-page: 79
  year: 2010
  end-page: 89
  ident: b0040
  article-title: A reliable, fast and low cost maximum power point tracker for photovoltaic applications
  publication-title: Sol. Energy
  contributor:
    fullname: Bohorquez
– start-page: 1508
  year: 2008
  end-page: 1516
  ident: b0110
  article-title: An improved maximum power point tracking method for photovoltaic systems
  publication-title: Renew. Energy
  contributor:
    fullname: Cheritin
– volume: 26
  start-page: 1038
  year: 2011
  end-page: 1048
  ident: b0130
  article-title: New approach for MPP control of photovoltaic system with mutative-scale dual-carrier chaotic search
  publication-title: Power Electron. IEEE Trans.
  contributor:
    fullname: Jia
– start-page: 455
  year: 2004
  end-page: 463
  ident: b0125
  article-title: A novel two-mode MPPT control algorithm based on comparative study of existing algorithms
  publication-title: Sol. Energy
  contributor:
    fullname: Kim
– year: 1997
  ident: b0045
  article-title: Fundamentals of Power Electronics
  contributor:
    fullname: Erickson
– volume: 26
  start-page: 1022
  year: 2011
  end-page: 1030
  ident: b0010
  article-title: Fuzzy-Logic-Control approach of a modified hill-climbing method for maximum power point in microgrid standalone photovoltaic system
  publication-title: Power Electron. IEEE Trans.
  contributor:
    fullname: Williams
– volume: 26
  start-page: 883
  year: 2011
  end-page: 889
  ident: b0025
  article-title: Identification of photovoltaic source models
  publication-title: Energy Convers. IEEE Trans.
  contributor:
    fullname: Kapoor
– volume: 22
  start-page: 66
  year: 2007
  end-page: 75
  ident: b0050
  article-title: Comparison of photovoltaic array maximum power point tracking techniques
  publication-title: Energy Convers. IEEE Trans.
  contributor:
    fullname: Chapman
– volume: 25
  start-page: 1123
  year: 2010
  end-page: 1132
  ident: b0030
  article-title: T–S fuzzy maximum power point tracking control of solar power generation systems
  publication-title: Energy Convers. IEEE Trans.
  contributor:
    fullname: Chiu
– volume: 146
  start-page: 193
  year: 1999
  end-page: 200
  ident: b0060
  article-title: Development of a photovoltaic array model for use in power-electronics simulation studies
  publication-title: Proc. IEE Electric Power Appl.
  contributor:
    fullname: Manning
– start-page: 1059
  year: 2007
  end-page: 1076
  ident: b0055
  article-title: Real time estimation of photovoltaic modules characteristics and its application to maximum power point operation
  publication-title: Renew. Energy
  contributor:
    fullname: Ejea
– volume: 58
  start-page: 2427
  year: 2011
  end-page: 2434
  ident: b0085
  article-title: A novel improved variable step-size incremental-resistance MPPT method for PV systems
  publication-title: Ind. Electron. IEEE Trans.
  contributor:
    fullname: Guerrero
– volume: 91
  start-page: 1652
  issue: 18
  year: 2007
  ident: 10.1016/j.solener.2013.07.020_b0090
  article-title: Analytical model of mismatched photovoltaic fields by means of Lambert W-function
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2007.05.021
  contributor:
    fullname: Petrone
– volume: 26
  start-page: 1022
  issue: 4
  year: 2011
  ident: 10.1016/j.solener.2013.07.020_b0010
  article-title: Fuzzy-Logic-Control approach of a modified hill-climbing method for maximum power point in microgrid standalone photovoltaic system
  publication-title: Power Electron. IEEE Trans.
  doi: 10.1109/TPEL.2010.2090903
  contributor:
    fullname: Alajmi
– volume: 55
  start-page: 2622
  issue: 7
  year: 2008
  ident: 10.1016/j.solener.2013.07.020_b0075
  article-title: A variable step size INC MPPT method for PV systems
  publication-title: Ind. Electron. IEEE Trans.
  doi: 10.1109/TIE.2008.920550
  contributor:
    fullname: Liu
– start-page: 83
  issue: 43
  year: 2012
  ident: 10.1016/j.solener.2013.07.020_b0115
  article-title: Analytical resolution of the electrical four-parameters model of a photovoltaic module using small perturbation around the operating point
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2011.11.037
  contributor:
    fullname: Toledo
– volume: 58
  start-page: 2427
  issue: 6
  year: 2011
  ident: 10.1016/j.solener.2013.07.020_b0085
  article-title: A novel improved variable step-size incremental-resistance MPPT method for PV systems
  publication-title: Ind. Electron. IEEE Trans.
  doi: 10.1109/TIE.2010.2064275
  contributor:
    fullname: Mei
– start-page: 1508
  issue: 33
  year: 2008
  ident: 10.1016/j.solener.2013.07.020_b0110
  article-title: An improved maximum power point tracking method for photovoltaic systems
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2007.08.015
  contributor:
    fullname: Tafticht
– volume: 22
  start-page: 66
  issue: 2
  year: 2007
  ident: 10.1016/j.solener.2013.07.020_b0050
  article-title: Comparison of photovoltaic array maximum power point tracking techniques
  publication-title: Energy Convers. IEEE Trans.
  doi: 10.1109/TEC.2006.874230
  contributor:
    fullname: Esram
– volume: 146
  start-page: 193
  issue: 2
  year: 1999
  ident: 10.1016/j.solener.2013.07.020_b0060
  article-title: Development of a photovoltaic array model for use in power-electronics simulation studies
  publication-title: Proc. IEE Electric Power Appl.
  doi: 10.1049/ip-epa:19990116
  contributor:
    fullname: Gow
– start-page: 2366
  issue: 86
  year: 2012
  ident: 10.1016/j.solener.2013.07.020_b0065
  article-title: A genetic algorithm optimized ANN-based MPPT algorithm for a stand-alone PV system with induction motor drive
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2012.05.006
  contributor:
    fullname: Kulaksiz
– volume: 26
  start-page: 1038
  issue: 4
  year: 2011
  ident: 10.1016/j.solener.2013.07.020_b0130
  article-title: New approach for MPP control of photovoltaic system with mutative-scale dual-carrier chaotic search
  publication-title: Power Electron. IEEE Trans.
  doi: 10.1109/TPEL.2010.2078519
  contributor:
    fullname: Zhou
– volume: 26
  start-page: 3730
  issue: 12
  year: 2011
  ident: 10.1016/j.solener.2013.07.020_b0035
  article-title: Analysis of classical root-finding methods applied to digital maximum power point tracking for sustainable photovoltaic energy generation
  publication-title: Power Electron. IEEE Trans.
  doi: 10.1109/TPEL.2011.2157707
  contributor:
    fullname: Chun
– year: 1997
  ident: 10.1016/j.solener.2013.07.020_b0045
  contributor:
    fullname: Erickson
– start-page: 1059
  issue: 32
  year: 2007
  ident: 10.1016/j.solener.2013.07.020_b0055
  article-title: Real time estimation of photovoltaic modules characteristics and its application to maximum power point operation
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2006.08.004
  contributor:
    fullname: Garrigos
– ident: 10.1016/j.solener.2013.07.020_b0005
– start-page: 780
  issue: 35
  year: 2010
  ident: 10.1016/j.solener.2013.07.020_b0015
  article-title: A new methodology to optimize solar energy extraction under cloudy conditions
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2009.10.018
  contributor:
    fullname: Armstrong
– volume: 25
  start-page: 1123
  issue: 4
  year: 2010
  ident: 10.1016/j.solener.2013.07.020_b0030
  article-title: T–S fuzzy maximum power point tracking control of solar power generation systems
  publication-title: Energy Convers. IEEE Trans.
  doi: 10.1109/TEC.2010.2041551
  contributor:
    fullname: Chiu
– volume: 4
  start-page: 317
  issue: 4
  year: 2010
  ident: 10.1016/j.solener.2013.07.020_b0095
  article-title: Adaptive perturb and observe algorithm for photovoltaic maximum power point tracking
  publication-title: Renew. Power Gener. IET
  doi: 10.1049/iet-rpg.2009.0006
  contributor:
    fullname: Piegari
– start-page: 42
  issue: 89
  year: 2013
  ident: 10.1016/j.solener.2013.07.020_b0080
  article-title: Neural-network-based maximum power point tracking methods for photovoltaic systems operating under fast changing environments
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2012.11.017
  contributor:
    fullname: Liu
– start-page: 455
  issue: 76
  year: 2004
  ident: 10.1016/j.solener.2013.07.020_b0125
  article-title: A novel two-mode MPPT control algorithm based on comparative study of existing algorithms
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2003.08.038
  contributor:
    fullname: Yu
– start-page: 79
  issue: 84
  year: 2010
  ident: 10.1016/j.solener.2013.07.020_b0040
  article-title: A reliable, fast and low cost maximum power point tracker for photovoltaic applications
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2009.10.011
  contributor:
    fullname: Enrique
– volume: 26
  start-page: 3571
  issue: 12
  year: 2011
  ident: 10.1016/j.solener.2013.07.020_b0070
  article-title: Neural-Network-Based MPPT control of a stand-alone hybrid power generation system
  publication-title: Power Electron. IEEE Trans.
  doi: 10.1109/TPEL.2011.2161775
  contributor:
    fullname: Lin
– ident: 10.1016/j.solener.2013.07.020_b0120
– volume: 26
  start-page: 883
  issue: 3
  year: 2011
  ident: 10.1016/j.solener.2013.07.020_b0025
  article-title: Identification of photovoltaic source models
  publication-title: Energy Convers. IEEE Trans.
  doi: 10.1109/TEC.2011.2159268
  contributor:
    fullname: Chatterjee
– volume: 99
  year: 2012
  ident: 10.1016/j.solener.2013.07.020_b0105
  article-title: A boost-type power converter for energy-regenerative damping
  publication-title: Mechatronics IEEE/ASME Trans.
  contributor:
    fullname: Sabzehgar
– ident: 10.1016/j.solener.2013.07.020_b0100
  doi: 10.1109/PVSC.2011.6186310
– year: 2002
  ident: 10.1016/j.solener.2013.07.020_b0020
  contributor:
    fullname: Castaner
SSID ssj0017187
Score 2.2473907
Snippet •MPP identification of a PV module is presented utilizing the Lambert W-Function.•Boost converter operating point control is presented for input resistance...
In this paper, the idea of controlling the input resistance of a switching power converter is proposed to track the maximum power point of a photovoltaic (PV)...
SourceID proquest
crossref
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 177
SubjectTerms Applied sciences
Boost converter
Conductivity
Controllers
Convertors
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical machines
Electrical power engineering
Energy
Exact sciences and technology
Lambert W-Function
Mathematical functions
Maximum power point tracking
Natural energy
Photoelectric conversion
Photovoltaic cells
Photovoltaic conversion
Photovoltaic module
Power electronics, power supplies
Simulation
Solar cells. Photoelectrochemical cells
Solar energy
Switching
Transformers
Title Maximum power point estimation and tracking using power converter input resistance control
URI https://dx.doi.org/10.1016/j.solener.2013.07.020
https://www.proquest.com/docview/1432864140
https://search.proquest.com/docview/1464548218
https://search.proquest.com/docview/1505350605
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZNcmkppU-yaRpU6M14K8u2ZB9DuyUtpJdNIe3FWLZMNxDvsl5Df35mJNlySd_Qi1hseS1rPs1LoxlCXgFoGpHXTQjwqcNElzzMFQa6ikRVGdcgxNHfcbaUHy-zt4tk4cul-mv_ldJwDWiNJ2f_gtrjn8IF-A00hxaoDu0f0f28_La67q-DDZY_g3bV7gLMpGGPKNqAyW1ZoYc86I2jwPY04ecY3xms2k2_C8AMR9US170LZ5_qsUu0iANtDg76PZvuq3WnfgbRuA3O5yM111ixxTpf51M_Q-Qj1pzzazgA46ONDEONMXrCVEQHcWJ5KMi7EPQmOWWy-ZRLRq5yixW4kc2FfYuXW7fC1bzDAAWNuVuj2CRa5cwLrzGkcIlDwZHg_hzP0nSPHHBgPsD7Dk7fLy4_jHtLII1tJlU3dH-u6_UPX_YzjeX-puxgHTW2AMotWW4UlIuH5IGzLOiphcQjcke3j8m9Sb7JJ-SLAwc1JKcGHNSDgwI46AAOasDheo7goAYc1IODOnA8JZ_eLS7enIWuuEZYJTLZhTwWpcolUzWrGvhaneeV4iVo87mCG3GdQgehWV0rrrWoJWiCsczAHoijJgG2_Yzst-tWHxIaN5IxlamkjEHuiiir0AyWolJaqoqVMzIfJrDY2BwqxRBceFW4GS9wxgsmC5jxGcmGaS6cImgVvAKw8btHT74jy_hCDnZOmkgxI8cDnQq3bDuwf2OeiSRK4PmX421gtLh7VrZ63WMfTH6XgUr8iz4ppktigqVH__4Jz8ldv_6Oyf5u2-sXZK-r-xMH5Ru5VLIJ
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximum+power+point+estimation+and+tracking+using+power+converter+input+resistance+control&rft.jtitle=Solar+energy&rft.au=Roshan%2C+Yaser+M.&rft.au=Moallem%2C+M.&rft.date=2013-10-01&rft.pub=Elsevier+Ltd&rft.issn=0038-092X&rft.eissn=1471-1257&rft.volume=96&rft.spage=177&rft.epage=186&rft_id=info:doi/10.1016%2Fj.solener.2013.07.020&rft.externalDocID=S0038092X13002855
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon