Pancreas-derived DPP4 is not essential for glucose homeostasis under metabolic stress
Mice systemically lacking dipeptidyl peptidase-4 (DPP4) have improved islet health, glucoregulation, and reduced obesity with high-fat diet (HFD) feeding compared to wild-type mice. Some, but not all, of this improvement can be linked to the loss of DPP4 in endothelial cells (ECs), pointing to the c...
Saved in:
Published in: | iScience Vol. 26; no. 5; p. 106748 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Elsevier Inc
19-05-2023
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mice systemically lacking dipeptidyl peptidase-4 (DPP4) have improved islet health, glucoregulation, and reduced obesity with high-fat diet (HFD) feeding compared to wild-type mice. Some, but not all, of this improvement can be linked to the loss of DPP4 in endothelial cells (ECs), pointing to the contribution of non-EC types. The importance of intra-islet signaling mediated by α to β cell communication is becoming increasingly clear; thus, our objective was to determine if β cell DPP4 regulates insulin secretion and glucose tolerance in HFD-fed mice by regulating the local concentrations of insulinotropic peptides. Using β cell double incretin receptor knockout mice, β cell- and pancreas-specific Dpp4−/− mice, we reveal that β cell incretin receptors are necessary for DPP4 inhibitor effects. However, although β cell DPP4 modestly contributes to high glucose (16.7 mM)-stimulated insulin secretion in isolated islets, it does not regulate whole-body glucose homeostasis.
[Display omitted]
•β cell incretin receptors are required for DPP4i-mediated glucose lowering•Dpp4β-cell−/− increases glucose-stimulated (16.7 mM) insulin secretion in isolated islets•Glucose tolerance is not improved in HFD-fed Dpp4β-cell−/− or Dpp4Pan−/− mice•Insulin secretion is unchanged in HFD-fed Dpp4β-cell−/− or Dpp4Pan−/− mice
Biological sciences; Physiology; Molecular biology; Cell biology |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally Lead contact |
ISSN: | 2589-0042 2589-0042 |
DOI: | 10.1016/j.isci.2023.106748 |