Evaluation of the Infill Design on the Tensile Response of 3D Printed Polylactic Acid Polymer

The current study explores the effects of geometrical shapes of the infills on the 3D printed polylactic acid (PLA) plastic on the tensile properties. For this purpose, by utilizing an accessible supply desktop printer, specimens of diamond, rectangular, and hexagonal infill patterns were produced u...

Full description

Saved in:
Bibliographic Details
Published in:Materials Vol. 14; no. 9; p. 2195
Main Authors: Harpool, Tanner David, Alarifi, Ibrahim Mohammed, Alshammari, Basheer A, Aabid, Abdul, Baig, Muneer, Malik, Rizwan Ahmed, Mohamed Sayed, Ahmed, Asmatulu, Ramazan, El-Bagory, Tarek Mohamed Ahmed Ali
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 25-04-2021
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The current study explores the effects of geometrical shapes of the infills on the 3D printed polylactic acid (PLA) plastic on the tensile properties. For this purpose, by utilizing an accessible supply desktop printer, specimens of diamond, rectangular, and hexagonal infill patterns were produced using the fused filament fabrication (FFF) 3D printing technique. Additionally, solid samples were printed for comparison. The printed tensile test specimens were conducted at environmental temperature, Ta of 23 °C and crosshead speed, V of 5 mm/min. Mainly, this study focuses on investigating the percentage infill with respect to the cross-sectional area of the investigated samples. The mechanical properties, i.e., modulus of toughness, ultimate tensile stress, yield stress, and percent elongation, were explored for each sample having a different geometrical infill design. The test outcomes for each pattern were systematically compared. To further validate the experimental results, a computer simulation using finite element analysis was also performed and contrasted with the experimental tensile tests. The experimental results mainly suggested a brittle behavior for solidly infilled specimen, while rectangular, diamond, and hexagonal infill patterns showed ductile-like behavior (fine size and texture of infills). This brittleness may be due to the relatively higher infill density results that led to the high bonding adhesion of the printed layers, and the size and thickness effects of the solid substrate. It made the solidly infilled specimen structure denser and brittle. Among all structures, hexagon geometrical infill showed relative improvement in the mechanical properties (highest ultimate tensile stress and modulus values 1759.4 MPa and 57.74 MPa, respectively) compared with other geometrical infills. Therefore, the geometrical infill effects play an important role in selecting the suitable mechanical property's values in industrial applications.
AbstractList The current study explores the effects of geometrical shapes of the infills on the 3D printed polylactic acid (PLA) plastic on the tensile properties. For this purpose, by utilizing an accessible supply desktop printer, specimens of diamond, rectangular, and hexagonal infill patterns were produced using the fused filament fabrication (FFF) 3D printing technique. Additionally, solid samples were printed for comparison. The printed tensile test specimens were conducted at environmental temperature, Ta of 23 °C and crosshead speed, VC.H of 5 mm/min. Mainly, this study focuses on investigating the percentage infill with respect to the cross-sectional area of the investigated samples. The mechanical properties, i.e., modulus of toughness, ultimate tensile stress, yield stress, and percent elongation, were explored for each sample having a different geometrical infill design. The test outcomes for each pattern were systematically compared. To further validate the experimental results, a computer simulation using finite element analysis was also performed and contrasted with the experimental tensile tests. The experimental results mainly suggested a brittle behavior for solidly infilled specimen, while rectangular, diamond, and hexagonal infill patterns showed ductile-like behavior (fine size and texture of infills). This brittleness may be due to the relatively higher infill density results that led to the high bonding adhesion of the printed layers, and the size and thickness effects of the solid substrate. It made the solidly infilled specimen structure denser and brittle. Among all structures, hexagon geometrical infill showed relative improvement in the mechanical properties (highest ultimate tensile stress and modulus values 1759.4 MPa and 57.74 MPa, respectively) compared with other geometrical infills. Therefore, the geometrical infill effects play an important role in selecting the suitable mechanical property’s values in industrial applications.
The current study explores the effects of geometrical shapes of the infills on the 3D printed polylactic acid (PLA) plastic on the tensile properties. For this purpose, by utilizing an accessible supply desktop printer, specimens of diamond, rectangular, and hexagonal infill patterns were produced using the fused filament fabrication (FFF) 3D printing technique. Additionally, solid samples were printed for comparison. The printed tensile test specimens were conducted at environmental temperature, Ta of 23 °C and crosshead speed, V C.H of 5 mm/min. Mainly, this study focuses on investigating the percentage infill with respect to the cross-sectional area of the investigated samples. The mechanical properties, i.e., modulus of toughness, ultimate tensile stress, yield stress, and percent elongation, were explored for each sample having a different geometrical infill design. The test outcomes for each pattern were systematically compared. To further validate the experimental results, a computer simulation using finite element analysis was also performed and contrasted with the experimental tensile tests. The experimental results mainly suggested a brittle behavior for solidly infilled specimen, while rectangular, diamond, and hexagonal infill patterns showed ductile-like behavior (fine size and texture of infills). This brittleness may be due to the relatively higher infill density results that led to the high bonding adhesion of the printed layers, and the size and thickness effects of the solid substrate. It made the solidly infilled specimen structure denser and brittle. Among all structures, hexagon geometrical infill showed relative improvement in the mechanical properties (highest ultimate tensile stress and modulus values 1759.4 MPa and 57.74 MPa, respectively) compared with other geometrical infills. Therefore, the geometrical infill effects play an important role in selecting the suitable mechanical property’s values in industrial applications.
The current study explores the effects of geometrical shapes of the infills on the 3D printed polylactic acid (PLA) plastic on the tensile properties. For this purpose, by utilizing an accessible supply desktop printer, specimens of diamond, rectangular, and hexagonal infill patterns were produced using the fused filament fabrication (FFF) 3D printing technique. Additionally, solid samples were printed for comparison. The printed tensile test specimens were conducted at environmental temperature, Ta of 23 °C and crosshead speed, V of 5 mm/min. Mainly, this study focuses on investigating the percentage infill with respect to the cross-sectional area of the investigated samples. The mechanical properties, i.e., modulus of toughness, ultimate tensile stress, yield stress, and percent elongation, were explored for each sample having a different geometrical infill design. The test outcomes for each pattern were systematically compared. To further validate the experimental results, a computer simulation using finite element analysis was also performed and contrasted with the experimental tensile tests. The experimental results mainly suggested a brittle behavior for solidly infilled specimen, while rectangular, diamond, and hexagonal infill patterns showed ductile-like behavior (fine size and texture of infills). This brittleness may be due to the relatively higher infill density results that led to the high bonding adhesion of the printed layers, and the size and thickness effects of the solid substrate. It made the solidly infilled specimen structure denser and brittle. Among all structures, hexagon geometrical infill showed relative improvement in the mechanical properties (highest ultimate tensile stress and modulus values 1759.4 MPa and 57.74 MPa, respectively) compared with other geometrical infills. Therefore, the geometrical infill effects play an important role in selecting the suitable mechanical property's values in industrial applications.
Author Alshammari, Basheer A
El-Bagory, Tarek Mohamed Ahmed Ali
Alarifi, Ibrahim Mohammed
Asmatulu, Ramazan
Harpool, Tanner David
Mohamed Sayed, Ahmed
Baig, Muneer
Aabid, Abdul
Malik, Rizwan Ahmed
AuthorAffiliation 5 Engineering Management Department, College of Engineering, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia; aaabid@psu.edu.sa (A.A.); mbaig@psu.edu.sa (M.B.)
7 Department of Civil and Environmental Engineering, College of Engineering, Majmaah University, Majmaah 11952, Saudi Arabia; a.sayed@mu.edu.sa
6 Department of Metallurgy and Materials Engineering, University of Engineering and Technology, Taxila 47050, Pakistan; rizwanmalik48@yahoo.com
8 Department of Civil Engineering, Faculty of Engineering Assiut University, Assiut 71518, Egypt
3 Engineering and Applied Science Research Center, Majmaah University, Al-Majmaah, Riyadh 11952, Saudi Arabia
4 Materials Science Research Institute, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia; bshammari@kacst.edu.sa
1 Department of Mechanical Engineering, Wichita State University, 1845 Fairmount, Wichita, KS 67260, USA; ima804@gmail.com
2 Department of Mechanical and Industrial Engineering, College of Eng
AuthorAffiliation_xml – name: 6 Department of Metallurgy and Materials Engineering, University of Engineering and Technology, Taxila 47050, Pakistan; rizwanmalik48@yahoo.com
– name: 2 Department of Mechanical and Industrial Engineering, College of Engineering, Majmaah University, Al-Majmaah, Riyadh 11952, Saudi Arabia; i.alarifi@mu.edu.sa (I.M.A.); t.elbagory@mu.edu.sa (T.M.A.A.E.-B.)
– name: 3 Engineering and Applied Science Research Center, Majmaah University, Al-Majmaah, Riyadh 11952, Saudi Arabia
– name: 7 Department of Civil and Environmental Engineering, College of Engineering, Majmaah University, Majmaah 11952, Saudi Arabia; a.sayed@mu.edu.sa
– name: 8 Department of Civil Engineering, Faculty of Engineering Assiut University, Assiut 71518, Egypt
– name: 1 Department of Mechanical Engineering, Wichita State University, 1845 Fairmount, Wichita, KS 67260, USA; ima804@gmail.com
– name: 9 Department of Mechanical Design, Faculty of Engineering Materia, Helwan University, Cairo 11724, Egypt
– name: 4 Materials Science Research Institute, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia; bshammari@kacst.edu.sa
– name: 5 Engineering Management Department, College of Engineering, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia; aaabid@psu.edu.sa (A.A.); mbaig@psu.edu.sa (M.B.)
Author_xml – sequence: 1
  givenname: Tanner David
  surname: Harpool
  fullname: Harpool, Tanner David
  organization: Department of Mechanical Engineering, Wichita State University, 1845 Fairmount, Wichita, KS 67260, USA
– sequence: 2
  givenname: Ibrahim Mohammed
  orcidid: 0000-0003-0275-0975
  surname: Alarifi
  fullname: Alarifi, Ibrahim Mohammed
  organization: Engineering and Applied Science Research Center, Majmaah University, Al-Majmaah, Riyadh 11952, Saudi Arabia
– sequence: 3
  givenname: Basheer A
  orcidid: 0000-0002-2811-5681
  surname: Alshammari
  fullname: Alshammari, Basheer A
  organization: Materials Science Research Institute, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
– sequence: 4
  givenname: Abdul
  orcidid: 0000-0002-4355-9803
  surname: Aabid
  fullname: Aabid, Abdul
  organization: Engineering Management Department, College of Engineering, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia
– sequence: 5
  givenname: Muneer
  orcidid: 0000-0002-8240-3027
  surname: Baig
  fullname: Baig, Muneer
  organization: Engineering Management Department, College of Engineering, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia
– sequence: 6
  givenname: Rizwan Ahmed
  surname: Malik
  fullname: Malik, Rizwan Ahmed
  organization: Department of Metallurgy and Materials Engineering, University of Engineering and Technology, Taxila 47050, Pakistan
– sequence: 7
  givenname: Ahmed
  orcidid: 0000-0001-7057-6097
  surname: Mohamed Sayed
  fullname: Mohamed Sayed, Ahmed
  organization: Department of Civil Engineering, Faculty of Engineering Assiut University, Assiut 71518, Egypt
– sequence: 8
  givenname: Ramazan
  surname: Asmatulu
  fullname: Asmatulu, Ramazan
  organization: Department of Mechanical Engineering, Wichita State University, 1845 Fairmount, Wichita, KS 67260, USA
– sequence: 9
  givenname: Tarek Mohamed Ahmed Ali
  surname: El-Bagory
  fullname: El-Bagory, Tarek Mohamed Ahmed Ali
  organization: Department of Mechanical Design, Faculty of Engineering Materia, Helwan University, Cairo 11724, Egypt
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33922889$$D View this record in MEDLINE/PubMed
BookMark eNpdkl9PHCEUxUljo9b60g_QTNIX02Rb4M4feGli1LabmNQY-2jIZWBWNgxsYcbEb1901Wp5AQ6_e3KA-47shBgsIR8Y_QIg6dcRWU0lZ7J5Q_aZlO2CybreebHeI4c5r2kZAExwuUv2SiXnQsh9cn12i37GycVQxaGabmy1DIPzvjq12a2KGB7EKxuy87a6tHkTQ7b3MJxWF8mFyZrqIvo7j_3k-uq4d9v9aNN78nZAn-3h43xAfn8_uzr5uTj_9WN5cny-6OuOT4tBMyYMqzVwwVhrtLam5yAtgoCB9rQFEIJ2KI1GMINupKxbLcqN-lLWwQFZbn1NxLXaJDdiulMRnXoQYlopTCWct4pqLrHpaCdhqEWHSI2mTaeRSWMoxeL1beu1mfVYctgwJfSvTF-fBHejVvFWCcaB1XUxOHo0SPHPbPOkRpd76z0GG-eseMOp6ASDtqCf_kPXcU6hPFWhgLKWg5CF-ryl-hRzTnZ4DsOoum8C9a8JCvzxZfxn9OnL4S8dQKzq
CitedBy_id crossref_primary_10_1016_j_jmrt_2023_11_131
crossref_primary_10_1016_j_polymertesting_2023_107949
crossref_primary_10_1002_pc_26838
crossref_primary_10_1061_JAEEEZ_ASENG_4912
crossref_primary_10_1016_j_matpr_2023_09_205
crossref_primary_10_1007_s00170_023_12552_1
crossref_primary_10_1016_j_heliyon_2024_e26777
crossref_primary_10_3390_su152416777
crossref_primary_10_1108_IJIEOM_01_2023_0006
crossref_primary_10_1007_s00170_021_08216_7
crossref_primary_10_1002_pc_27440
crossref_primary_10_3390_ma14185459
crossref_primary_10_3390_polym15030716
crossref_primary_10_1080_10426914_2024_2304843
crossref_primary_10_1080_10426914_2022_2032144
crossref_primary_10_1016_j_jmrt_2022_09_085
crossref_primary_10_3390_mi14010120
crossref_primary_10_1088_1757_899X_1208_1_012019
Cites_doi 10.3390/ma12101664
10.1007/s11668-016-0067-4
10.1088/1757-899X/62/1/012018
10.24425/122504
10.1002/star.201800281
10.1080/17452759.2017.1314117
10.1007/s40964-015-0002-3
10.1007/s40436-014-0097-7
10.1007/s40436-018-0237-6
10.1016/j.compositesb.2021.108840
10.1007/s40436-018-0211-3
10.1016/j.ifset.2010.06.001
10.1016/j.addr.2016.06.012
10.1007/s11668-016-0113-2
10.1088/1757-899X/114/1/012109
10.1016/j.dental.2015.09.018
10.1089/3dp.2018.0226
10.3390/ma11081333
10.1115/IMECE2015-52209
10.4028/www.scientific.net/MSF.654-656.2556
10.1007/s40436-019-00253-6
10.1021/am503878d
10.3390/ma12060895
10.1163/156856297X00588
10.1080/09243046.2019.1652030
10.1080/15376494.2020.1821266
10.1016/j.apmt.2017.02.004
10.1007/s13369-017-2598-8
10.1177/0954405415617447
10.3390/ma11101893
10.1016/j.jmatprotec.2017.02.026
10.1007/s40436-017-0187-4
10.1016/j.polymertesting.2020.106557
10.1016/j.matpr.2020.03.809
10.1016/j.matdes.2014.02.038
10.1007/s11095-016-1933-1
10.1108/RPJ-09-2015-0116
10.1016/j.polymer.2017.03.011
10.1016/j.addma.2015.05.002
10.1007/s00542-017-3342-8
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID NPM
AAYXX
CITATION
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/ma14092195
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Materials Research Database
https://resources.nclive.org/materials
Materials Science Collection
Publicly Available Content Database (Proquest) (PQ_SDU_P3)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Materials Science Collection
Materials Research Database
Technology Collection
Technology Research Database
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID oai_doaj_org_article_0b29a570793f487aa0db057ba19dd00a
10_3390_ma14092195
33922889
Genre Journal Article
GroupedDBID 29M
2WC
2XV
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
ABDBF
ABJCF
ADBBV
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CZ9
D1I
E3Z
EBS
ESX
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
MK~
MODMG
M~E
NPM
OK1
P2P
PDBOC
PGMZT
PIMPY
PROAC
RIG
RPM
TR2
TUS
AAYXX
CITATION
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c472t-fb118d14b328116dbbedc239ea383f0c06338807a9dba3dfb59946b8003cd1473
IEDL.DBID RPM
ISSN 1996-1944
IngestDate Tue Oct 22 15:10:40 EDT 2024
Tue Sep 17 20:52:50 EDT 2024
Fri Oct 25 21:38:30 EDT 2024
Thu Oct 10 17:38:58 EDT 2024
Fri Nov 22 02:56:08 EST 2024
Sat Sep 28 08:23:44 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords infill shapes
construct stress
finite element analysis
strain diagrams
3D printing
fused filament fabrication (FFF)
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c472t-fb118d14b328116dbbedc239ea383f0c06338807a9dba3dfb59946b8003cd1473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8240-3027
0000-0002-4355-9803
0000-0003-0275-0975
0000-0001-7057-6097
0000-0002-2811-5681
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8123144/
PMID 33922889
PQID 2530162389
PQPubID 2032366
ParticipantIDs doaj_primary_oai_doaj_org_article_0b29a570793f487aa0db057ba19dd00a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8123144
proquest_miscellaneous_2520878136
proquest_journals_2530162389
crossref_primary_10_3390_ma14092195
pubmed_primary_33922889
PublicationCentury 2000
PublicationDate 20210425
PublicationDateYYYYMMDD 2021-04-25
PublicationDate_xml – month: 4
  year: 2021
  text: 20210425
  day: 25
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Materials
PublicationTitleAlternate Materials (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Alhnan (ref_9) 2016; 33
ref_14
ref_13
ref_12
ref_11
ref_10
ref_19
ref_18
ref_17
ref_16
ref_15
ref_25
ref_24
ref_23
ref_22
ref_21
ref_20
ref_29
ref_28
ref_27
ref_26
Farah (ref_36) 2016; 107
ref_35
ref_34
ref_33
ref_32
ref_31
ref_30
Stansbury (ref_6) 2016; 32
ref_39
ref_38
ref_37
Lee (ref_4) 2017; 7
Srinivasan (ref_41) 2020; 27
ref_47
ref_46
ref_45
ref_44
ref_43
ref_42
ref_40
ref_1
ref_3
ref_2
ref_49
ref_48
ref_8
ref_5
ref_7
References_xml – ident: ref_16
  doi: 10.3390/ma12101664
– ident: ref_13
  doi: 10.1007/s11668-016-0067-4
– ident: ref_5
  doi: 10.1088/1757-899X/62/1/012018
– ident: ref_37
  doi: 10.24425/122504
– ident: ref_39
  doi: 10.1002/star.201800281
– ident: ref_23
  doi: 10.1080/17452759.2017.1314117
– ident: ref_27
  doi: 10.1007/s40964-015-0002-3
– ident: ref_7
  doi: 10.1007/s40436-014-0097-7
– ident: ref_1
– ident: ref_19
  doi: 10.1007/s40436-018-0237-6
– ident: ref_48
  doi: 10.1016/j.compositesb.2021.108840
– ident: ref_18
  doi: 10.1007/s40436-018-0211-3
– ident: ref_29
  doi: 10.1016/j.ifset.2010.06.001
– volume: 107
  start-page: 367
  year: 2016
  ident: ref_36
  article-title: Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2016.06.012
  contributor:
    fullname: Farah
– ident: ref_11
  doi: 10.1007/s11668-016-0113-2
– ident: ref_49
  doi: 10.1088/1757-899X/114/1/012109
– volume: 32
  start-page: 54
  year: 2016
  ident: ref_6
  article-title: 3D printing with polymers: Challenges among expanding options and opportunities
  publication-title: Dent. Mater.
  doi: 10.1016/j.dental.2015.09.018
  contributor:
    fullname: Stansbury
– ident: ref_46
  doi: 10.1089/3dp.2018.0226
– ident: ref_44
  doi: 10.3390/ma11081333
– ident: ref_24
  doi: 10.1115/IMECE2015-52209
– ident: ref_42
  doi: 10.4028/www.scientific.net/MSF.654-656.2556
– ident: ref_26
  doi: 10.1007/s40436-019-00253-6
– ident: ref_25
  doi: 10.1021/am503878d
– ident: ref_15
  doi: 10.3390/ma12060895
– ident: ref_31
  doi: 10.1163/156856297X00588
– ident: ref_28
– ident: ref_30
– ident: ref_3
– ident: ref_34
– ident: ref_47
  doi: 10.1080/09243046.2019.1652030
– ident: ref_45
  doi: 10.1080/15376494.2020.1821266
– volume: 7
  start-page: 120
  year: 2017
  ident: ref_4
  article-title: Fundamentals and applications of 3D printing for novel materials
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2017.02.004
  contributor:
    fullname: Lee
– ident: ref_20
  doi: 10.1007/s13369-017-2598-8
– ident: ref_22
  doi: 10.1177/0954405415617447
– ident: ref_40
– ident: ref_35
  doi: 10.3390/ma11101893
– ident: ref_32
  doi: 10.1016/j.jmatprotec.2017.02.026
– ident: ref_8
  doi: 10.1007/s40436-017-0187-4
– ident: ref_33
– ident: ref_2
– ident: ref_38
  doi: 10.1016/j.polymertesting.2020.106557
– volume: 27
  start-page: 1877
  year: 2020
  ident: ref_41
  article-title: Influence of fused deposition modeling process parameters on the mechanical properties of PETG parts
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2020.03.809
  contributor:
    fullname: Srinivasan
– ident: ref_12
  doi: 10.1016/j.matdes.2014.02.038
– volume: 33
  start-page: 1817
  year: 2016
  ident: ref_9
  article-title: Emergence of 3D Printed Dosage Forms: Opportunities and Challenges
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-016-1933-1
  contributor:
    fullname: Alhnan
– ident: ref_43
– ident: ref_21
  doi: 10.1108/RPJ-09-2015-0116
– ident: ref_17
  doi: 10.1016/j.polymer.2017.03.011
– ident: ref_14
  doi: 10.1016/j.addma.2015.05.002
– ident: ref_10
  doi: 10.1007/s00542-017-3342-8
SSID ssj0000331829
Score 2.430056
Snippet The current study explores the effects of geometrical shapes of the infills on the 3D printed polylactic acid (PLA) plastic on the tensile properties. For this...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 2195
SubjectTerms 3-D printers
3D printing
Additive manufacturing
Adhesive bonding
Brittleness
construct stress
Design
Diamonds
Elongation
finite element analysis
Finite element method
Fused deposition modeling
fused filament fabrication (FFF)
Impact strength
Industrial applications
infill shapes
Influence
Interfacial bonding
Investigations
Mechanical properties
Polyethylene terephthalate
Polylactic acid
strain diagrams
Substrates
Tensile properties
Tensile stress
Tensile tests
Three dimensional printing
Wood composites
Yield stress
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5RTvRQFegjhSKj9hrh2E5sH6G7CC4ItVTqpYrs2FFXCtlqYQ_998zES7pbIfXCMX5I4xmP_Y09-QzwuSxcQcf7OfeuylU0dEnoitxWXsfK8SbxbF9801c_zGRKNDnjU1-UE5bogZPiTrgX1pUDj1uL4No5HjxiDO8KGwLnCRpxvRZMDWuwxLkqbOIjlRjXn9w6onZC_yw3dqCBqP8pdPlvkuTarnP-Gl6t4CI7TWLuwlbs9-DlGongPvycjoTdbN4yBHTssm9nXccmQ3YGw3IqvKFU9S6yrykrNlJjOWHXC2KMCOx63v3phj-m2GkzS9-3cfEGvp9Pb75c5KtHE_JGaXGftx5DhlAoL4VBIwTvcQhC2ugwFm15g5CE-F-0s8E7GVpfWqsqj7hRNthNy7ew3c_7-B6YKFujyItQlSrayiilLUEyj2Gaa00Gnx4VWf9O3Bg1xhSk7vqvujM4Ix2PLYjPeihAK9crK9f_s3IGh48WqldOdleLElcnhG_GZnA8VqN70J2H6-N8SW0EN9oUssrgXTLoKAkKKoSh3nrD1Buibtb0s18DBTfCIomh6IfnGNsB7AhKlOEqF-UhbN8vlvEjvLgLy6NhUj8ApOn6HQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Evaluation of the Infill Design on the Tensile Response of 3D Printed Polylactic Acid Polymer
URI https://www.ncbi.nlm.nih.gov/pubmed/33922889
https://www.proquest.com/docview/2530162389
https://search.proquest.com/docview/2520878136
https://pubmed.ncbi.nlm.nih.gov/PMC8123144
https://doaj.org/article/0b29a570793f487aa0db057ba19dd00a
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2xPcEBlfKVUiojuKbr2E5iH0t3q3IAraBIXFBkJw5dKZtU2-6Bf8-Mkyy7qCeOGduSMzO239jjZ4APaWIT2t6PubNZrLymQ0KbxCZzuc8sL3ue7atv-ZcfejYnmpx0vAsTkvZLtzxrm9VZu7wJuZW3q3I65olNF58vcFGSGAhMJzBBbLgToofpV6KbCtNTkUoM6acrS6xOODTpmRqUCKHpVfeddSjQ9T-EMf9NldxZey4P4ekAGtl537ln8Mi3R_Bkh0rwOfycb2m7WVczhHXsU1svm4bNQo4GQzkJrylhvfHsa58b66mynLHFmngjKrbomt9NuDfFzstl_73y6xfw_XJ-fXEVD08nxKXKxX1cOwwcqkQ5KTSaonIOf0FI4y1GpDUvEZgQC0xuTeWsrGqXGqMyh-hRltgsly_hoO1a_xqYSGutaCyhVpU3mVYqNwTMHAZrttYRvB8VWdz2DBkFRhak-eKv5iP4SDre1iBW6yDo1r-KwbYFd8LYNHD21RhIWcsrh3jS2cRUFec2gpPRQsUw1O4KkeIchSBOmwjebYtxkNDJh219t6E6gutcJzKL4FVv0G1PRoeIIN8z9V5X90vQLwMR9-CHx__d8g08FpQjw1Us0hM4uF9v_FuY3FWb07A5cBpc-w8aZ_uT
link.rule.ids 230,315,729,782,786,866,887,2107,27934,27935,53802,53804
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RcgAOvAuBAkZwTdex87CPpbvVVrTVChaJC4rsxIGVskm17R7498w4ybKLOPUYPyQnM2N_Xzz-DPAxiUxEv_dDbk0axk7RJqGJQp3azKWGF53O9vRrdvldjSckk5MMZ2F80n5hF0dNvTxqFr98buXVshgNeWKj2cUJLkoSicBoD-5ivHKxRdL9BCzRUYXuxEglkvrR0pCuEwYnXVSDJUIoutd9ayXygv3_Q5n_JkturT6nj2457sfwsIeb7LirfgJ3XPMUHmyJED6DH5ON4DdrK4aAkJ011aKu2dhndzAsp8I5pbrXjn3psmodNZZjNluR4kTJZm39u_Ynrthxseiel271HL6dTuYn07C_dCEs4kzchJVFylFGsZVCoRFLa_HVhdTOIJeteIGQhvRjMqNLa2RZ2UTrOLWIO2WB3TJ5APtN27iXwERSqZiiEK0RO52qOM40QTqLNM9UKoAPgwHyq05bI0dOQhbL_1osgE9km00L0sP2Be3qZ95_3ZxboU3i1f4qpGDG8NIiErUm0mXJuQngcLBs3gfpdS4SnN0Q_ikdwPtNNYYX7ZmYxrVraiO4ylQk0wBedI6wGcngSAFkOy6yM9TdGvQML-Hde8KrW_d8B_em84vz_Pzs8vNruC8o04bHoUgOYf9mtXZvYO-6XL_1gfEHsjUQLg
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6xISF44PcgMMAIXrM4tpPYj2NttQmYKhgSLyiyYwcqpUnVrQ_773d22tAinuAxl7Pk5O7s7-LLdwDvs1Sn_vN-TI3OY-GkPyTUaaxyU7hc06rn2T79Wpx_l6Oxp8kZWn2Fov3KzI7aZn7Uzn6F2srFvEo2dWLJ9PMJbkocE4FkYetkD25jzFKxlaiHRZijszLVE5JyTOyTufbcThigvlkNShiTvrf71m4USPv_hjT_LJjc2oEmD_5j7g_h_hp2kuNe5RHccu1juLdFRvgEfowH4m_S1QSBITlr61nTkFGo8iAo98ILX_LeOPKlr651XpmPyHTpmScsmXbNdRP-vCLH1ay_nrvlU_g2GV-cnMbr5gtxJQp2FdcGUw-bCsOZRGNaY_DxGVdOY05b0wqhjeeRKbSyRnNbm0wpkRvEn7zCYQU_gP22a91zICyrpfDRiBYRTuVSiEJ5aGcw3dO1jODdxgjloufYKDE38VYrf1stgg_ePoOG58UOgm75s1y_4ZIapnQWWP9qTMW0ptYgIjU6VdZSqiM43Fi3XAfrZckyXOUQBkoVwdvhNoaZPzvRretWXodRWciU5xE8651hmMnGmSIodtxkZ6q7d9A7ApX32hte_PPIN3BnOpqUn87OP76Eu8wX3FARs-wQ9q-WK_cK9i7t6nWIjRtSFhKu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+the+Infill+Design+on+the+Tensile+Response+of+3D+Printed+Polylactic+Acid+Polymer&rft.jtitle=Materials&rft.au=Tanner%2C+David+Harpool&rft.au=Ibrahim+Mohammed+Alarifi&rft.au=Alshammari%2C+Basheer+A&rft.au=Aabid%2C+Abdul&rft.date=2021-04-25&rft.pub=MDPI+AG&rft.eissn=1996-1944&rft.volume=14&rft.issue=9&rft.spage=2195&rft_id=info:doi/10.3390%2Fma14092195&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon