Evaluation of the Infill Design on the Tensile Response of 3D Printed Polylactic Acid Polymer
The current study explores the effects of geometrical shapes of the infills on the 3D printed polylactic acid (PLA) plastic on the tensile properties. For this purpose, by utilizing an accessible supply desktop printer, specimens of diamond, rectangular, and hexagonal infill patterns were produced u...
Saved in:
Published in: | Materials Vol. 14; no. 9; p. 2195 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
MDPI AG
25-04-2021
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The current study explores the effects of geometrical shapes of the infills on the 3D printed polylactic acid (PLA) plastic on the tensile properties. For this purpose, by utilizing an accessible supply desktop printer, specimens of diamond, rectangular, and hexagonal infill patterns were produced using the fused filament fabrication (FFF) 3D printing technique. Additionally, solid samples were printed for comparison. The printed tensile test specimens were conducted at environmental temperature, Ta of 23 °C and crosshead speed, V
of 5 mm/min. Mainly, this study focuses on investigating the percentage infill with respect to the cross-sectional area of the investigated samples. The mechanical properties, i.e., modulus of toughness, ultimate tensile stress, yield stress, and percent elongation, were explored for each sample having a different geometrical infill design. The test outcomes for each pattern were systematically compared. To further validate the experimental results, a computer simulation using finite element analysis was also performed and contrasted with the experimental tensile tests. The experimental results mainly suggested a brittle behavior for solidly infilled specimen, while rectangular, diamond, and hexagonal infill patterns showed ductile-like behavior (fine size and texture of infills). This brittleness may be due to the relatively higher infill density results that led to the high bonding adhesion of the printed layers, and the size and thickness effects of the solid substrate. It made the solidly infilled specimen structure denser and brittle. Among all structures, hexagon geometrical infill showed relative improvement in the mechanical properties (highest ultimate tensile stress and modulus values 1759.4 MPa and 57.74 MPa, respectively) compared with other geometrical infills. Therefore, the geometrical infill effects play an important role in selecting the suitable mechanical property's values in industrial applications. |
---|---|
AbstractList | The current study explores the effects of geometrical shapes of the infills on the 3D printed polylactic acid (PLA) plastic on the tensile properties. For this purpose, by utilizing an accessible supply desktop printer, specimens of diamond, rectangular, and hexagonal infill patterns were produced using the fused filament fabrication (FFF) 3D printing technique. Additionally, solid samples were printed for comparison. The printed tensile test specimens were conducted at environmental temperature, Ta of 23 °C and crosshead speed, VC.H of 5 mm/min. Mainly, this study focuses on investigating the percentage infill with respect to the cross-sectional area of the investigated samples. The mechanical properties, i.e., modulus of toughness, ultimate tensile stress, yield stress, and percent elongation, were explored for each sample having a different geometrical infill design. The test outcomes for each pattern were systematically compared. To further validate the experimental results, a computer simulation using finite element analysis was also performed and contrasted with the experimental tensile tests. The experimental results mainly suggested a brittle behavior for solidly infilled specimen, while rectangular, diamond, and hexagonal infill patterns showed ductile-like behavior (fine size and texture of infills). This brittleness may be due to the relatively higher infill density results that led to the high bonding adhesion of the printed layers, and the size and thickness effects of the solid substrate. It made the solidly infilled specimen structure denser and brittle. Among all structures, hexagon geometrical infill showed relative improvement in the mechanical properties (highest ultimate tensile stress and modulus values 1759.4 MPa and 57.74 MPa, respectively) compared with other geometrical infills. Therefore, the geometrical infill effects play an important role in selecting the suitable mechanical property’s values in industrial applications. The current study explores the effects of geometrical shapes of the infills on the 3D printed polylactic acid (PLA) plastic on the tensile properties. For this purpose, by utilizing an accessible supply desktop printer, specimens of diamond, rectangular, and hexagonal infill patterns were produced using the fused filament fabrication (FFF) 3D printing technique. Additionally, solid samples were printed for comparison. The printed tensile test specimens were conducted at environmental temperature, Ta of 23 °C and crosshead speed, V C.H of 5 mm/min. Mainly, this study focuses on investigating the percentage infill with respect to the cross-sectional area of the investigated samples. The mechanical properties, i.e., modulus of toughness, ultimate tensile stress, yield stress, and percent elongation, were explored for each sample having a different geometrical infill design. The test outcomes for each pattern were systematically compared. To further validate the experimental results, a computer simulation using finite element analysis was also performed and contrasted with the experimental tensile tests. The experimental results mainly suggested a brittle behavior for solidly infilled specimen, while rectangular, diamond, and hexagonal infill patterns showed ductile-like behavior (fine size and texture of infills). This brittleness may be due to the relatively higher infill density results that led to the high bonding adhesion of the printed layers, and the size and thickness effects of the solid substrate. It made the solidly infilled specimen structure denser and brittle. Among all structures, hexagon geometrical infill showed relative improvement in the mechanical properties (highest ultimate tensile stress and modulus values 1759.4 MPa and 57.74 MPa, respectively) compared with other geometrical infills. Therefore, the geometrical infill effects play an important role in selecting the suitable mechanical property’s values in industrial applications. The current study explores the effects of geometrical shapes of the infills on the 3D printed polylactic acid (PLA) plastic on the tensile properties. For this purpose, by utilizing an accessible supply desktop printer, specimens of diamond, rectangular, and hexagonal infill patterns were produced using the fused filament fabrication (FFF) 3D printing technique. Additionally, solid samples were printed for comparison. The printed tensile test specimens were conducted at environmental temperature, Ta of 23 °C and crosshead speed, V of 5 mm/min. Mainly, this study focuses on investigating the percentage infill with respect to the cross-sectional area of the investigated samples. The mechanical properties, i.e., modulus of toughness, ultimate tensile stress, yield stress, and percent elongation, were explored for each sample having a different geometrical infill design. The test outcomes for each pattern were systematically compared. To further validate the experimental results, a computer simulation using finite element analysis was also performed and contrasted with the experimental tensile tests. The experimental results mainly suggested a brittle behavior for solidly infilled specimen, while rectangular, diamond, and hexagonal infill patterns showed ductile-like behavior (fine size and texture of infills). This brittleness may be due to the relatively higher infill density results that led to the high bonding adhesion of the printed layers, and the size and thickness effects of the solid substrate. It made the solidly infilled specimen structure denser and brittle. Among all structures, hexagon geometrical infill showed relative improvement in the mechanical properties (highest ultimate tensile stress and modulus values 1759.4 MPa and 57.74 MPa, respectively) compared with other geometrical infills. Therefore, the geometrical infill effects play an important role in selecting the suitable mechanical property's values in industrial applications. |
Author | Alshammari, Basheer A El-Bagory, Tarek Mohamed Ahmed Ali Alarifi, Ibrahim Mohammed Asmatulu, Ramazan Harpool, Tanner David Mohamed Sayed, Ahmed Baig, Muneer Aabid, Abdul Malik, Rizwan Ahmed |
AuthorAffiliation | 5 Engineering Management Department, College of Engineering, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia; aaabid@psu.edu.sa (A.A.); mbaig@psu.edu.sa (M.B.) 7 Department of Civil and Environmental Engineering, College of Engineering, Majmaah University, Majmaah 11952, Saudi Arabia; a.sayed@mu.edu.sa 6 Department of Metallurgy and Materials Engineering, University of Engineering and Technology, Taxila 47050, Pakistan; rizwanmalik48@yahoo.com 8 Department of Civil Engineering, Faculty of Engineering Assiut University, Assiut 71518, Egypt 3 Engineering and Applied Science Research Center, Majmaah University, Al-Majmaah, Riyadh 11952, Saudi Arabia 4 Materials Science Research Institute, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia; bshammari@kacst.edu.sa 1 Department of Mechanical Engineering, Wichita State University, 1845 Fairmount, Wichita, KS 67260, USA; ima804@gmail.com 2 Department of Mechanical and Industrial Engineering, College of Eng |
AuthorAffiliation_xml | – name: 6 Department of Metallurgy and Materials Engineering, University of Engineering and Technology, Taxila 47050, Pakistan; rizwanmalik48@yahoo.com – name: 2 Department of Mechanical and Industrial Engineering, College of Engineering, Majmaah University, Al-Majmaah, Riyadh 11952, Saudi Arabia; i.alarifi@mu.edu.sa (I.M.A.); t.elbagory@mu.edu.sa (T.M.A.A.E.-B.) – name: 3 Engineering and Applied Science Research Center, Majmaah University, Al-Majmaah, Riyadh 11952, Saudi Arabia – name: 7 Department of Civil and Environmental Engineering, College of Engineering, Majmaah University, Majmaah 11952, Saudi Arabia; a.sayed@mu.edu.sa – name: 8 Department of Civil Engineering, Faculty of Engineering Assiut University, Assiut 71518, Egypt – name: 1 Department of Mechanical Engineering, Wichita State University, 1845 Fairmount, Wichita, KS 67260, USA; ima804@gmail.com – name: 9 Department of Mechanical Design, Faculty of Engineering Materia, Helwan University, Cairo 11724, Egypt – name: 4 Materials Science Research Institute, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia; bshammari@kacst.edu.sa – name: 5 Engineering Management Department, College of Engineering, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia; aaabid@psu.edu.sa (A.A.); mbaig@psu.edu.sa (M.B.) |
Author_xml | – sequence: 1 givenname: Tanner David surname: Harpool fullname: Harpool, Tanner David organization: Department of Mechanical Engineering, Wichita State University, 1845 Fairmount, Wichita, KS 67260, USA – sequence: 2 givenname: Ibrahim Mohammed orcidid: 0000-0003-0275-0975 surname: Alarifi fullname: Alarifi, Ibrahim Mohammed organization: Engineering and Applied Science Research Center, Majmaah University, Al-Majmaah, Riyadh 11952, Saudi Arabia – sequence: 3 givenname: Basheer A orcidid: 0000-0002-2811-5681 surname: Alshammari fullname: Alshammari, Basheer A organization: Materials Science Research Institute, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia – sequence: 4 givenname: Abdul orcidid: 0000-0002-4355-9803 surname: Aabid fullname: Aabid, Abdul organization: Engineering Management Department, College of Engineering, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia – sequence: 5 givenname: Muneer orcidid: 0000-0002-8240-3027 surname: Baig fullname: Baig, Muneer organization: Engineering Management Department, College of Engineering, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia – sequence: 6 givenname: Rizwan Ahmed surname: Malik fullname: Malik, Rizwan Ahmed organization: Department of Metallurgy and Materials Engineering, University of Engineering and Technology, Taxila 47050, Pakistan – sequence: 7 givenname: Ahmed orcidid: 0000-0001-7057-6097 surname: Mohamed Sayed fullname: Mohamed Sayed, Ahmed organization: Department of Civil Engineering, Faculty of Engineering Assiut University, Assiut 71518, Egypt – sequence: 8 givenname: Ramazan surname: Asmatulu fullname: Asmatulu, Ramazan organization: Department of Mechanical Engineering, Wichita State University, 1845 Fairmount, Wichita, KS 67260, USA – sequence: 9 givenname: Tarek Mohamed Ahmed Ali surname: El-Bagory fullname: El-Bagory, Tarek Mohamed Ahmed Ali organization: Department of Mechanical Design, Faculty of Engineering Materia, Helwan University, Cairo 11724, Egypt |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33922889$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkl9PHCEUxUljo9b60g_QTNIX02Rb4M4feGli1LabmNQY-2jIZWBWNgxsYcbEb1901Wp5AQ6_e3KA-47shBgsIR8Y_QIg6dcRWU0lZ7J5Q_aZlO2CybreebHeI4c5r2kZAExwuUv2SiXnQsh9cn12i37GycVQxaGabmy1DIPzvjq12a2KGB7EKxuy87a6tHkTQ7b3MJxWF8mFyZrqIvo7j_3k-uq4d9v9aNN78nZAn-3h43xAfn8_uzr5uTj_9WN5cny-6OuOT4tBMyYMqzVwwVhrtLam5yAtgoCB9rQFEIJ2KI1GMINupKxbLcqN-lLWwQFZbn1NxLXaJDdiulMRnXoQYlopTCWct4pqLrHpaCdhqEWHSI2mTaeRSWMoxeL1beu1mfVYctgwJfSvTF-fBHejVvFWCcaB1XUxOHo0SPHPbPOkRpd76z0GG-eseMOp6ASDtqCf_kPXcU6hPFWhgLKWg5CF-ryl-hRzTnZ4DsOoum8C9a8JCvzxZfxn9OnL4S8dQKzq |
CitedBy_id | crossref_primary_10_1016_j_jmrt_2023_11_131 crossref_primary_10_1016_j_polymertesting_2023_107949 crossref_primary_10_1002_pc_26838 crossref_primary_10_1061_JAEEEZ_ASENG_4912 crossref_primary_10_1016_j_matpr_2023_09_205 crossref_primary_10_1007_s00170_023_12552_1 crossref_primary_10_1016_j_heliyon_2024_e26777 crossref_primary_10_3390_su152416777 crossref_primary_10_1108_IJIEOM_01_2023_0006 crossref_primary_10_1007_s00170_021_08216_7 crossref_primary_10_1002_pc_27440 crossref_primary_10_3390_ma14185459 crossref_primary_10_3390_polym15030716 crossref_primary_10_1080_10426914_2024_2304843 crossref_primary_10_1080_10426914_2022_2032144 crossref_primary_10_1016_j_jmrt_2022_09_085 crossref_primary_10_3390_mi14010120 crossref_primary_10_1088_1757_899X_1208_1_012019 |
Cites_doi | 10.3390/ma12101664 10.1007/s11668-016-0067-4 10.1088/1757-899X/62/1/012018 10.24425/122504 10.1002/star.201800281 10.1080/17452759.2017.1314117 10.1007/s40964-015-0002-3 10.1007/s40436-014-0097-7 10.1007/s40436-018-0237-6 10.1016/j.compositesb.2021.108840 10.1007/s40436-018-0211-3 10.1016/j.ifset.2010.06.001 10.1016/j.addr.2016.06.012 10.1007/s11668-016-0113-2 10.1088/1757-899X/114/1/012109 10.1016/j.dental.2015.09.018 10.1089/3dp.2018.0226 10.3390/ma11081333 10.1115/IMECE2015-52209 10.4028/www.scientific.net/MSF.654-656.2556 10.1007/s40436-019-00253-6 10.1021/am503878d 10.3390/ma12060895 10.1163/156856297X00588 10.1080/09243046.2019.1652030 10.1080/15376494.2020.1821266 10.1016/j.apmt.2017.02.004 10.1007/s13369-017-2598-8 10.1177/0954405415617447 10.3390/ma11101893 10.1016/j.jmatprotec.2017.02.026 10.1007/s40436-017-0187-4 10.1016/j.polymertesting.2020.106557 10.1016/j.matpr.2020.03.809 10.1016/j.matdes.2014.02.038 10.1007/s11095-016-1933-1 10.1108/RPJ-09-2015-0116 10.1016/j.polymer.2017.03.011 10.1016/j.addma.2015.05.002 10.1007/s00542-017-3342-8 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | NPM AAYXX CITATION 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PIMPY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/ma14092195 |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection (Proquest) (PQ_SDU_P3) Materials Research Database https://resources.nclive.org/materials Materials Science Collection Publicly Available Content Database (Proquest) (PQ_SDU_P3) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database ProQuest Materials Science Collection Materials Research Database Technology Collection Technology Research Database ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Engineered Materials Abstracts ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1944 |
ExternalDocumentID | oai_doaj_org_article_0b29a570793f487aa0db057ba19dd00a 10_3390_ma14092195 33922889 |
Genre | Journal Article |
GroupedDBID | 29M 2WC 2XV 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH ABDBF ABJCF ADBBV AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CZ9 D1I E3Z EBS ESX FRP GROUPED_DOAJ GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 MK~ MODMG M~E NPM OK1 P2P PDBOC PGMZT PIMPY PROAC RIG RPM TR2 TUS AAYXX CITATION 7SR 8FD ABUWG AZQEC DWQXO JG9 PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c472t-fb118d14b328116dbbedc239ea383f0c06338807a9dba3dfb59946b8003cd1473 |
IEDL.DBID | RPM |
ISSN | 1996-1944 |
IngestDate | Tue Oct 22 15:10:40 EDT 2024 Tue Sep 17 20:52:50 EDT 2024 Fri Oct 25 21:38:30 EDT 2024 Thu Oct 10 17:38:58 EDT 2024 Fri Nov 22 02:56:08 EST 2024 Sat Sep 28 08:23:44 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | infill shapes construct stress finite element analysis strain diagrams 3D printing fused filament fabrication (FFF) |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c472t-fb118d14b328116dbbedc239ea383f0c06338807a9dba3dfb59946b8003cd1473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8240-3027 0000-0002-4355-9803 0000-0003-0275-0975 0000-0001-7057-6097 0000-0002-2811-5681 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8123144/ |
PMID | 33922889 |
PQID | 2530162389 |
PQPubID | 2032366 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0b29a570793f487aa0db057ba19dd00a pubmedcentral_primary_oai_pubmedcentral_nih_gov_8123144 proquest_miscellaneous_2520878136 proquest_journals_2530162389 crossref_primary_10_3390_ma14092195 pubmed_primary_33922889 |
PublicationCentury | 2000 |
PublicationDate | 20210425 |
PublicationDateYYYYMMDD | 2021-04-25 |
PublicationDate_xml | – month: 4 year: 2021 text: 20210425 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Materials |
PublicationTitleAlternate | Materials (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Alhnan (ref_9) 2016; 33 ref_14 ref_13 ref_12 ref_11 ref_10 ref_19 ref_18 ref_17 ref_16 ref_15 ref_25 ref_24 ref_23 ref_22 ref_21 ref_20 ref_29 ref_28 ref_27 ref_26 Farah (ref_36) 2016; 107 ref_35 ref_34 ref_33 ref_32 ref_31 ref_30 Stansbury (ref_6) 2016; 32 ref_39 ref_38 ref_37 Lee (ref_4) 2017; 7 Srinivasan (ref_41) 2020; 27 ref_47 ref_46 ref_45 ref_44 ref_43 ref_42 ref_40 ref_1 ref_3 ref_2 ref_49 ref_48 ref_8 ref_5 ref_7 |
References_xml | – ident: ref_16 doi: 10.3390/ma12101664 – ident: ref_13 doi: 10.1007/s11668-016-0067-4 – ident: ref_5 doi: 10.1088/1757-899X/62/1/012018 – ident: ref_37 doi: 10.24425/122504 – ident: ref_39 doi: 10.1002/star.201800281 – ident: ref_23 doi: 10.1080/17452759.2017.1314117 – ident: ref_27 doi: 10.1007/s40964-015-0002-3 – ident: ref_7 doi: 10.1007/s40436-014-0097-7 – ident: ref_1 – ident: ref_19 doi: 10.1007/s40436-018-0237-6 – ident: ref_48 doi: 10.1016/j.compositesb.2021.108840 – ident: ref_18 doi: 10.1007/s40436-018-0211-3 – ident: ref_29 doi: 10.1016/j.ifset.2010.06.001 – volume: 107 start-page: 367 year: 2016 ident: ref_36 article-title: Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2016.06.012 contributor: fullname: Farah – ident: ref_11 doi: 10.1007/s11668-016-0113-2 – ident: ref_49 doi: 10.1088/1757-899X/114/1/012109 – volume: 32 start-page: 54 year: 2016 ident: ref_6 article-title: 3D printing with polymers: Challenges among expanding options and opportunities publication-title: Dent. Mater. doi: 10.1016/j.dental.2015.09.018 contributor: fullname: Stansbury – ident: ref_46 doi: 10.1089/3dp.2018.0226 – ident: ref_44 doi: 10.3390/ma11081333 – ident: ref_24 doi: 10.1115/IMECE2015-52209 – ident: ref_42 doi: 10.4028/www.scientific.net/MSF.654-656.2556 – ident: ref_26 doi: 10.1007/s40436-019-00253-6 – ident: ref_25 doi: 10.1021/am503878d – ident: ref_15 doi: 10.3390/ma12060895 – ident: ref_31 doi: 10.1163/156856297X00588 – ident: ref_28 – ident: ref_30 – ident: ref_3 – ident: ref_34 – ident: ref_47 doi: 10.1080/09243046.2019.1652030 – ident: ref_45 doi: 10.1080/15376494.2020.1821266 – volume: 7 start-page: 120 year: 2017 ident: ref_4 article-title: Fundamentals and applications of 3D printing for novel materials publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2017.02.004 contributor: fullname: Lee – ident: ref_20 doi: 10.1007/s13369-017-2598-8 – ident: ref_22 doi: 10.1177/0954405415617447 – ident: ref_40 – ident: ref_35 doi: 10.3390/ma11101893 – ident: ref_32 doi: 10.1016/j.jmatprotec.2017.02.026 – ident: ref_8 doi: 10.1007/s40436-017-0187-4 – ident: ref_33 – ident: ref_2 – ident: ref_38 doi: 10.1016/j.polymertesting.2020.106557 – volume: 27 start-page: 1877 year: 2020 ident: ref_41 article-title: Influence of fused deposition modeling process parameters on the mechanical properties of PETG parts publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2020.03.809 contributor: fullname: Srinivasan – ident: ref_12 doi: 10.1016/j.matdes.2014.02.038 – volume: 33 start-page: 1817 year: 2016 ident: ref_9 article-title: Emergence of 3D Printed Dosage Forms: Opportunities and Challenges publication-title: Pharm. Res. doi: 10.1007/s11095-016-1933-1 contributor: fullname: Alhnan – ident: ref_43 – ident: ref_21 doi: 10.1108/RPJ-09-2015-0116 – ident: ref_17 doi: 10.1016/j.polymer.2017.03.011 – ident: ref_14 doi: 10.1016/j.addma.2015.05.002 – ident: ref_10 doi: 10.1007/s00542-017-3342-8 |
SSID | ssj0000331829 |
Score | 2.430056 |
Snippet | The current study explores the effects of geometrical shapes of the infills on the 3D printed polylactic acid (PLA) plastic on the tensile properties. For this... |
SourceID | doaj pubmedcentral proquest crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 2195 |
SubjectTerms | 3-D printers 3D printing Additive manufacturing Adhesive bonding Brittleness construct stress Design Diamonds Elongation finite element analysis Finite element method Fused deposition modeling fused filament fabrication (FFF) Impact strength Industrial applications infill shapes Influence Interfacial bonding Investigations Mechanical properties Polyethylene terephthalate Polylactic acid strain diagrams Substrates Tensile properties Tensile stress Tensile tests Three dimensional printing Wood composites Yield stress |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5RTvRQFegjhSKj9hrh2E5sH6G7CC4ItVTqpYrs2FFXCtlqYQ_998zES7pbIfXCMX5I4xmP_Y09-QzwuSxcQcf7OfeuylU0dEnoitxWXsfK8SbxbF9801c_zGRKNDnjU1-UE5bogZPiTrgX1pUDj1uL4No5HjxiDO8KGwLnCRpxvRZMDWuwxLkqbOIjlRjXn9w6onZC_yw3dqCBqP8pdPlvkuTarnP-Gl6t4CI7TWLuwlbs9-DlGongPvycjoTdbN4yBHTssm9nXccmQ3YGw3IqvKFU9S6yrykrNlJjOWHXC2KMCOx63v3phj-m2GkzS9-3cfEGvp9Pb75c5KtHE_JGaXGftx5DhlAoL4VBIwTvcQhC2ugwFm15g5CE-F-0s8E7GVpfWqsqj7hRNthNy7ew3c_7-B6YKFujyItQlSrayiilLUEyj2Gaa00Gnx4VWf9O3Bg1xhSk7vqvujM4Ix2PLYjPeihAK9crK9f_s3IGh48WqldOdleLElcnhG_GZnA8VqN70J2H6-N8SW0EN9oUssrgXTLoKAkKKoSh3nrD1Buibtb0s18DBTfCIomh6IfnGNsB7AhKlOEqF-UhbN8vlvEjvLgLy6NhUj8ApOn6HQ priority: 102 providerName: Directory of Open Access Journals |
Title | Evaluation of the Infill Design on the Tensile Response of 3D Printed Polylactic Acid Polymer |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33922889 https://www.proquest.com/docview/2530162389 https://search.proquest.com/docview/2520878136 https://pubmed.ncbi.nlm.nih.gov/PMC8123144 https://doaj.org/article/0b29a570793f487aa0db057ba19dd00a |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2xPcEBlfKVUiojuKbr2E5iH0t3q3IAraBIXFBkJw5dKZtU2-6Bf8-Mkyy7qCeOGduSMzO239jjZ4APaWIT2t6PubNZrLymQ0KbxCZzuc8sL3ue7atv-ZcfejYnmpx0vAsTkvZLtzxrm9VZu7wJuZW3q3I65olNF58vcFGSGAhMJzBBbLgToofpV6KbCtNTkUoM6acrS6xOODTpmRqUCKHpVfeddSjQ9T-EMf9NldxZey4P4ekAGtl537ln8Mi3R_Bkh0rwOfycb2m7WVczhHXsU1svm4bNQo4GQzkJrylhvfHsa58b66mynLHFmngjKrbomt9NuDfFzstl_73y6xfw_XJ-fXEVD08nxKXKxX1cOwwcqkQ5KTSaonIOf0FI4y1GpDUvEZgQC0xuTeWsrGqXGqMyh-hRltgsly_hoO1a_xqYSGutaCyhVpU3mVYqNwTMHAZrttYRvB8VWdz2DBkFRhak-eKv5iP4SDre1iBW6yDo1r-KwbYFd8LYNHD21RhIWcsrh3jS2cRUFec2gpPRQsUw1O4KkeIchSBOmwjebYtxkNDJh219t6E6gutcJzKL4FVv0G1PRoeIIN8z9V5X90vQLwMR9-CHx__d8g08FpQjw1Us0hM4uF9v_FuY3FWb07A5cBpc-w8aZ_uT |
link.rule.ids | 230,315,729,782,786,866,887,2107,27934,27935,53802,53804 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RcgAOvAuBAkZwTdex87CPpbvVVrTVChaJC4rsxIGVskm17R7498w4ybKLOPUYPyQnM2N_Xzz-DPAxiUxEv_dDbk0axk7RJqGJQp3azKWGF53O9vRrdvldjSckk5MMZ2F80n5hF0dNvTxqFr98buXVshgNeWKj2cUJLkoSicBoD-5ivHKxRdL9BCzRUYXuxEglkvrR0pCuEwYnXVSDJUIoutd9ayXygv3_Q5n_JkturT6nj2457sfwsIeb7LirfgJ3XPMUHmyJED6DH5ON4DdrK4aAkJ011aKu2dhndzAsp8I5pbrXjn3psmodNZZjNluR4kTJZm39u_Ynrthxseiel271HL6dTuYn07C_dCEs4kzchJVFylFGsZVCoRFLa_HVhdTOIJeteIGQhvRjMqNLa2RZ2UTrOLWIO2WB3TJ5APtN27iXwERSqZiiEK0RO52qOM40QTqLNM9UKoAPgwHyq05bI0dOQhbL_1osgE9km00L0sP2Be3qZ95_3ZxboU3i1f4qpGDG8NIiErUm0mXJuQngcLBs3gfpdS4SnN0Q_ikdwPtNNYYX7ZmYxrVraiO4ylQk0wBedI6wGcngSAFkOy6yM9TdGvQML-Hde8KrW_d8B_em84vz_Pzs8vNruC8o04bHoUgOYf9mtXZvYO-6XL_1gfEHsjUQLg |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6xISF44PcgMMAIXrM4tpPYj2NttQmYKhgSLyiyYwcqpUnVrQ_773d22tAinuAxl7Pk5O7s7-LLdwDvs1Sn_vN-TI3OY-GkPyTUaaxyU7hc06rn2T79Wpx_l6Oxp8kZWn2Fov3KzI7aZn7Uzn6F2srFvEo2dWLJ9PMJbkocE4FkYetkD25jzFKxlaiHRZijszLVE5JyTOyTufbcThigvlkNShiTvrf71m4USPv_hjT_LJjc2oEmD_5j7g_h_hp2kuNe5RHccu1juLdFRvgEfowH4m_S1QSBITlr61nTkFGo8iAo98ILX_LeOPKlr651XpmPyHTpmScsmXbNdRP-vCLH1ay_nrvlU_g2GV-cnMbr5gtxJQp2FdcGUw-bCsOZRGNaY_DxGVdOY05b0wqhjeeRKbSyRnNbm0wpkRvEn7zCYQU_gP22a91zICyrpfDRiBYRTuVSiEJ5aGcw3dO1jODdxgjloufYKDE38VYrf1stgg_ePoOG58UOgm75s1y_4ZIapnQWWP9qTMW0ptYgIjU6VdZSqiM43Fi3XAfrZckyXOUQBkoVwdvhNoaZPzvRretWXodRWciU5xE8651hmMnGmSIodtxkZ6q7d9A7ApX32hte_PPIN3BnOpqUn87OP76Eu8wX3FARs-wQ9q-WK_cK9i7t6nWIjRtSFhKu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+the+Infill+Design+on+the+Tensile+Response+of+3D+Printed+Polylactic+Acid+Polymer&rft.jtitle=Materials&rft.au=Tanner%2C+David+Harpool&rft.au=Ibrahim+Mohammed+Alarifi&rft.au=Alshammari%2C+Basheer+A&rft.au=Aabid%2C+Abdul&rft.date=2021-04-25&rft.pub=MDPI+AG&rft.eissn=1996-1944&rft.volume=14&rft.issue=9&rft.spage=2195&rft_id=info:doi/10.3390%2Fma14092195&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |