Monitoring aboveground forest biomass dynamics over three decades using Landsat time-series and single-date inventory data
•A robust framework for monitoring forest AGB dynamics across space and time.•Estimating annual forest AGB using Landsat time-series and inventory data.•Assessing predictions of forest AGB dynamics using multi-temporal Lidar data.•Analysing biomass dynamics according to forest disturbance and recove...
Saved in:
Published in: | International journal of applied earth observation and geoinformation Vol. 84; p. 101952 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier B.V
01-02-2020
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | •A robust framework for monitoring forest AGB dynamics across space and time.•Estimating annual forest AGB using Landsat time-series and inventory data.•Assessing predictions of forest AGB dynamics using multi-temporal Lidar data.•Analysing biomass dynamics according to forest disturbance and recovery histories.
Understanding forest biomass dynamics is crucial for carbon and environmental monitoring, especially in the context of climate change. In this study, we propose a robust approach for monitoring aboveground forest biomass (AGB) dynamics by combining Landsat time-series with single-date inventory data. We developed a Random Forest (RF) based kNN model to produce annual maps of AGB from 1988 to 2017 over 7.2 million ha of forests in Victoria, Australia. The model was internally evaluated using a bootstrapping technique. Predictions of AGB and its change were then independently evaluated using multi-temporal Lidar data (2008 and 2016). To understand how natural and anthropogenic processes impact forest AGB, we analysed trends in relation to the history of disturbance and recovery. Specifically, change metrics (e.g., AGB loss and gain, Years to Recovery - Y2R) were calculated at the pixel level to characterise the patterns of AGB change resulting from forest dynamics. The imputation model achieved a RMSE value of 132.9 Mg ha−1 (RMSE% = 46.3%) and R2 value of 0.56. Independent assessments of prediction maps in 2008 and 2016 using Lidar-based AGB data achieved relatively high accuracies, with a RMSE of 108.6 Mg ha−1 and 135.9 Mg ha−1 for 2008 and 2016, respectively. Annual validations of AGB maps using un-changed, homogenous Lidar plots suggest that our model is transferable through time (RMSE ranging from 109.65 Mg ha−1 to 112.27 Mg ha−1 and RMSE% ranging from 25.38% to 25.99%). In addition, changes in AGB values associated with forest disturbance and recovery (decrease and increase, respectively) were captured by predicted maps. AGB change metrics indicate that AGB loss and Y2R varied across bioregions and were highly dependent on levels of disturbance severity (i.e., a greater loss and longer recovery time were associated with a higher severity disturbance). On average, high severity fire burnt from 200 Mg ha−1 to 550 Mg ha−1 of AGB and required up to 15 years to recover while clear-fell logging caused a reduction in 250 Mg ha−1 to 600 Mg ha−1 of AGB and required nearly 20 years to recover. In addition, AGB within un-disturbed forests showed statistically significant but monotonic trends, suggesting a mild gradual drop over time across most bioregions. Our methods are designed to support forest managers and researchers in developing forest monitoring systems, especially in developing regions, where only a single date forestry inventory exists. |
---|---|
AbstractList | Understanding forest biomass dynamics is crucial for carbon and environmental monitoring, especially in the context of climate change. In this study, we propose a robust approach for monitoring aboveground forest biomass (AGB) dynamics by combining Landsat time-series with single-date inventory data. We developed a Random Forest (RF) based kNN model to produce annual maps of AGB from 1988 to 2017 over 7.2 million ha of forests in Victoria, Australia. The model was internally evaluated using a bootstrapping technique. Predictions of AGB and its change were then independently evaluated using multi-temporal Lidar data (2008 and 2016). To understand how natural and anthropogenic processes impact forest AGB, we analysed trends in relation to the history of disturbance and recovery. Specifically, change metrics (e.g., AGB loss and gain, Years to Recovery - Y2R) were calculated at the pixel level to characterise the patterns of AGB change resulting from forest dynamics. The imputation model achieved a RMSE value of 132.9 Mg ha−1 (RMSE% = 46.3%) and R2 value of 0.56. Independent assessments of prediction maps in 2008 and 2016 using Lidar-based AGB data achieved relatively high accuracies, with a RMSE of 108.6 Mg ha−1 and 135.9 Mg ha−1 for 2008 and 2016, respectively. Annual validations of AGB maps using un-changed, homogenous Lidar plots suggest that our model is transferable through time (RMSE ranging from 109.65 Mg ha−1 to 112.27 Mg ha−1 and RMSE% ranging from 25.38% to 25.99%). In addition, changes in AGB values associated with forest disturbance and recovery (decrease and increase, respectively) were captured by predicted maps. AGB change metrics indicate that AGB loss and Y2R varied across bioregions and were highly dependent on levels of disturbance severity (i.e., a greater loss and longer recovery time were associated with a higher severity disturbance). On average, high severity fire burnt from 200 Mg ha−1 to 550 Mg ha−1 of AGB and required up to 15 years to recover while clear-fell logging caused a reduction in 250 Mg ha−1 to 600 Mg ha−1 of AGB and required nearly 20 years to recover. In addition, AGB within un-disturbed forests showed statistically significant but monotonic trends, suggesting a mild gradual drop over time across most bioregions. Our methods are designed to support forest managers and researchers in developing forest monitoring systems, especially in developing regions, where only a single date forestry inventory exists. •A robust framework for monitoring forest AGB dynamics across space and time.•Estimating annual forest AGB using Landsat time-series and inventory data.•Assessing predictions of forest AGB dynamics using multi-temporal Lidar data.•Analysing biomass dynamics according to forest disturbance and recovery histories. Understanding forest biomass dynamics is crucial for carbon and environmental monitoring, especially in the context of climate change. In this study, we propose a robust approach for monitoring aboveground forest biomass (AGB) dynamics by combining Landsat time-series with single-date inventory data. We developed a Random Forest (RF) based kNN model to produce annual maps of AGB from 1988 to 2017 over 7.2 million ha of forests in Victoria, Australia. The model was internally evaluated using a bootstrapping technique. Predictions of AGB and its change were then independently evaluated using multi-temporal Lidar data (2008 and 2016). To understand how natural and anthropogenic processes impact forest AGB, we analysed trends in relation to the history of disturbance and recovery. Specifically, change metrics (e.g., AGB loss and gain, Years to Recovery - Y2R) were calculated at the pixel level to characterise the patterns of AGB change resulting from forest dynamics. The imputation model achieved a RMSE value of 132.9 Mg ha−1 (RMSE% = 46.3%) and R2 value of 0.56. Independent assessments of prediction maps in 2008 and 2016 using Lidar-based AGB data achieved relatively high accuracies, with a RMSE of 108.6 Mg ha−1 and 135.9 Mg ha−1 for 2008 and 2016, respectively. Annual validations of AGB maps using un-changed, homogenous Lidar plots suggest that our model is transferable through time (RMSE ranging from 109.65 Mg ha−1 to 112.27 Mg ha−1 and RMSE% ranging from 25.38% to 25.99%). In addition, changes in AGB values associated with forest disturbance and recovery (decrease and increase, respectively) were captured by predicted maps. AGB change metrics indicate that AGB loss and Y2R varied across bioregions and were highly dependent on levels of disturbance severity (i.e., a greater loss and longer recovery time were associated with a higher severity disturbance). On average, high severity fire burnt from 200 Mg ha−1 to 550 Mg ha−1 of AGB and required up to 15 years to recover while clear-fell logging caused a reduction in 250 Mg ha−1 to 600 Mg ha−1 of AGB and required nearly 20 years to recover. In addition, AGB within un-disturbed forests showed statistically significant but monotonic trends, suggesting a mild gradual drop over time across most bioregions. Our methods are designed to support forest managers and researchers in developing forest monitoring systems, especially in developing regions, where only a single date forestry inventory exists. |
ArticleNumber | 101952 |
Author | Nguyen, Trung H. Hislop, Samuel Jones, Simon D. Soto-Berelov, Mariela Haywood, Andrew |
Author_xml | – sequence: 1 givenname: Trung H. surname: Nguyen fullname: Nguyen, Trung H. email: trung.nguyen3@rmit.edu.au organization: Remote Sensing Centre, Geospatial Science, School of Science, RMIT University, Australia – sequence: 2 givenname: Simon D. surname: Jones fullname: Jones, Simon D. organization: Remote Sensing Centre, Geospatial Science, School of Science, RMIT University, Australia – sequence: 3 givenname: Mariela surname: Soto-Berelov fullname: Soto-Berelov, Mariela organization: Remote Sensing Centre, Geospatial Science, School of Science, RMIT University, Australia – sequence: 4 givenname: Andrew surname: Haywood fullname: Haywood, Andrew organization: European Forest Institute, Barcelona, Spain – sequence: 5 givenname: Samuel surname: Hislop fullname: Hislop, Samuel organization: Remote Sensing Centre, Geospatial Science, School of Science, RMIT University, Australia |
BookMark | eNp9kctuGyEUhlGUSrn1AbLjBcYBzACjrqqoTSK56qaVskNn4IzDyIYKiCXn6cPEVZddcS78H5zzX5HzmCIScsvZijOu7ubVDNuVYHxY8qEXZ-SSGy06I9TzeYt7NXRGrsUFuSplZoxrrcwlefuRYqgph7ilMKYDbnN6jZ5OKWOpdAxpD6VQf4ywD67QdiPT-pIRqUcHHgt9LYt4A9EXqLSGPXYFc2idVqJLc4edh4o0xAPG9tiRthRuyKcJdgU__z2vye_v337dP3abnw9P9183nZNa1M4pIdWEvTNO9xyY916NBteTA5B8GozsBcNRjlw6riUw5jSTozJr37tp0Otr8nTi-gSz_ZPDHvLRJgj2o5Dy1kKuwe3QaqFNWwwYyRtQjy1g_YjOMYVmAtZY_MRyOZWScfrH48wuRtjZNiPsYoQ9GdE0X04abEMeAmZbXMDo0IeMrrZfhP-o3wHu7pVW |
CitedBy_id | crossref_primary_10_1080_01431161_2023_2221801 crossref_primary_10_3390_f12111494 crossref_primary_10_1016_j_rse_2021_112644 crossref_primary_10_1080_01431161_2024_2368930 crossref_primary_10_1007_s00477_022_02359_z crossref_primary_10_3390_rs12213560 crossref_primary_10_3390_rs13193910 crossref_primary_10_1007_s12524_022_01607_7 crossref_primary_10_3390_su13126964 crossref_primary_10_5194_bg_21_473_2024 crossref_primary_10_3390_rs13020218 crossref_primary_10_1016_j_foreco_2023_120948 crossref_primary_10_3390_rs12010098 crossref_primary_10_3390_rs13234745 crossref_primary_10_3390_rs12203330 crossref_primary_10_7717_peerj_cs_648 crossref_primary_10_3390_rs14122786 crossref_primary_10_1371_journal_pone_0241418 |
Cites_doi | 10.1016/j.rse.2009.08.017 10.2307/1907187 10.1016/j.rse.2013.04.022 10.1641/0006-3568(2004)054[0535:LRIEAO]2.0.CO;2 10.1214/009053604000000067 10.3390/rs70302832 10.3390/f8040098 10.1016/j.rse.2018.07.024 10.1016/j.rse.2011.09.024 10.1016/j.rse.2010.07.008 10.1016/j.isprsjprs.2014.03.008 10.1016/j.rse.2013.08.010 10.1139/cjfr-2013-0401 10.1002/env.507 10.3390/rs10111825 10.1002/joc.5086 10.3390/rs10030460 10.1016/j.rse.2013.05.033 10.1002/rse2.113 10.1080/2150704X.2015.1126375 10.1080/01621459.1952.10483441 10.3832/ifor1989-010 10.1088/1748-9326/aa9d9e 10.1016/j.rse.2009.12.018 10.18637/jss.v023.i10 10.1016/j.rse.2017.11.015 10.1016/j.rse.2011.09.025 10.1016/j.rse.2011.03.020 10.1016/j.rse.2016.03.012 10.1016/j.foreco.2014.06.003 10.1016/j.rse.2013.12.013 10.1016/j.foreco.2015.11.015 10.1016/j.rse.2016.01.015 10.1016/j.rse.2017.03.035 10.1016/j.rse.2007.10.009 10.1080/07038992.2014.945827 10.3390/rs9060598 10.3390/rs5126481 10.1080/01431161.2018.1452075 10.2307/3001968 10.1007/s10021-013-9713-9 10.5194/bg-10-5421-2013 10.1080/07038992.2016.1207484 10.1016/j.rse.2004.07.009 10.1016/j.rse.2015.09.004 10.1016/j.rse.2011.10.028 10.3390/f4040984 10.1016/j.rse.2013.08.048 10.1080/02827580902870490 10.1016/j.rse.2018.08.028 10.1016/0034-4257(85)90102-6 10.1080/07038992.2017.1259556 10.1016/j.foreco.2016.02.026 10.3390/f8040099 10.5589/m12-049 10.1038/ncomms4906 10.1016/j.rse.2017.12.020 10.1016/j.isprsjprs.2012.02.009 |
ContentType | Journal Article |
Copyright | 2019 |
Copyright_xml | – notice: 2019 |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.jag.2019.101952 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1872-826X |
ExternalDocumentID | oai_doaj_org_article_7278177a841b4b7ba8405becc06e8fa0 10_1016_j_jag_2019_101952 S0303243419305070 |
GroupedDBID | 29J 4.4 5GY 6I. AAFTH AAQXK AAXUO ABFYP ABLST ABQEM ABQYD ABYKQ ACLVX ACRLP ACSBN ADBBV ADMUD AFKWA AFTJW AFXIZ AGYEJ AHEUO AIKHN AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AZFZN BKOJK BLECG EBS EJD FDB FEDTE FIRID FYGXN GROUPED_DOAJ HVGLF IMUCA KCYFY KOM M41 O-L P-8 P-9 P2P R2- RIG ROL SDF SDG SES SPC SSE SSJ T5K ~02 AAHBH AALRI AAXKI AAYXX ADVLN AFJKZ AITUG CITATION EFJIC 0SF |
ID | FETCH-LOGICAL-c472t-c6246fe5c8c751a0ddd6b8e3fcaa41f984520eb4b14c174a00c704b683d5cf973 |
IEDL.DBID | DOA |
ISSN | 1569-8432 |
IngestDate | Tue Oct 22 15:13:29 EDT 2024 Thu Nov 21 21:44:44 EST 2024 Fri Feb 23 02:39:57 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Forest recovery Landsat time-series Single-date inventory Lidar Australia Forest disturbance Aboveground biomass |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c472t-c6246fe5c8c751a0ddd6b8e3fcaa41f984520eb4b14c174a00c704b683d5cf973 |
OpenAccessLink | https://doaj.org/article/7278177a841b4b7ba8405becc06e8fa0 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7278177a841b4b7ba8405becc06e8fa0 crossref_primary_10_1016_j_jag_2019_101952 elsevier_sciencedirect_doi_10_1016_j_jag_2019_101952 |
PublicationCentury | 2000 |
PublicationDate | February 2020 2020-02-00 2020-02-01 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
PublicationDecade | 2020 |
PublicationTitle | International journal of applied earth observation and geoinformation |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Bartels, Chen, Wulder, White (bib0010) 2016; 361 Haywood, Mellor, Stone (bib0115) 2016; 367 Gallant, Dowling, Read, Wilson, Tickler, Inskeep (bib0100) 2010 Fick, Hijmans (bib0090) 2017; 37 Wulder, White, Bater, Coops, Hopkinson, Chen (bib0355) 2014; 38 Kennedy, Yang, Cohen (bib0185) 2010; 114 Soto-Berelov, Haywood, Jones, Hislop, Nguyen (bib0295) 2018 Zald, Ohmann, Roberts, Gregory, Henderson, McGaughey, Braaten (bib0360) 2014; 143 Cao, Coops, Innes, Sheppard, Fu, Ruan, She (bib0030) 2016; 178 BOM (bib0025) 2019 Matasci, Hermosilla, Wulder, White, Coops, Hobart, Zald (bib0235) 2018; 209 Nguyen, Jones, Soto-Berelov, Skidmore, Haywood, Hislop (bib0255) 2019 Cohen, Yang, Healey, Kennedy, Gorelick (bib0045) 2018; 205 Efron, Hastie, Johnstone, Tibshirani (bib0080) 2004; 32 Tsui, Coops, Wulder, Marshall, McCardle (bib0305) 2012; 69 Hermosilla, Wulder, White, Coops, Hobart (bib0130) 2015; 170 Griffiths, Kuemmerle, Baumann, Radeloff, Abrudan, Lieskovsky, Munteanu, Ostapowicz, Hostert (bib0110) 2014; 151 Badreldin, Sanchez-Azofeifa (bib0005) 2015; 7 Kennedy, Ohmann, Gregory, Roberts, Yang, Bell, Kane, Hughes, Cohen, Powell, Neeti, Larrue, Hooper, Kane, Miller, Perkins, Braaten, Seidl (bib0180) 2018; 13 Isenburg (bib0170) 2012 Wulder, Skakun, Kurz, White (bib0345) 2004; 93 Huang, Goward, Masek, Thomas, Zhu, Vogelmann (bib0155) 2010; 114 Wilcoxon (bib0340) 1945; 1 Pflugmacher, Cohen, Kennedy, Yang (bib0275) 2014; 151 (bib0300) 2009 Cohen, Goward (bib0040) 2004; 54 White, Wulder, Hermosilla, Coops, Hobart (bib0335) 2017; 194 Eskelson, Temesgen, Lemay, Barrett, Crookston, Hudak (bib0085) 2009; 24 Pickell, Hermosilla, Frazier, Coops, Wulder (bib0280) 2015; 37 Department of Environment and Primary Industries (bib0075) 2013 Main-Knorn, Cohen, Kennedy, Grodzki, Pflugmacher, Griffiths, Hostert (bib0220) 2013; 139 UN-REDD Programme Secretariat (bib0310) 2013 Kennedy, Yang, Cohen, Pfaff, Braaten, Nelson (bib0190) 2012; 122 Zald, Wulder, White, Hilker, Hermosilla, Hobart, Coops (bib0365) 2016; 176 Bolton, White, Wulder, Coops, Hermosilla, Yuan (bib0020) 2018; 66 Flood (bib0095) 2013; 5 Gómez, White, Wulder, Alejandro (bib0105) 2014; 93 Houghton (bib0150) 2005 Hudak, Crookston, Evans, Hall, Falkowski (bib0160) 2008; 112 Powell, Cohen, Kennedy, Healey, Huang (bib0290) 2013; 17 Key, Benson (bib0195) 2005 Deo, Russell, Domke, Woodall, Falkowski, Cohen (bib0070) 2017; 43 Haywood, Stone (bib0120) 2017; 8 Hislop, Jones, Soto-Berelov, Skidmore, Haywood, Nguyen (bib0135) 2018 Hislop, Jones, Soto-Berelov, Skidmore, Haywood, Nguyen (bib0145) 2019 He, Chen, An, Li (bib0125) 2013; 4 Ohmann, Gregory, Roberts (bib0265) 2014; 151 Pflugmacher, Cohen, Kennedy (bib0270) 2012; 122 White, Coops, Wulder, Vastaranta, Hilker, Tompalski (bib0330) 2016; 42 Zhu, Woodcock (bib0370) 2012; 118 Deo, Russell, Domke, Andersen, Cohen, Woodall (bib0065) 2017; 9 Crookston, Finley (bib0060) 2008; 23 Hislop, Jones, Soto-Berelov, Skidmore, Haywood, Nguyen (bib0140) 2018; 10 Crist (bib0055) 1985; 17 Le Toan, Quegan, Davidson, Balzter, Paillou, Papathanassiou, Plummer, Rocca, Saatchi, Shugart, Ulander (bib0205) 2011; 115 Wulder, Coops, Roy, White, Hermosilla (bib0350) 2018; 39 Powell, Cohen, Healey, Kennedy, Moisen, Pierce, Ohmann (bib0285) 2010; 114 Mora, Herold, de Sy, Wijaya, Verchot, Penman (bib0245) 2012 Kruskal, Wallis (bib0200) 1952; 47 Matasci, Hermosilla, Wulder, White, Coops, Hobart, Bolton, Tompalski, Bater (bib0230) 2018; 216 Nguyen, Jones, Soto-Berelov, Haywood, Hislop (bib0250) 2018; 10 Waser, Ginzler, Rehush (bib0320) 2017; 9 Meyer, Saatchi, Chave, Dalling, Bohlman, Fricker, Robinson, Neumann, Hubbell (bib0240) 2013; 10 Cole, Bhagwat, Willis (bib0050) 2014; 5 Mann (bib0225) 1945 Ioki, Tsuyuki, Hirata, Phua, Wong, Ling, Saito, Takao (bib0165) 2014; 328 Viridans (bib0315) 2016 White, Wulder, Hobart, Luther, Hermosilla, Griffiths, Coops, Hall, Hostert, Dyk (bib0325) 2014; 40 Jiménez, Vega, Fernández-Alonso, Vega-Nieva, Ortiz, López-Serrano, López-Sánchez (bib0175) 2017; 10 Beaudoin, Bernier, Guindon, Villemaire, Guo, Stinson, Bergeron, Magnussen, Hall (bib0015) 2014; 44 Libiseller, Grimvall (bib0215) 2002; 13 Cohen, Healey, Yang, Stehman, Brewer, Brooks, Gorelick, Huang, Hughes, Kennedy, Loveland, Moisen, Schroeder, Vogelmann, Woodcock, Yang, Zhu (bib0035) 2017; 8 Liaw, Wiener (bib0210) 2002; 2 Nguyen, Jones, Soto-Berelov, Haywood, Hislop (bib0260) 2018; 217 Wulder (10.1016/j.jag.2019.101952_bib0345) 2004; 93 White (10.1016/j.jag.2019.101952_bib0335) 2017; 194 Main-Knorn (10.1016/j.jag.2019.101952_bib0220) 2013; 139 Deo (10.1016/j.jag.2019.101952_bib0065) 2017; 9 Gallant (10.1016/j.jag.2019.101952_bib0100) 2010 Tsui (10.1016/j.jag.2019.101952_bib0305) 2012; 69 White (10.1016/j.jag.2019.101952_bib0325) 2014; 40 Houghton (10.1016/j.jag.2019.101952_bib0150) 2005 Ioki (10.1016/j.jag.2019.101952_bib0165) 2014; 328 Matasci (10.1016/j.jag.2019.101952_bib0230) 2018; 216 Nguyen (10.1016/j.jag.2019.101952_bib0250) 2018; 10 Kennedy (10.1016/j.jag.2019.101952_bib0180) 2018; 13 Meyer (10.1016/j.jag.2019.101952_bib0240) 2013; 10 Nguyen (10.1016/j.jag.2019.101952_bib0260) 2018; 217 Hislop (10.1016/j.jag.2019.101952_bib0145) 2019 Haywood (10.1016/j.jag.2019.101952_bib0115) 2016; 367 Zald (10.1016/j.jag.2019.101952_bib0365) 2016; 176 Cole (10.1016/j.jag.2019.101952_bib0050) 2014; 5 Hislop (10.1016/j.jag.2019.101952_bib0135) 2018 Bolton (10.1016/j.jag.2019.101952_bib0020) 2018; 66 Cohen (10.1016/j.jag.2019.101952_bib0035) 2017; 8 Griffiths (10.1016/j.jag.2019.101952_bib0110) 2014; 151 Hermosilla (10.1016/j.jag.2019.101952_bib0130) 2015; 170 Ohmann (10.1016/j.jag.2019.101952_bib0265) 2014; 151 Zald (10.1016/j.jag.2019.101952_bib0360) 2014; 143 Viridans (10.1016/j.jag.2019.101952_bib0315) 2016 Cohen (10.1016/j.jag.2019.101952_bib0040) 2004; 54 He (10.1016/j.jag.2019.101952_bib0125) 2013; 4 Pflugmacher (10.1016/j.jag.2019.101952_bib0270) 2012; 122 Department of Environment and Primary Industries (10.1016/j.jag.2019.101952_bib0075) 2013 Key (10.1016/j.jag.2019.101952_bib0195) 2005 Pickell (10.1016/j.jag.2019.101952_bib0280) 2015; 37 Mann (10.1016/j.jag.2019.101952_bib0225) 1945 Eskelson (10.1016/j.jag.2019.101952_bib0085) 2009; 24 Zhu (10.1016/j.jag.2019.101952_bib0370) 2012; 118 Le Toan (10.1016/j.jag.2019.101952_bib0205) 2011; 115 Huang (10.1016/j.jag.2019.101952_bib0155) 2010; 114 Kennedy (10.1016/j.jag.2019.101952_bib0190) 2012; 122 Fick (10.1016/j.jag.2019.101952_bib0090) 2017; 37 Gómez (10.1016/j.jag.2019.101952_bib0105) 2014; 93 Cao (10.1016/j.jag.2019.101952_bib0030) 2016; 178 Liaw (10.1016/j.jag.2019.101952_bib0210) 2002; 2 Badreldin (10.1016/j.jag.2019.101952_bib0005) 2015; 7 Soto-Berelov (10.1016/j.jag.2019.101952_bib0295) 2018 BOM (10.1016/j.jag.2019.101952_bib0025) 2019 UN-REDD Programme Secretariat (10.1016/j.jag.2019.101952_bib0310) 2013 Mora (10.1016/j.jag.2019.101952_bib0245) 2012 Powell (10.1016/j.jag.2019.101952_bib0285) 2010; 114 Crookston (10.1016/j.jag.2019.101952_bib0060) 2008; 23 White (10.1016/j.jag.2019.101952_bib0330) 2016; 42 Hislop (10.1016/j.jag.2019.101952_bib0140) 2018; 10 Matasci (10.1016/j.jag.2019.101952_bib0235) 2018; 209 (10.1016/j.jag.2019.101952_bib0300) 2009 Hudak (10.1016/j.jag.2019.101952_bib0160) 2008; 112 Flood (10.1016/j.jag.2019.101952_bib0095) 2013; 5 Jiménez (10.1016/j.jag.2019.101952_bib0175) 2017; 10 Kruskal (10.1016/j.jag.2019.101952_bib0200) 1952; 47 Nguyen (10.1016/j.jag.2019.101952_bib0255) 2019 Powell (10.1016/j.jag.2019.101952_bib0290) 2013; 17 Wulder (10.1016/j.jag.2019.101952_bib0355) 2014; 38 Haywood (10.1016/j.jag.2019.101952_bib0120) 2017; 8 Wulder (10.1016/j.jag.2019.101952_bib0350) 2018; 39 Efron (10.1016/j.jag.2019.101952_bib0080) 2004; 32 Cohen (10.1016/j.jag.2019.101952_bib0045) 2018; 205 Bartels (10.1016/j.jag.2019.101952_bib0010) 2016; 361 Kennedy (10.1016/j.jag.2019.101952_bib0185) 2010; 114 Wilcoxon (10.1016/j.jag.2019.101952_bib0340) 1945; 1 Beaudoin (10.1016/j.jag.2019.101952_bib0015) 2014; 44 Pflugmacher (10.1016/j.jag.2019.101952_bib0275) 2014; 151 Libiseller (10.1016/j.jag.2019.101952_bib0215) 2002; 13 Waser (10.1016/j.jag.2019.101952_bib0320) 2017; 9 Deo (10.1016/j.jag.2019.101952_bib0070) 2017; 43 Crist (10.1016/j.jag.2019.101952_bib0055) 1985; 17 Isenburg (10.1016/j.jag.2019.101952_bib0170) 2012 |
References_xml | – volume: 93 start-page: 14 year: 2014 end-page: 28 ident: bib0105 article-title: Historical forest biomass dynamics modelled with Landsat spectral trajectories publication-title: Isprs J. Photogramm. Remote. Sens. contributor: fullname: Alejandro – volume: 4 start-page: 984 year: 2013 end-page: 1002 ident: bib0125 article-title: Above-ground biomass and biomass components estimation using LiDAR data in a coniferous forest publication-title: Forests contributor: fullname: Li – volume: 10 start-page: 460 year: 2018 ident: bib0140 article-title: Using Landsat spectral indices in time-series to assess wildfire disturbance and recovery publication-title: Remote Sens. (Basel) contributor: fullname: Nguyen – volume: 151 start-page: 3 year: 2014 end-page: 15 ident: bib0265 article-title: Scale considerations for integrating forest inventory plot data and satellite image data for regional forest mapping publication-title: Remote Sens. Environ. contributor: fullname: Roberts – volume: 216 start-page: 697 year: 2018 end-page: 714 ident: bib0230 article-title: Three decades of forest structural dynamics over Canada’s forested ecosystems using Landsat time-series and lidar plots publication-title: Remote Sens. Environ. contributor: fullname: Bater – volume: 37 start-page: 138 year: 2015 end-page: 149 ident: bib0280 article-title: Forest recovery trends derived from Landsat time series for North American boreal forests publication-title: Int. J. Remote Sens. contributor: fullname: Wulder – volume: 122 start-page: 117 year: 2012 end-page: 133 ident: bib0190 article-title: Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan publication-title: Remote Sens. Environ. contributor: fullname: Nelson – volume: 47 start-page: 583 year: 1952 end-page: 621 ident: bib0200 article-title: Use of ranks in one-criterion variance analysis publication-title: J. Am. Stat. Assoc. contributor: fullname: Wallis – volume: 7 start-page: 2832 year: 2015 end-page: 2849 ident: bib0005 article-title: Estimating forest biomass dynamics by integrating multi-temporal Landsat satellite images with ground and airborne LiDAR data in the coal valley mine, Alberta, Canada publication-title: Remote Sens. (Basel) contributor: fullname: Sanchez-Azofeifa – year: 2018 ident: bib0295 article-title: Creating robust reference (training) datasets for large area time series disturbance attribution publication-title: Remote Sensing: Time Series Image Processing contributor: fullname: Nguyen – volume: 10 start-page: 5421 year: 2013 end-page: 5438 ident: bib0240 article-title: Detecting tropical forest biomass dynamics from repeated airborne lidar measurements publication-title: Biogeosciences contributor: fullname: Hubbell – volume: 114 start-page: 1053 year: 2010 end-page: 1068 ident: bib0285 article-title: Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: a comparison of empirical modeling approaches publication-title: Remote Sens. Environ. contributor: fullname: Ohmann – volume: 23 start-page: 1 year: 2008 end-page: 16 ident: bib0060 article-title: yaImpute: an R package for kNN imputation publication-title: J. Stat. Softw. contributor: fullname: Finley – volume: 24 start-page: 235 year: 2009 end-page: 246 ident: bib0085 article-title: The roles of nearest neighbor methods in imputing missing data in forest inventory and monitoring databases publication-title: Scand. J. For. Res. contributor: fullname: Hudak – volume: 93 start-page: 179 year: 2004 end-page: 187 ident: bib0345 article-title: Estimating time since forest harvest using segmented Landsat ETM+ imagery publication-title: Remote Sens. Environ. contributor: fullname: White – volume: 54 start-page: 535 year: 2004 end-page: 545 ident: bib0040 article-title: Landsat’s role in ecological applications of remote sensing publication-title: BioScience contributor: fullname: Goward – volume: 114 start-page: 2897 year: 2010 end-page: 2910 ident: bib0185 article-title: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr — temporal segmentation algorithms publication-title: Remote Sens. Environ. contributor: fullname: Cohen – volume: 66 start-page: 174 year: 2018 end-page: 183 ident: bib0020 article-title: Updating stand-level forest inventories using airborne laser scanning and Landsat time series data publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Yuan – volume: 17 start-page: 142 year: 2013 end-page: 157 ident: bib0290 article-title: Observation of trends in biomass loss as a result of disturbance in the Conterminous U.S.: 1986–2004 publication-title: Ecosystems contributor: fullname: Huang – volume: 17 start-page: 301 year: 1985 end-page: 306 ident: bib0055 article-title: A TM tasseled cap equivalent transformation for reflectance factor data publication-title: Remote Sens. Environ. contributor: fullname: Crist – year: 2019 ident: bib0255 article-title: Estimate forest biomass dynamics using multi-temporal lidar and single-date inventory data publication-title: IEEE International Geoscience and Remote Sensing Symposium (IGARSS) contributor: fullname: Hislop – volume: 328 start-page: 335 year: 2014 end-page: 341 ident: bib0165 article-title: Estimating above-ground biomass of tropical rainforest of different degradation levels in Northern Borneo using airborne LiDAR publication-title: For. Ecol. Manage. contributor: fullname: Takao – year: 2012 ident: bib0170 article-title: LAStools-efficient Tools for LiDAR Processing contributor: fullname: Isenburg – start-page: 245 year: 1945 end-page: 259 ident: bib0225 article-title: Nonparametric tests against trend publication-title: Econometrica: Journal of the Econometric Society contributor: fullname: Mann – volume: 5 start-page: 6481 year: 2013 end-page: 6500 ident: bib0095 article-title: Seasonal composite Landsat TM/ETM+ images using the medoid (a multi-dimensional median) publication-title: Remote Sens. (Basel) contributor: fullname: Flood – volume: 194 start-page: 303 year: 2017 end-page: 321 ident: bib0335 article-title: A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series publication-title: Remote Sens. Environ. contributor: fullname: Hobart – volume: 367 start-page: 86 year: 2016 end-page: 96 ident: bib0115 article-title: A strategic forest inventory for public land in Victoria, Australia publication-title: For. Ecol. Manage. contributor: fullname: Stone – year: 2019 ident: bib0145 article-title: High fire disturbance in forests leads to longer recovery, but varies by forest type publication-title: Remote Sens. Ecol. Conserv. contributor: fullname: Nguyen – year: 2005 ident: bib0150 article-title: Tropical deforestation as a source of greenhouse gas emissions publication-title: Tropical Deforestation and Climate Change contributor: fullname: Houghton – volume: 151 start-page: 72 year: 2014 end-page: 88 ident: bib0110 article-title: Forest disturbances, forest recovery, and changes in forest types across the Carpathian ecoregion from 1985 to 2010 based on Landsat image composites publication-title: Remote Sens. Environ. contributor: fullname: Hostert – volume: 151 start-page: 124 year: 2014 end-page: 137 ident: bib0275 article-title: Using Landsat-derived disturbance and recovery history and lidar to map forest biomass dynamics publication-title: Remote Sens. Environ. contributor: fullname: Yang – volume: 170 start-page: 121 year: 2015 end-page: 132 ident: bib0130 article-title: Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics publication-title: Remote Sens. Environ. contributor: fullname: Hobart – volume: 10 start-page: 590 year: 2017 end-page: 596 ident: bib0175 article-title: Estimation of aboveground forest biomass in Galicia (NW Spain) by the combined use of LiDAR, LANDSAT ETM+ and National Forest Inventory data publication-title: iForest Biogeosci. For. contributor: fullname: López-Sánchez – year: 2012 ident: bib0245 article-title: Capacity Development in National Forest Monitoring: Experiences and Progress for REDD+ contributor: fullname: Penman – volume: 361 start-page: 194 year: 2016 end-page: 207 ident: bib0010 article-title: Trends in post-disturbance recovery rates of Canada’s forests following wildfire and harvest publication-title: For. Ecol. Manage. contributor: fullname: White – volume: 118 start-page: 83 year: 2012 end-page: 94 ident: bib0370 article-title: Object-based cloud and cloud shadow detection in Landsat imagery publication-title: Remote Sens. Environ. contributor: fullname: Woodcock – volume: 209 start-page: 90 year: 2018 end-page: 106 ident: bib0235 article-title: Large-area mapping of Canadian boreal forest cover, height, biomass and other structural attributes using Landsat composites and lidar plots publication-title: Remote Sens. Environ. contributor: fullname: Zald – volume: 2 start-page: 18 year: 2002 end-page: 22 ident: bib0210 article-title: Classification and regression by random forest publication-title: R news contributor: fullname: Wiener – volume: 43 start-page: 28 year: 2017 end-page: 47 ident: bib0070 article-title: Using Landsat time-series and LiDAR to inform aboveground forest biomass baselines in Northern Minnesota, USA publication-title: Can. J. Remote. Sens. contributor: fullname: Cohen – volume: 1 start-page: 80 year: 1945 end-page: 83 ident: bib0340 article-title: Individual comparisons by ranking methods publication-title: Biom. Bull. contributor: fullname: Wilcoxon – volume: 114 start-page: 183 year: 2010 end-page: 198 ident: bib0155 article-title: An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks publication-title: Remote Sens. Environ. contributor: fullname: Vogelmann – volume: 139 start-page: 277 year: 2013 end-page: 290 ident: bib0220 article-title: Monitoring coniferous forest biomass change using a Landsat trajectory-based approach publication-title: Remote Sens. Environ. contributor: fullname: Hostert – year: 2009 ident: bib0300 publication-title: National Forest Inventories – volume: 115 start-page: 2850 year: 2011 end-page: 2860 ident: bib0205 article-title: The BIOMASS mission: mapping global forest biomass to better understand the terrestrial carbon cycle publication-title: Remote Sens. Environ. contributor: fullname: Ulander – year: 2013 ident: bib0310 article-title: National Forest monitoring systems: monitoring and measurement, reporting and verification (M & MRV) in the context of REDD+ activities publication-title: 7th Meeting of the UN-REDD Programme Policy Board contributor: fullname: UN-REDD Programme Secretariat – volume: 217 start-page: 461 year: 2018 end-page: 475 ident: bib0260 article-title: A spatial and temporal analysis of forest dynamics using Landsat time-series publication-title: Remote Sens. Environ. contributor: fullname: Hislop – volume: 13 year: 2018 ident: bib0180 article-title: An empirical, integrated forest biomass monitoring system publication-title: Environ. Res. Lett. contributor: fullname: Seidl – year: 2013 ident: bib0075 article-title: Victoria’s State of the Forest Report 2013 contributor: fullname: Department of Environment and Primary Industries – year: 2019 ident: bib0025 article-title: Bureau of Meteorology (BOM) contributor: fullname: BOM – volume: 38 start-page: 600 year: 2014 end-page: 618 ident: bib0355 article-title: Lidar plots — a new large-area data collection option: context, concepts, and case study publication-title: Can. J. Remote. Sens. contributor: fullname: Chen – volume: 69 start-page: 121 year: 2012 end-page: 133 ident: bib0305 article-title: Using multi-frequency radar and discrete-return LiDAR measurements to estimate above-ground biomass and biomass components in a coastal temperate forest publication-title: Isprs J. Photogramm. Remote. Sens. contributor: fullname: McCardle – volume: 5 start-page: 3906 year: 2014 ident: bib0050 article-title: Recovery and resilience of tropical forests after disturbance publication-title: Nat. Commun. contributor: fullname: Willis – volume: 40 start-page: 192 year: 2014 end-page: 212 ident: bib0325 article-title: Pixel-based image compositing for large-area dense time series applications and science publication-title: Can. J. Remote. Sens. contributor: fullname: Dyk – volume: 32 start-page: 407 year: 2004 end-page: 499 ident: bib0080 article-title: Least angle regression publication-title: Ann. Statist. contributor: fullname: Tibshirani – volume: 8 start-page: 99 year: 2017 ident: bib0120 article-title: Estimating large area forest carbon stocks—a pragmatic design based strategy publication-title: Forests contributor: fullname: Stone – volume: 143 start-page: 26 year: 2014 end-page: 38 ident: bib0360 article-title: Influence of lidar, Landsat imagery, disturbance history, plot location accuracy, and plot size on accuracy of imputation maps of forest composition and structure publication-title: Remote Sens. Environ. contributor: fullname: Braaten – volume: 176 start-page: 188 year: 2016 end-page: 201 ident: bib0365 article-title: Integrating Landsat pixel composites and change metrics with lidar plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada publication-title: Remote Sens. Environ. contributor: fullname: Coops – year: 2005 ident: bib0195 article-title: Landscape Assessment: Remote Sensing of Severity, the Normalized Burn Ratio and Ground Measure of Severity, the Composite Burn Index. FIREMON: Fire Effects Monitoring and Inventory System Ogden contributor: fullname: Benson – volume: 8 start-page: 98 year: 2017 ident: bib0035 article-title: How similar are forest disturbance maps derived from different Landsat time series algorithms? publication-title: Forests contributor: fullname: Zhu – year: 2016 ident: bib0315 article-title: Victorian Ecosystems and Vegetation contributor: fullname: Viridans – year: 2018 ident: bib0135 article-title: A New semi-automatic seamless cloud-free Landsat mosaicing approach tracks forest change over large extents publication-title: IEEE International Geoscience and Remote Sensing Symposium (IGARSS) contributor: fullname: Nguyen – year: 2010 ident: bib0100 article-title: Second SRTM Derived Digital Elevation Models User Guide contributor: fullname: Inskeep – volume: 112 start-page: 2232 year: 2008 end-page: 2245 ident: bib0160 article-title: Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data publication-title: Remote Sens. Environ. contributor: fullname: Falkowski – volume: 44 start-page: 521 year: 2014 end-page: 532 ident: bib0015 article-title: Mapping attributes of Canada’s forests at moderate resolution through kNN and MODIS imagery publication-title: Can. J. For. Res. contributor: fullname: Hall – volume: 178 start-page: 158 year: 2016 end-page: 171 ident: bib0030 article-title: Estimation of forest biomass dynamics in subtropical forests using multi-temporal airborne LiDAR data publication-title: Remote Sens. Environ. contributor: fullname: She – volume: 13 start-page: 71 year: 2002 end-page: 84 ident: bib0215 article-title: Performance of partial Mann–Kendall tests for trend detection in the presence of covariates publication-title: Environmetrics: The official journal of the International Environmetrics Society contributor: fullname: Grimvall – volume: 39 start-page: 4254 year: 2018 end-page: 4284 ident: bib0350 article-title: Land cover 2.0 publication-title: Int. J. Remote Sens. contributor: fullname: Hermosilla – volume: 205 start-page: 131 year: 2018 end-page: 140 ident: bib0045 article-title: A LandTrendr multispectral ensemble for forest disturbance detection publication-title: Remote Sens. Environ. contributor: fullname: Gorelick – volume: 37 start-page: 4302 year: 2017 end-page: 4315 ident: bib0090 article-title: WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas publication-title: Int. J. Climatol. contributor: fullname: Hijmans – volume: 9 year: 2017 ident: bib0320 article-title: Wall-to-Wall tree type mapping from countrywide airborne remote sensing surveys publication-title: Remote Sens. (Basel) contributor: fullname: Rehush – volume: 10 start-page: 1825 year: 2018 ident: bib0250 article-title: A comparison of imputation approaches for estimating forest biomass using Landsat time-series and inventory data publication-title: Remote Sens. (Basel) contributor: fullname: Hislop – volume: 9 start-page: 598 year: 2017 ident: bib0065 article-title: Evaluating site-specific and generic spatial models of aboveground forest biomass based on Landsat time-series and LiDAR strip samples in the Eastern USA publication-title: Remote Sens. (Basel) contributor: fullname: Woodall – volume: 122 start-page: 146 year: 2012 end-page: 165 ident: bib0270 article-title: Using Landsat-derived disturbance history (1972–2010) to predict current forest structure publication-title: Remote Sens. Environ. contributor: fullname: Kennedy – volume: 42 start-page: 619 year: 2016 end-page: 641 ident: bib0330 article-title: Remote sensing technologies for enhancing forest inventories: a review publication-title: Can. J. Remote. Sens. contributor: fullname: Tompalski – volume: 114 start-page: 183 year: 2010 ident: 10.1016/j.jag.2019.101952_bib0155 article-title: An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.08.017 contributor: fullname: Huang – start-page: 245 year: 1945 ident: 10.1016/j.jag.2019.101952_bib0225 article-title: Nonparametric tests against trend publication-title: Econometrica: Journal of the Econometric Society doi: 10.2307/1907187 contributor: fullname: Mann – volume: 151 start-page: 72 year: 2014 ident: 10.1016/j.jag.2019.101952_bib0110 article-title: Forest disturbances, forest recovery, and changes in forest types across the Carpathian ecoregion from 1985 to 2010 based on Landsat image composites publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.04.022 contributor: fullname: Griffiths – volume: 54 start-page: 535 year: 2004 ident: 10.1016/j.jag.2019.101952_bib0040 article-title: Landsat’s role in ecological applications of remote sensing publication-title: BioScience doi: 10.1641/0006-3568(2004)054[0535:LRIEAO]2.0.CO;2 contributor: fullname: Cohen – volume: 32 start-page: 407 year: 2004 ident: 10.1016/j.jag.2019.101952_bib0080 article-title: Least angle regression publication-title: Ann. Statist. doi: 10.1214/009053604000000067 contributor: fullname: Efron – volume: 7 start-page: 2832 year: 2015 ident: 10.1016/j.jag.2019.101952_bib0005 article-title: Estimating forest biomass dynamics by integrating multi-temporal Landsat satellite images with ground and airborne LiDAR data in the coal valley mine, Alberta, Canada publication-title: Remote Sens. (Basel) doi: 10.3390/rs70302832 contributor: fullname: Badreldin – volume: 8 start-page: 98 year: 2017 ident: 10.1016/j.jag.2019.101952_bib0035 article-title: How similar are forest disturbance maps derived from different Landsat time series algorithms? publication-title: Forests doi: 10.3390/f8040098 contributor: fullname: Cohen – volume: 216 start-page: 697 year: 2018 ident: 10.1016/j.jag.2019.101952_bib0230 article-title: Three decades of forest structural dynamics over Canada’s forested ecosystems using Landsat time-series and lidar plots publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.07.024 contributor: fullname: Matasci – year: 2012 ident: 10.1016/j.jag.2019.101952_bib0245 contributor: fullname: Mora – volume: 122 start-page: 117 year: 2012 ident: 10.1016/j.jag.2019.101952_bib0190 article-title: Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.09.024 contributor: fullname: Kennedy – volume: 114 start-page: 2897 year: 2010 ident: 10.1016/j.jag.2019.101952_bib0185 article-title: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr — temporal segmentation algorithms publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.07.008 contributor: fullname: Kennedy – volume: 93 start-page: 14 year: 2014 ident: 10.1016/j.jag.2019.101952_bib0105 article-title: Historical forest biomass dynamics modelled with Landsat spectral trajectories publication-title: Isprs J. Photogramm. Remote. Sens. doi: 10.1016/j.isprsjprs.2014.03.008 contributor: fullname: Gómez – volume: 139 start-page: 277 year: 2013 ident: 10.1016/j.jag.2019.101952_bib0220 article-title: Monitoring coniferous forest biomass change using a Landsat trajectory-based approach publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.08.010 contributor: fullname: Main-Knorn – year: 2016 ident: 10.1016/j.jag.2019.101952_bib0315 contributor: fullname: Viridans – year: 2018 ident: 10.1016/j.jag.2019.101952_bib0295 article-title: Creating robust reference (training) datasets for large area time series disturbance attribution contributor: fullname: Soto-Berelov – volume: 44 start-page: 521 year: 2014 ident: 10.1016/j.jag.2019.101952_bib0015 article-title: Mapping attributes of Canada’s forests at moderate resolution through kNN and MODIS imagery publication-title: Can. J. For. Res. doi: 10.1139/cjfr-2013-0401 contributor: fullname: Beaudoin – volume: 13 start-page: 71 year: 2002 ident: 10.1016/j.jag.2019.101952_bib0215 article-title: Performance of partial Mann–Kendall tests for trend detection in the presence of covariates publication-title: Environmetrics: The official journal of the International Environmetrics Society doi: 10.1002/env.507 contributor: fullname: Libiseller – year: 2019 ident: 10.1016/j.jag.2019.101952_bib0025 contributor: fullname: BOM – volume: 10 start-page: 1825 year: 2018 ident: 10.1016/j.jag.2019.101952_bib0250 article-title: A comparison of imputation approaches for estimating forest biomass using Landsat time-series and inventory data publication-title: Remote Sens. (Basel) doi: 10.3390/rs10111825 contributor: fullname: Nguyen – volume: 37 start-page: 4302 year: 2017 ident: 10.1016/j.jag.2019.101952_bib0090 article-title: WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas publication-title: Int. J. Climatol. doi: 10.1002/joc.5086 contributor: fullname: Fick – volume: 10 start-page: 460 year: 2018 ident: 10.1016/j.jag.2019.101952_bib0140 article-title: Using Landsat spectral indices in time-series to assess wildfire disturbance and recovery publication-title: Remote Sens. (Basel) doi: 10.3390/rs10030460 contributor: fullname: Hislop – volume: 151 start-page: 124 year: 2014 ident: 10.1016/j.jag.2019.101952_bib0275 article-title: Using Landsat-derived disturbance and recovery history and lidar to map forest biomass dynamics publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.05.033 contributor: fullname: Pflugmacher – year: 2010 ident: 10.1016/j.jag.2019.101952_bib0100 contributor: fullname: Gallant – year: 2018 ident: 10.1016/j.jag.2019.101952_bib0135 article-title: A New semi-automatic seamless cloud-free Landsat mosaicing approach tracks forest change over large extents publication-title: IEEE International Geoscience and Remote Sensing Symposium (IGARSS) contributor: fullname: Hislop – year: 2019 ident: 10.1016/j.jag.2019.101952_bib0145 article-title: High fire disturbance in forests leads to longer recovery, but varies by forest type publication-title: Remote Sens. Ecol. Conserv. doi: 10.1002/rse2.113 contributor: fullname: Hislop – volume: 37 start-page: 138 year: 2015 ident: 10.1016/j.jag.2019.101952_bib0280 article-title: Forest recovery trends derived from Landsat time series for North American boreal forests publication-title: Int. J. Remote Sens. doi: 10.1080/2150704X.2015.1126375 contributor: fullname: Pickell – volume: 47 start-page: 583 year: 1952 ident: 10.1016/j.jag.2019.101952_bib0200 article-title: Use of ranks in one-criterion variance analysis publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1952.10483441 contributor: fullname: Kruskal – year: 2005 ident: 10.1016/j.jag.2019.101952_bib0150 article-title: Tropical deforestation as a source of greenhouse gas emissions contributor: fullname: Houghton – volume: 10 start-page: 590 year: 2017 ident: 10.1016/j.jag.2019.101952_bib0175 article-title: Estimation of aboveground forest biomass in Galicia (NW Spain) by the combined use of LiDAR, LANDSAT ETM+ and National Forest Inventory data publication-title: iForest Biogeosci. For. doi: 10.3832/ifor1989-010 contributor: fullname: Jiménez – volume: 13 year: 2018 ident: 10.1016/j.jag.2019.101952_bib0180 article-title: An empirical, integrated forest biomass monitoring system publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aa9d9e contributor: fullname: Kennedy – volume: 2 start-page: 18 year: 2002 ident: 10.1016/j.jag.2019.101952_bib0210 article-title: Classification and regression by random forest publication-title: R news contributor: fullname: Liaw – volume: 114 start-page: 1053 year: 2010 ident: 10.1016/j.jag.2019.101952_bib0285 article-title: Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: a comparison of empirical modeling approaches publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.12.018 contributor: fullname: Powell – volume: 23 start-page: 1 year: 2008 ident: 10.1016/j.jag.2019.101952_bib0060 article-title: yaImpute: an R package for kNN imputation publication-title: J. Stat. Softw. doi: 10.18637/jss.v023.i10 contributor: fullname: Crookston – volume: 205 start-page: 131 year: 2018 ident: 10.1016/j.jag.2019.101952_bib0045 article-title: A LandTrendr multispectral ensemble for forest disturbance detection publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.11.015 contributor: fullname: Cohen – volume: 122 start-page: 146 year: 2012 ident: 10.1016/j.jag.2019.101952_bib0270 article-title: Using Landsat-derived disturbance history (1972–2010) to predict current forest structure publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.09.025 contributor: fullname: Pflugmacher – volume: 115 start-page: 2850 year: 2011 ident: 10.1016/j.jag.2019.101952_bib0205 article-title: The BIOMASS mission: mapping global forest biomass to better understand the terrestrial carbon cycle publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.03.020 contributor: fullname: Le Toan – year: 2012 ident: 10.1016/j.jag.2019.101952_bib0170 contributor: fullname: Isenburg – volume: 178 start-page: 158 year: 2016 ident: 10.1016/j.jag.2019.101952_bib0030 article-title: Estimation of forest biomass dynamics in subtropical forests using multi-temporal airborne LiDAR data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.03.012 contributor: fullname: Cao – volume: 328 start-page: 335 year: 2014 ident: 10.1016/j.jag.2019.101952_bib0165 article-title: Estimating above-ground biomass of tropical rainforest of different degradation levels in Northern Borneo using airborne LiDAR publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2014.06.003 contributor: fullname: Ioki – volume: 143 start-page: 26 year: 2014 ident: 10.1016/j.jag.2019.101952_bib0360 article-title: Influence of lidar, Landsat imagery, disturbance history, plot location accuracy, and plot size on accuracy of imputation maps of forest composition and structure publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.12.013 contributor: fullname: Zald – volume: 361 start-page: 194 year: 2016 ident: 10.1016/j.jag.2019.101952_bib0010 article-title: Trends in post-disturbance recovery rates of Canada’s forests following wildfire and harvest publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2015.11.015 contributor: fullname: Bartels – volume: 176 start-page: 188 year: 2016 ident: 10.1016/j.jag.2019.101952_bib0365 article-title: Integrating Landsat pixel composites and change metrics with lidar plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.01.015 contributor: fullname: Zald – volume: 194 start-page: 303 year: 2017 ident: 10.1016/j.jag.2019.101952_bib0335 article-title: A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.03.035 contributor: fullname: White – volume: 66 start-page: 174 year: 2018 ident: 10.1016/j.jag.2019.101952_bib0020 article-title: Updating stand-level forest inventories using airborne laser scanning and Landsat time series data publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Bolton – volume: 112 start-page: 2232 year: 2008 ident: 10.1016/j.jag.2019.101952_bib0160 article-title: Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.10.009 contributor: fullname: Hudak – volume: 40 start-page: 192 year: 2014 ident: 10.1016/j.jag.2019.101952_bib0325 article-title: Pixel-based image compositing for large-area dense time series applications and science publication-title: Can. J. Remote. Sens. doi: 10.1080/07038992.2014.945827 contributor: fullname: White – volume: 9 start-page: 598 year: 2017 ident: 10.1016/j.jag.2019.101952_bib0065 article-title: Evaluating site-specific and generic spatial models of aboveground forest biomass based on Landsat time-series and LiDAR strip samples in the Eastern USA publication-title: Remote Sens. (Basel) doi: 10.3390/rs9060598 contributor: fullname: Deo – volume: 5 start-page: 6481 year: 2013 ident: 10.1016/j.jag.2019.101952_bib0095 article-title: Seasonal composite Landsat TM/ETM+ images using the medoid (a multi-dimensional median) publication-title: Remote Sens. (Basel) doi: 10.3390/rs5126481 contributor: fullname: Flood – volume: 39 start-page: 4254 year: 2018 ident: 10.1016/j.jag.2019.101952_bib0350 article-title: Land cover 2.0 publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2018.1452075 contributor: fullname: Wulder – volume: 1 start-page: 80 year: 1945 ident: 10.1016/j.jag.2019.101952_bib0340 article-title: Individual comparisons by ranking methods publication-title: Biom. Bull. doi: 10.2307/3001968 contributor: fullname: Wilcoxon – volume: 17 start-page: 142 year: 2013 ident: 10.1016/j.jag.2019.101952_bib0290 article-title: Observation of trends in biomass loss as a result of disturbance in the Conterminous U.S.: 1986–2004 publication-title: Ecosystems doi: 10.1007/s10021-013-9713-9 contributor: fullname: Powell – volume: 9 year: 2017 ident: 10.1016/j.jag.2019.101952_bib0320 article-title: Wall-to-Wall tree type mapping from countrywide airborne remote sensing surveys publication-title: Remote Sens. (Basel) contributor: fullname: Waser – volume: 10 start-page: 5421 year: 2013 ident: 10.1016/j.jag.2019.101952_bib0240 article-title: Detecting tropical forest biomass dynamics from repeated airborne lidar measurements publication-title: Biogeosciences doi: 10.5194/bg-10-5421-2013 contributor: fullname: Meyer – volume: 42 start-page: 619 year: 2016 ident: 10.1016/j.jag.2019.101952_bib0330 article-title: Remote sensing technologies for enhancing forest inventories: a review publication-title: Can. J. Remote. Sens. doi: 10.1080/07038992.2016.1207484 contributor: fullname: White – volume: 93 start-page: 179 year: 2004 ident: 10.1016/j.jag.2019.101952_bib0345 article-title: Estimating time since forest harvest using segmented Landsat ETM+ imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.07.009 contributor: fullname: Wulder – volume: 170 start-page: 121 year: 2015 ident: 10.1016/j.jag.2019.101952_bib0130 article-title: Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.09.004 contributor: fullname: Hermosilla – volume: 118 start-page: 83 year: 2012 ident: 10.1016/j.jag.2019.101952_bib0370 article-title: Object-based cloud and cloud shadow detection in Landsat imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.10.028 contributor: fullname: Zhu – year: 2005 ident: 10.1016/j.jag.2019.101952_bib0195 contributor: fullname: Key – volume: 4 start-page: 984 year: 2013 ident: 10.1016/j.jag.2019.101952_bib0125 article-title: Above-ground biomass and biomass components estimation using LiDAR data in a coniferous forest publication-title: Forests doi: 10.3390/f4040984 contributor: fullname: He – volume: 151 start-page: 3 year: 2014 ident: 10.1016/j.jag.2019.101952_bib0265 article-title: Scale considerations for integrating forest inventory plot data and satellite image data for regional forest mapping publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.08.048 contributor: fullname: Ohmann – volume: 24 start-page: 235 year: 2009 ident: 10.1016/j.jag.2019.101952_bib0085 article-title: The roles of nearest neighbor methods in imputing missing data in forest inventory and monitoring databases publication-title: Scand. J. For. Res. doi: 10.1080/02827580902870490 contributor: fullname: Eskelson – volume: 217 start-page: 461 year: 2018 ident: 10.1016/j.jag.2019.101952_bib0260 article-title: A spatial and temporal analysis of forest dynamics using Landsat time-series publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.08.028 contributor: fullname: Nguyen – volume: 17 start-page: 301 year: 1985 ident: 10.1016/j.jag.2019.101952_bib0055 article-title: A TM tasseled cap equivalent transformation for reflectance factor data publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(85)90102-6 contributor: fullname: Crist – year: 2019 ident: 10.1016/j.jag.2019.101952_bib0255 article-title: Estimate forest biomass dynamics using multi-temporal lidar and single-date inventory data contributor: fullname: Nguyen – volume: 43 start-page: 28 year: 2017 ident: 10.1016/j.jag.2019.101952_bib0070 article-title: Using Landsat time-series and LiDAR to inform aboveground forest biomass baselines in Northern Minnesota, USA publication-title: Can. J. Remote. Sens. doi: 10.1080/07038992.2017.1259556 contributor: fullname: Deo – volume: 367 start-page: 86 year: 2016 ident: 10.1016/j.jag.2019.101952_bib0115 article-title: A strategic forest inventory for public land in Victoria, Australia publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2016.02.026 contributor: fullname: Haywood – volume: 8 start-page: 99 year: 2017 ident: 10.1016/j.jag.2019.101952_bib0120 article-title: Estimating large area forest carbon stocks—a pragmatic design based strategy publication-title: Forests doi: 10.3390/f8040099 contributor: fullname: Haywood – volume: 38 start-page: 600 year: 2014 ident: 10.1016/j.jag.2019.101952_bib0355 article-title: Lidar plots — a new large-area data collection option: context, concepts, and case study publication-title: Can. J. Remote. Sens. doi: 10.5589/m12-049 contributor: fullname: Wulder – year: 2013 ident: 10.1016/j.jag.2019.101952_bib0075 contributor: fullname: Department of Environment and Primary Industries – volume: 5 start-page: 3906 year: 2014 ident: 10.1016/j.jag.2019.101952_bib0050 article-title: Recovery and resilience of tropical forests after disturbance publication-title: Nat. Commun. doi: 10.1038/ncomms4906 contributor: fullname: Cole – volume: 209 start-page: 90 year: 2018 ident: 10.1016/j.jag.2019.101952_bib0235 article-title: Large-area mapping of Canadian boreal forest cover, height, biomass and other structural attributes using Landsat composites and lidar plots publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.12.020 contributor: fullname: Matasci – year: 2013 ident: 10.1016/j.jag.2019.101952_bib0310 article-title: National Forest monitoring systems: monitoring and measurement, reporting and verification (M & MRV) in the context of REDD+ activities publication-title: 7th Meeting of the UN-REDD Programme Policy Board contributor: fullname: UN-REDD Programme Secretariat – year: 2009 ident: 10.1016/j.jag.2019.101952_bib0300 – volume: 69 start-page: 121 year: 2012 ident: 10.1016/j.jag.2019.101952_bib0305 article-title: Using multi-frequency radar and discrete-return LiDAR measurements to estimate above-ground biomass and biomass components in a coastal temperate forest publication-title: Isprs J. Photogramm. Remote. Sens. doi: 10.1016/j.isprsjprs.2012.02.009 contributor: fullname: Tsui |
SSID | ssj0017768 |
Score | 2.4743853 |
Snippet | •A robust framework for monitoring forest AGB dynamics across space and time.•Estimating annual forest AGB using Landsat time-series and inventory... Understanding forest biomass dynamics is crucial for carbon and environmental monitoring, especially in the context of climate change. In this study, we... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 101952 |
SubjectTerms | Aboveground biomass Australia Forest disturbance Forest recovery Landsat time-series Lidar Single-date inventory |
Title | Monitoring aboveground forest biomass dynamics over three decades using Landsat time-series and single-date inventory data |
URI | https://dx.doi.org/10.1016/j.jag.2019.101952 https://doaj.org/article/7278177a841b4b7ba8405becc06e8fa0 |
Volume | 84 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELaACQYEBUR5yQMTkoWTOLYz8ijqgFgAiS3yE7VCBdEWCX49d3ECZUAsbIltxZG_s-7O_u6OkGNhveHeOiZ9YZkwgbPKwXavLI_RW2hoaiwNb9XNg74cYJqcr1JfyAlL6YHTwp2CftWZUkaLzAqrLDzwEifmMuhokrfOZedMtfcHSqUguFJWTIsi7-4zG2bX2Dwip6vC96rMf2ikJnH_gmJaUDZXG2S9tRLpWfq7TbIUJj2ytpA7sEd2Bt8hajC03aPTLfKRtimOooDwW8DAjYmnYJ2CBqAYbw8GM_WpFP2UIoeTzgDSQH1AtvyUIhn-kV5jFLCZUSw_z1BSoQeaKHY-BYZHBXTUcNafX98pUk23yf3V4O5iyNoKC8wJlc-Yk7mQMZROO1VmAJr30upQRGeMyGKlRZnzAOueCQeui-HcKS6s1IUvXaxUsUNWJs-TsEtopTNpbKGcKaLwuTc-j7YA-y0C9ILbPjnpVrl-SYk06o5hNq4BkhohqRMkfXKOOHwNxBzYTQNIRt1KRv2XZPSJ6FCsW3MimQnwqdHvc-_9x9z7ZDVHxxzTvGYHZGX2Og-HZHnq50eNoH4Crj_vQQ |
link.rule.ids | 315,782,786,866,2106,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monitoring+aboveground+forest+biomass+dynamics+over+three+decades+using+Landsat+time-series+and+single-date+inventory+data&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Nguyen%2C+Trung+H.&rft.au=Jones%2C+Simon+D.&rft.au=Soto-Berelov%2C+Mariela&rft.au=Haywood%2C+Andrew&rft.date=2020-02-01&rft.pub=Elsevier+B.V&rft.issn=1569-8432&rft.eissn=1872-826X&rft.volume=84&rft_id=info:doi/10.1016%2Fj.jag.2019.101952&rft.externalDocID=S0303243419305070 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon |