Monitoring aboveground forest biomass dynamics over three decades using Landsat time-series and single-date inventory data

•A robust framework for monitoring forest AGB dynamics across space and time.•Estimating annual forest AGB using Landsat time-series and inventory data.•Assessing predictions of forest AGB dynamics using multi-temporal Lidar data.•Analysing biomass dynamics according to forest disturbance and recove...

Full description

Saved in:
Bibliographic Details
Published in:International journal of applied earth observation and geoinformation Vol. 84; p. 101952
Main Authors: Nguyen, Trung H., Jones, Simon D., Soto-Berelov, Mariela, Haywood, Andrew, Hislop, Samuel
Format: Journal Article
Language:English
Published: Elsevier B.V 01-02-2020
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A robust framework for monitoring forest AGB dynamics across space and time.•Estimating annual forest AGB using Landsat time-series and inventory data.•Assessing predictions of forest AGB dynamics using multi-temporal Lidar data.•Analysing biomass dynamics according to forest disturbance and recovery histories. Understanding forest biomass dynamics is crucial for carbon and environmental monitoring, especially in the context of climate change. In this study, we propose a robust approach for monitoring aboveground forest biomass (AGB) dynamics by combining Landsat time-series with single-date inventory data. We developed a Random Forest (RF) based kNN model to produce annual maps of AGB from 1988 to 2017 over 7.2 million ha of forests in Victoria, Australia. The model was internally evaluated using a bootstrapping technique. Predictions of AGB and its change were then independently evaluated using multi-temporal Lidar data (2008 and 2016). To understand how natural and anthropogenic processes impact forest AGB, we analysed trends in relation to the history of disturbance and recovery. Specifically, change metrics (e.g., AGB loss and gain, Years to Recovery - Y2R) were calculated at the pixel level to characterise the patterns of AGB change resulting from forest dynamics. The imputation model achieved a RMSE value of 132.9 Mg ha−1 (RMSE% = 46.3%) and R2 value of 0.56. Independent assessments of prediction maps in 2008 and 2016 using Lidar-based AGB data achieved relatively high accuracies, with a RMSE of 108.6 Mg ha−1 and 135.9 Mg ha−1 for 2008 and 2016, respectively. Annual validations of AGB maps using un-changed, homogenous Lidar plots suggest that our model is transferable through time (RMSE ranging from 109.65 Mg ha−1 to 112.27 Mg ha−1 and RMSE% ranging from 25.38% to 25.99%). In addition, changes in AGB values associated with forest disturbance and recovery (decrease and increase, respectively) were captured by predicted maps. AGB change metrics indicate that AGB loss and Y2R varied across bioregions and were highly dependent on levels of disturbance severity (i.e., a greater loss and longer recovery time were associated with a higher severity disturbance). On average, high severity fire burnt from 200 Mg ha−1 to 550 Mg ha−1 of AGB and required up to 15 years to recover while clear-fell logging caused a reduction in 250 Mg ha−1 to 600 Mg ha−1 of AGB and required nearly 20 years to recover. In addition, AGB within un-disturbed forests showed statistically significant but monotonic trends, suggesting a mild gradual drop over time across most bioregions. Our methods are designed to support forest managers and researchers in developing forest monitoring systems, especially in developing regions, where only a single date forestry inventory exists.
AbstractList Understanding forest biomass dynamics is crucial for carbon and environmental monitoring, especially in the context of climate change. In this study, we propose a robust approach for monitoring aboveground forest biomass (AGB) dynamics by combining Landsat time-series with single-date inventory data. We developed a Random Forest (RF) based kNN model to produce annual maps of AGB from 1988 to 2017 over 7.2 million ha of forests in Victoria, Australia. The model was internally evaluated using a bootstrapping technique. Predictions of AGB and its change were then independently evaluated using multi-temporal Lidar data (2008 and 2016). To understand how natural and anthropogenic processes impact forest AGB, we analysed trends in relation to the history of disturbance and recovery. Specifically, change metrics (e.g., AGB loss and gain, Years to Recovery - Y2R) were calculated at the pixel level to characterise the patterns of AGB change resulting from forest dynamics. The imputation model achieved a RMSE value of 132.9 Mg ha−1 (RMSE% = 46.3%) and R2 value of 0.56. Independent assessments of prediction maps in 2008 and 2016 using Lidar-based AGB data achieved relatively high accuracies, with a RMSE of 108.6 Mg ha−1 and 135.9 Mg ha−1 for 2008 and 2016, respectively. Annual validations of AGB maps using un-changed, homogenous Lidar plots suggest that our model is transferable through time (RMSE ranging from 109.65 Mg ha−1 to 112.27 Mg ha−1 and RMSE% ranging from 25.38% to 25.99%). In addition, changes in AGB values associated with forest disturbance and recovery (decrease and increase, respectively) were captured by predicted maps. AGB change metrics indicate that AGB loss and Y2R varied across bioregions and were highly dependent on levels of disturbance severity (i.e., a greater loss and longer recovery time were associated with a higher severity disturbance). On average, high severity fire burnt from 200 Mg ha−1 to 550 Mg ha−1 of AGB and required up to 15 years to recover while clear-fell logging caused a reduction in 250 Mg ha−1 to 600 Mg ha−1 of AGB and required nearly 20 years to recover. In addition, AGB within un-disturbed forests showed statistically significant but monotonic trends, suggesting a mild gradual drop over time across most bioregions. Our methods are designed to support forest managers and researchers in developing forest monitoring systems, especially in developing regions, where only a single date forestry inventory exists.
•A robust framework for monitoring forest AGB dynamics across space and time.•Estimating annual forest AGB using Landsat time-series and inventory data.•Assessing predictions of forest AGB dynamics using multi-temporal Lidar data.•Analysing biomass dynamics according to forest disturbance and recovery histories. Understanding forest biomass dynamics is crucial for carbon and environmental monitoring, especially in the context of climate change. In this study, we propose a robust approach for monitoring aboveground forest biomass (AGB) dynamics by combining Landsat time-series with single-date inventory data. We developed a Random Forest (RF) based kNN model to produce annual maps of AGB from 1988 to 2017 over 7.2 million ha of forests in Victoria, Australia. The model was internally evaluated using a bootstrapping technique. Predictions of AGB and its change were then independently evaluated using multi-temporal Lidar data (2008 and 2016). To understand how natural and anthropogenic processes impact forest AGB, we analysed trends in relation to the history of disturbance and recovery. Specifically, change metrics (e.g., AGB loss and gain, Years to Recovery - Y2R) were calculated at the pixel level to characterise the patterns of AGB change resulting from forest dynamics. The imputation model achieved a RMSE value of 132.9 Mg ha−1 (RMSE% = 46.3%) and R2 value of 0.56. Independent assessments of prediction maps in 2008 and 2016 using Lidar-based AGB data achieved relatively high accuracies, with a RMSE of 108.6 Mg ha−1 and 135.9 Mg ha−1 for 2008 and 2016, respectively. Annual validations of AGB maps using un-changed, homogenous Lidar plots suggest that our model is transferable through time (RMSE ranging from 109.65 Mg ha−1 to 112.27 Mg ha−1 and RMSE% ranging from 25.38% to 25.99%). In addition, changes in AGB values associated with forest disturbance and recovery (decrease and increase, respectively) were captured by predicted maps. AGB change metrics indicate that AGB loss and Y2R varied across bioregions and were highly dependent on levels of disturbance severity (i.e., a greater loss and longer recovery time were associated with a higher severity disturbance). On average, high severity fire burnt from 200 Mg ha−1 to 550 Mg ha−1 of AGB and required up to 15 years to recover while clear-fell logging caused a reduction in 250 Mg ha−1 to 600 Mg ha−1 of AGB and required nearly 20 years to recover. In addition, AGB within un-disturbed forests showed statistically significant but monotonic trends, suggesting a mild gradual drop over time across most bioregions. Our methods are designed to support forest managers and researchers in developing forest monitoring systems, especially in developing regions, where only a single date forestry inventory exists.
ArticleNumber 101952
Author Nguyen, Trung H.
Hislop, Samuel
Jones, Simon D.
Soto-Berelov, Mariela
Haywood, Andrew
Author_xml – sequence: 1
  givenname: Trung H.
  surname: Nguyen
  fullname: Nguyen, Trung H.
  email: trung.nguyen3@rmit.edu.au
  organization: Remote Sensing Centre, Geospatial Science, School of Science, RMIT University, Australia
– sequence: 2
  givenname: Simon D.
  surname: Jones
  fullname: Jones, Simon D.
  organization: Remote Sensing Centre, Geospatial Science, School of Science, RMIT University, Australia
– sequence: 3
  givenname: Mariela
  surname: Soto-Berelov
  fullname: Soto-Berelov, Mariela
  organization: Remote Sensing Centre, Geospatial Science, School of Science, RMIT University, Australia
– sequence: 4
  givenname: Andrew
  surname: Haywood
  fullname: Haywood, Andrew
  organization: European Forest Institute, Barcelona, Spain
– sequence: 5
  givenname: Samuel
  surname: Hislop
  fullname: Hislop, Samuel
  organization: Remote Sensing Centre, Geospatial Science, School of Science, RMIT University, Australia
BookMark eNp9kctuGyEUhlGUSrn1AbLjBcYBzACjrqqoTSK56qaVskNn4IzDyIYKiCXn6cPEVZddcS78H5zzX5HzmCIScsvZijOu7ubVDNuVYHxY8qEXZ-SSGy06I9TzeYt7NXRGrsUFuSplZoxrrcwlefuRYqgph7ilMKYDbnN6jZ5OKWOpdAxpD6VQf4ywD67QdiPT-pIRqUcHHgt9LYt4A9EXqLSGPXYFc2idVqJLc4edh4o0xAPG9tiRthRuyKcJdgU__z2vye_v337dP3abnw9P9183nZNa1M4pIdWEvTNO9xyY916NBteTA5B8GozsBcNRjlw6riUw5jSTozJr37tp0Otr8nTi-gSz_ZPDHvLRJgj2o5Dy1kKuwe3QaqFNWwwYyRtQjy1g_YjOMYVmAtZY_MRyOZWScfrH48wuRtjZNiPsYoQ9GdE0X04abEMeAmZbXMDo0IeMrrZfhP-o3wHu7pVW
CitedBy_id crossref_primary_10_1080_01431161_2023_2221801
crossref_primary_10_3390_f12111494
crossref_primary_10_1016_j_rse_2021_112644
crossref_primary_10_1080_01431161_2024_2368930
crossref_primary_10_1007_s00477_022_02359_z
crossref_primary_10_3390_rs12213560
crossref_primary_10_3390_rs13193910
crossref_primary_10_1007_s12524_022_01607_7
crossref_primary_10_3390_su13126964
crossref_primary_10_5194_bg_21_473_2024
crossref_primary_10_3390_rs13020218
crossref_primary_10_1016_j_foreco_2023_120948
crossref_primary_10_3390_rs12010098
crossref_primary_10_3390_rs13234745
crossref_primary_10_3390_rs12203330
crossref_primary_10_7717_peerj_cs_648
crossref_primary_10_3390_rs14122786
crossref_primary_10_1371_journal_pone_0241418
Cites_doi 10.1016/j.rse.2009.08.017
10.2307/1907187
10.1016/j.rse.2013.04.022
10.1641/0006-3568(2004)054[0535:LRIEAO]2.0.CO;2
10.1214/009053604000000067
10.3390/rs70302832
10.3390/f8040098
10.1016/j.rse.2018.07.024
10.1016/j.rse.2011.09.024
10.1016/j.rse.2010.07.008
10.1016/j.isprsjprs.2014.03.008
10.1016/j.rse.2013.08.010
10.1139/cjfr-2013-0401
10.1002/env.507
10.3390/rs10111825
10.1002/joc.5086
10.3390/rs10030460
10.1016/j.rse.2013.05.033
10.1002/rse2.113
10.1080/2150704X.2015.1126375
10.1080/01621459.1952.10483441
10.3832/ifor1989-010
10.1088/1748-9326/aa9d9e
10.1016/j.rse.2009.12.018
10.18637/jss.v023.i10
10.1016/j.rse.2017.11.015
10.1016/j.rse.2011.09.025
10.1016/j.rse.2011.03.020
10.1016/j.rse.2016.03.012
10.1016/j.foreco.2014.06.003
10.1016/j.rse.2013.12.013
10.1016/j.foreco.2015.11.015
10.1016/j.rse.2016.01.015
10.1016/j.rse.2017.03.035
10.1016/j.rse.2007.10.009
10.1080/07038992.2014.945827
10.3390/rs9060598
10.3390/rs5126481
10.1080/01431161.2018.1452075
10.2307/3001968
10.1007/s10021-013-9713-9
10.5194/bg-10-5421-2013
10.1080/07038992.2016.1207484
10.1016/j.rse.2004.07.009
10.1016/j.rse.2015.09.004
10.1016/j.rse.2011.10.028
10.3390/f4040984
10.1016/j.rse.2013.08.048
10.1080/02827580902870490
10.1016/j.rse.2018.08.028
10.1016/0034-4257(85)90102-6
10.1080/07038992.2017.1259556
10.1016/j.foreco.2016.02.026
10.3390/f8040099
10.5589/m12-049
10.1038/ncomms4906
10.1016/j.rse.2017.12.020
10.1016/j.isprsjprs.2012.02.009
ContentType Journal Article
Copyright 2019
Copyright_xml – notice: 2019
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.jag.2019.101952
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-826X
ExternalDocumentID oai_doaj_org_article_7278177a841b4b7ba8405becc06e8fa0
10_1016_j_jag_2019_101952
S0303243419305070
GroupedDBID 29J
4.4
5GY
6I.
AAFTH
AAQXK
AAXUO
ABFYP
ABLST
ABQEM
ABQYD
ABYKQ
ACLVX
ACRLP
ACSBN
ADBBV
ADMUD
AFKWA
AFTJW
AFXIZ
AGYEJ
AHEUO
AIKHN
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AZFZN
BKOJK
BLECG
EBS
EJD
FDB
FEDTE
FIRID
FYGXN
GROUPED_DOAJ
HVGLF
IMUCA
KCYFY
KOM
M41
O-L
P-8
P-9
P2P
R2-
RIG
ROL
SDF
SDG
SES
SPC
SSE
SSJ
T5K
~02
AAHBH
AALRI
AAXKI
AAYXX
ADVLN
AFJKZ
AITUG
CITATION
EFJIC
0SF
ID FETCH-LOGICAL-c472t-c6246fe5c8c751a0ddd6b8e3fcaa41f984520eb4b14c174a00c704b683d5cf973
IEDL.DBID DOA
ISSN 1569-8432
IngestDate Tue Oct 22 15:13:29 EDT 2024
Thu Nov 21 21:44:44 EST 2024
Fri Feb 23 02:39:57 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Forest recovery
Landsat time-series
Single-date inventory
Lidar
Australia
Forest disturbance
Aboveground biomass
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c472t-c6246fe5c8c751a0ddd6b8e3fcaa41f984520eb4b14c174a00c704b683d5cf973
OpenAccessLink https://doaj.org/article/7278177a841b4b7ba8405becc06e8fa0
ParticipantIDs doaj_primary_oai_doaj_org_article_7278177a841b4b7ba8405becc06e8fa0
crossref_primary_10_1016_j_jag_2019_101952
elsevier_sciencedirect_doi_10_1016_j_jag_2019_101952
PublicationCentury 2000
PublicationDate February 2020
2020-02-00
2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationTitle International journal of applied earth observation and geoinformation
PublicationYear 2020
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Bartels, Chen, Wulder, White (bib0010) 2016; 361
Haywood, Mellor, Stone (bib0115) 2016; 367
Gallant, Dowling, Read, Wilson, Tickler, Inskeep (bib0100) 2010
Fick, Hijmans (bib0090) 2017; 37
Wulder, White, Bater, Coops, Hopkinson, Chen (bib0355) 2014; 38
Kennedy, Yang, Cohen (bib0185) 2010; 114
Soto-Berelov, Haywood, Jones, Hislop, Nguyen (bib0295) 2018
Zald, Ohmann, Roberts, Gregory, Henderson, McGaughey, Braaten (bib0360) 2014; 143
Cao, Coops, Innes, Sheppard, Fu, Ruan, She (bib0030) 2016; 178
BOM (bib0025) 2019
Matasci, Hermosilla, Wulder, White, Coops, Hobart, Zald (bib0235) 2018; 209
Nguyen, Jones, Soto-Berelov, Skidmore, Haywood, Hislop (bib0255) 2019
Cohen, Yang, Healey, Kennedy, Gorelick (bib0045) 2018; 205
Efron, Hastie, Johnstone, Tibshirani (bib0080) 2004; 32
Tsui, Coops, Wulder, Marshall, McCardle (bib0305) 2012; 69
Hermosilla, Wulder, White, Coops, Hobart (bib0130) 2015; 170
Griffiths, Kuemmerle, Baumann, Radeloff, Abrudan, Lieskovsky, Munteanu, Ostapowicz, Hostert (bib0110) 2014; 151
Badreldin, Sanchez-Azofeifa (bib0005) 2015; 7
Kennedy, Ohmann, Gregory, Roberts, Yang, Bell, Kane, Hughes, Cohen, Powell, Neeti, Larrue, Hooper, Kane, Miller, Perkins, Braaten, Seidl (bib0180) 2018; 13
Isenburg (bib0170) 2012
Wulder, Skakun, Kurz, White (bib0345) 2004; 93
Huang, Goward, Masek, Thomas, Zhu, Vogelmann (bib0155) 2010; 114
Wilcoxon (bib0340) 1945; 1
Pflugmacher, Cohen, Kennedy, Yang (bib0275) 2014; 151
(bib0300) 2009
Cohen, Goward (bib0040) 2004; 54
White, Wulder, Hermosilla, Coops, Hobart (bib0335) 2017; 194
Eskelson, Temesgen, Lemay, Barrett, Crookston, Hudak (bib0085) 2009; 24
Pickell, Hermosilla, Frazier, Coops, Wulder (bib0280) 2015; 37
Department of Environment and Primary Industries (bib0075) 2013
Main-Knorn, Cohen, Kennedy, Grodzki, Pflugmacher, Griffiths, Hostert (bib0220) 2013; 139
UN-REDD Programme Secretariat (bib0310) 2013
Kennedy, Yang, Cohen, Pfaff, Braaten, Nelson (bib0190) 2012; 122
Zald, Wulder, White, Hilker, Hermosilla, Hobart, Coops (bib0365) 2016; 176
Bolton, White, Wulder, Coops, Hermosilla, Yuan (bib0020) 2018; 66
Flood (bib0095) 2013; 5
Gómez, White, Wulder, Alejandro (bib0105) 2014; 93
Houghton (bib0150) 2005
Hudak, Crookston, Evans, Hall, Falkowski (bib0160) 2008; 112
Powell, Cohen, Kennedy, Healey, Huang (bib0290) 2013; 17
Key, Benson (bib0195) 2005
Deo, Russell, Domke, Woodall, Falkowski, Cohen (bib0070) 2017; 43
Haywood, Stone (bib0120) 2017; 8
Hislop, Jones, Soto-Berelov, Skidmore, Haywood, Nguyen (bib0135) 2018
Hislop, Jones, Soto-Berelov, Skidmore, Haywood, Nguyen (bib0145) 2019
He, Chen, An, Li (bib0125) 2013; 4
Ohmann, Gregory, Roberts (bib0265) 2014; 151
Pflugmacher, Cohen, Kennedy (bib0270) 2012; 122
White, Coops, Wulder, Vastaranta, Hilker, Tompalski (bib0330) 2016; 42
Zhu, Woodcock (bib0370) 2012; 118
Deo, Russell, Domke, Andersen, Cohen, Woodall (bib0065) 2017; 9
Crookston, Finley (bib0060) 2008; 23
Hislop, Jones, Soto-Berelov, Skidmore, Haywood, Nguyen (bib0140) 2018; 10
Crist (bib0055) 1985; 17
Le Toan, Quegan, Davidson, Balzter, Paillou, Papathanassiou, Plummer, Rocca, Saatchi, Shugart, Ulander (bib0205) 2011; 115
Wulder, Coops, Roy, White, Hermosilla (bib0350) 2018; 39
Powell, Cohen, Healey, Kennedy, Moisen, Pierce, Ohmann (bib0285) 2010; 114
Mora, Herold, de Sy, Wijaya, Verchot, Penman (bib0245) 2012
Kruskal, Wallis (bib0200) 1952; 47
Matasci, Hermosilla, Wulder, White, Coops, Hobart, Bolton, Tompalski, Bater (bib0230) 2018; 216
Nguyen, Jones, Soto-Berelov, Haywood, Hislop (bib0250) 2018; 10
Waser, Ginzler, Rehush (bib0320) 2017; 9
Meyer, Saatchi, Chave, Dalling, Bohlman, Fricker, Robinson, Neumann, Hubbell (bib0240) 2013; 10
Cole, Bhagwat, Willis (bib0050) 2014; 5
Mann (bib0225) 1945
Ioki, Tsuyuki, Hirata, Phua, Wong, Ling, Saito, Takao (bib0165) 2014; 328
Viridans (bib0315) 2016
White, Wulder, Hobart, Luther, Hermosilla, Griffiths, Coops, Hall, Hostert, Dyk (bib0325) 2014; 40
Jiménez, Vega, Fernández-Alonso, Vega-Nieva, Ortiz, López-Serrano, López-Sánchez (bib0175) 2017; 10
Beaudoin, Bernier, Guindon, Villemaire, Guo, Stinson, Bergeron, Magnussen, Hall (bib0015) 2014; 44
Libiseller, Grimvall (bib0215) 2002; 13
Cohen, Healey, Yang, Stehman, Brewer, Brooks, Gorelick, Huang, Hughes, Kennedy, Loveland, Moisen, Schroeder, Vogelmann, Woodcock, Yang, Zhu (bib0035) 2017; 8
Liaw, Wiener (bib0210) 2002; 2
Nguyen, Jones, Soto-Berelov, Haywood, Hislop (bib0260) 2018; 217
Wulder (10.1016/j.jag.2019.101952_bib0345) 2004; 93
White (10.1016/j.jag.2019.101952_bib0335) 2017; 194
Main-Knorn (10.1016/j.jag.2019.101952_bib0220) 2013; 139
Deo (10.1016/j.jag.2019.101952_bib0065) 2017; 9
Gallant (10.1016/j.jag.2019.101952_bib0100) 2010
Tsui (10.1016/j.jag.2019.101952_bib0305) 2012; 69
White (10.1016/j.jag.2019.101952_bib0325) 2014; 40
Houghton (10.1016/j.jag.2019.101952_bib0150) 2005
Ioki (10.1016/j.jag.2019.101952_bib0165) 2014; 328
Matasci (10.1016/j.jag.2019.101952_bib0230) 2018; 216
Nguyen (10.1016/j.jag.2019.101952_bib0250) 2018; 10
Kennedy (10.1016/j.jag.2019.101952_bib0180) 2018; 13
Meyer (10.1016/j.jag.2019.101952_bib0240) 2013; 10
Nguyen (10.1016/j.jag.2019.101952_bib0260) 2018; 217
Hislop (10.1016/j.jag.2019.101952_bib0145) 2019
Haywood (10.1016/j.jag.2019.101952_bib0115) 2016; 367
Zald (10.1016/j.jag.2019.101952_bib0365) 2016; 176
Cole (10.1016/j.jag.2019.101952_bib0050) 2014; 5
Hislop (10.1016/j.jag.2019.101952_bib0135) 2018
Bolton (10.1016/j.jag.2019.101952_bib0020) 2018; 66
Cohen (10.1016/j.jag.2019.101952_bib0035) 2017; 8
Griffiths (10.1016/j.jag.2019.101952_bib0110) 2014; 151
Hermosilla (10.1016/j.jag.2019.101952_bib0130) 2015; 170
Ohmann (10.1016/j.jag.2019.101952_bib0265) 2014; 151
Zald (10.1016/j.jag.2019.101952_bib0360) 2014; 143
Viridans (10.1016/j.jag.2019.101952_bib0315) 2016
Cohen (10.1016/j.jag.2019.101952_bib0040) 2004; 54
He (10.1016/j.jag.2019.101952_bib0125) 2013; 4
Pflugmacher (10.1016/j.jag.2019.101952_bib0270) 2012; 122
Department of Environment and Primary Industries (10.1016/j.jag.2019.101952_bib0075) 2013
Key (10.1016/j.jag.2019.101952_bib0195) 2005
Pickell (10.1016/j.jag.2019.101952_bib0280) 2015; 37
Mann (10.1016/j.jag.2019.101952_bib0225) 1945
Eskelson (10.1016/j.jag.2019.101952_bib0085) 2009; 24
Zhu (10.1016/j.jag.2019.101952_bib0370) 2012; 118
Le Toan (10.1016/j.jag.2019.101952_bib0205) 2011; 115
Huang (10.1016/j.jag.2019.101952_bib0155) 2010; 114
Kennedy (10.1016/j.jag.2019.101952_bib0190) 2012; 122
Fick (10.1016/j.jag.2019.101952_bib0090) 2017; 37
Gómez (10.1016/j.jag.2019.101952_bib0105) 2014; 93
Cao (10.1016/j.jag.2019.101952_bib0030) 2016; 178
Liaw (10.1016/j.jag.2019.101952_bib0210) 2002; 2
Badreldin (10.1016/j.jag.2019.101952_bib0005) 2015; 7
Soto-Berelov (10.1016/j.jag.2019.101952_bib0295) 2018
BOM (10.1016/j.jag.2019.101952_bib0025) 2019
UN-REDD Programme Secretariat (10.1016/j.jag.2019.101952_bib0310) 2013
Mora (10.1016/j.jag.2019.101952_bib0245) 2012
Powell (10.1016/j.jag.2019.101952_bib0285) 2010; 114
Crookston (10.1016/j.jag.2019.101952_bib0060) 2008; 23
White (10.1016/j.jag.2019.101952_bib0330) 2016; 42
Hislop (10.1016/j.jag.2019.101952_bib0140) 2018; 10
Matasci (10.1016/j.jag.2019.101952_bib0235) 2018; 209
(10.1016/j.jag.2019.101952_bib0300) 2009
Hudak (10.1016/j.jag.2019.101952_bib0160) 2008; 112
Flood (10.1016/j.jag.2019.101952_bib0095) 2013; 5
Jiménez (10.1016/j.jag.2019.101952_bib0175) 2017; 10
Kruskal (10.1016/j.jag.2019.101952_bib0200) 1952; 47
Nguyen (10.1016/j.jag.2019.101952_bib0255) 2019
Powell (10.1016/j.jag.2019.101952_bib0290) 2013; 17
Wulder (10.1016/j.jag.2019.101952_bib0355) 2014; 38
Haywood (10.1016/j.jag.2019.101952_bib0120) 2017; 8
Wulder (10.1016/j.jag.2019.101952_bib0350) 2018; 39
Efron (10.1016/j.jag.2019.101952_bib0080) 2004; 32
Cohen (10.1016/j.jag.2019.101952_bib0045) 2018; 205
Bartels (10.1016/j.jag.2019.101952_bib0010) 2016; 361
Kennedy (10.1016/j.jag.2019.101952_bib0185) 2010; 114
Wilcoxon (10.1016/j.jag.2019.101952_bib0340) 1945; 1
Beaudoin (10.1016/j.jag.2019.101952_bib0015) 2014; 44
Pflugmacher (10.1016/j.jag.2019.101952_bib0275) 2014; 151
Libiseller (10.1016/j.jag.2019.101952_bib0215) 2002; 13
Waser (10.1016/j.jag.2019.101952_bib0320) 2017; 9
Deo (10.1016/j.jag.2019.101952_bib0070) 2017; 43
Crist (10.1016/j.jag.2019.101952_bib0055) 1985; 17
Isenburg (10.1016/j.jag.2019.101952_bib0170) 2012
References_xml – volume: 93
  start-page: 14
  year: 2014
  end-page: 28
  ident: bib0105
  article-title: Historical forest biomass dynamics modelled with Landsat spectral trajectories
  publication-title: Isprs J. Photogramm. Remote. Sens.
  contributor:
    fullname: Alejandro
– volume: 4
  start-page: 984
  year: 2013
  end-page: 1002
  ident: bib0125
  article-title: Above-ground biomass and biomass components estimation using LiDAR data in a coniferous forest
  publication-title: Forests
  contributor:
    fullname: Li
– volume: 10
  start-page: 460
  year: 2018
  ident: bib0140
  article-title: Using Landsat spectral indices in time-series to assess wildfire disturbance and recovery
  publication-title: Remote Sens. (Basel)
  contributor:
    fullname: Nguyen
– volume: 151
  start-page: 3
  year: 2014
  end-page: 15
  ident: bib0265
  article-title: Scale considerations for integrating forest inventory plot data and satellite image data for regional forest mapping
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Roberts
– volume: 216
  start-page: 697
  year: 2018
  end-page: 714
  ident: bib0230
  article-title: Three decades of forest structural dynamics over Canada’s forested ecosystems using Landsat time-series and lidar plots
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Bater
– volume: 37
  start-page: 138
  year: 2015
  end-page: 149
  ident: bib0280
  article-title: Forest recovery trends derived from Landsat time series for North American boreal forests
  publication-title: Int. J. Remote Sens.
  contributor:
    fullname: Wulder
– volume: 122
  start-page: 117
  year: 2012
  end-page: 133
  ident: bib0190
  article-title: Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Nelson
– volume: 47
  start-page: 583
  year: 1952
  end-page: 621
  ident: bib0200
  article-title: Use of ranks in one-criterion variance analysis
  publication-title: J. Am. Stat. Assoc.
  contributor:
    fullname: Wallis
– volume: 7
  start-page: 2832
  year: 2015
  end-page: 2849
  ident: bib0005
  article-title: Estimating forest biomass dynamics by integrating multi-temporal Landsat satellite images with ground and airborne LiDAR data in the coal valley mine, Alberta, Canada
  publication-title: Remote Sens. (Basel)
  contributor:
    fullname: Sanchez-Azofeifa
– year: 2018
  ident: bib0295
  article-title: Creating robust reference (training) datasets for large area time series disturbance attribution
  publication-title: Remote Sensing: Time Series Image Processing
  contributor:
    fullname: Nguyen
– volume: 10
  start-page: 5421
  year: 2013
  end-page: 5438
  ident: bib0240
  article-title: Detecting tropical forest biomass dynamics from repeated airborne lidar measurements
  publication-title: Biogeosciences
  contributor:
    fullname: Hubbell
– volume: 114
  start-page: 1053
  year: 2010
  end-page: 1068
  ident: bib0285
  article-title: Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: a comparison of empirical modeling approaches
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Ohmann
– volume: 23
  start-page: 1
  year: 2008
  end-page: 16
  ident: bib0060
  article-title: yaImpute: an R package for kNN imputation
  publication-title: J. Stat. Softw.
  contributor:
    fullname: Finley
– volume: 24
  start-page: 235
  year: 2009
  end-page: 246
  ident: bib0085
  article-title: The roles of nearest neighbor methods in imputing missing data in forest inventory and monitoring databases
  publication-title: Scand. J. For. Res.
  contributor:
    fullname: Hudak
– volume: 93
  start-page: 179
  year: 2004
  end-page: 187
  ident: bib0345
  article-title: Estimating time since forest harvest using segmented Landsat ETM+ imagery
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: White
– volume: 54
  start-page: 535
  year: 2004
  end-page: 545
  ident: bib0040
  article-title: Landsat’s role in ecological applications of remote sensing
  publication-title: BioScience
  contributor:
    fullname: Goward
– volume: 114
  start-page: 2897
  year: 2010
  end-page: 2910
  ident: bib0185
  article-title: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr — temporal segmentation algorithms
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Cohen
– volume: 66
  start-page: 174
  year: 2018
  end-page: 183
  ident: bib0020
  article-title: Updating stand-level forest inventories using airborne laser scanning and Landsat time series data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  contributor:
    fullname: Yuan
– volume: 17
  start-page: 142
  year: 2013
  end-page: 157
  ident: bib0290
  article-title: Observation of trends in biomass loss as a result of disturbance in the Conterminous U.S.: 1986–2004
  publication-title: Ecosystems
  contributor:
    fullname: Huang
– volume: 17
  start-page: 301
  year: 1985
  end-page: 306
  ident: bib0055
  article-title: A TM tasseled cap equivalent transformation for reflectance factor data
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Crist
– year: 2019
  ident: bib0255
  article-title: Estimate forest biomass dynamics using multi-temporal lidar and single-date inventory data
  publication-title: IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
  contributor:
    fullname: Hislop
– volume: 328
  start-page: 335
  year: 2014
  end-page: 341
  ident: bib0165
  article-title: Estimating above-ground biomass of tropical rainforest of different degradation levels in Northern Borneo using airborne LiDAR
  publication-title: For. Ecol. Manage.
  contributor:
    fullname: Takao
– year: 2012
  ident: bib0170
  article-title: LAStools-efficient Tools for LiDAR Processing
  contributor:
    fullname: Isenburg
– start-page: 245
  year: 1945
  end-page: 259
  ident: bib0225
  article-title: Nonparametric tests against trend
  publication-title: Econometrica: Journal of the Econometric Society
  contributor:
    fullname: Mann
– volume: 5
  start-page: 6481
  year: 2013
  end-page: 6500
  ident: bib0095
  article-title: Seasonal composite Landsat TM/ETM+ images using the medoid (a multi-dimensional median)
  publication-title: Remote Sens. (Basel)
  contributor:
    fullname: Flood
– volume: 194
  start-page: 303
  year: 2017
  end-page: 321
  ident: bib0335
  article-title: A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Hobart
– volume: 367
  start-page: 86
  year: 2016
  end-page: 96
  ident: bib0115
  article-title: A strategic forest inventory for public land in Victoria, Australia
  publication-title: For. Ecol. Manage.
  contributor:
    fullname: Stone
– year: 2019
  ident: bib0145
  article-title: High fire disturbance in forests leads to longer recovery, but varies by forest type
  publication-title: Remote Sens. Ecol. Conserv.
  contributor:
    fullname: Nguyen
– year: 2005
  ident: bib0150
  article-title: Tropical deforestation as a source of greenhouse gas emissions
  publication-title: Tropical Deforestation and Climate Change
  contributor:
    fullname: Houghton
– volume: 151
  start-page: 72
  year: 2014
  end-page: 88
  ident: bib0110
  article-title: Forest disturbances, forest recovery, and changes in forest types across the Carpathian ecoregion from 1985 to 2010 based on Landsat image composites
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Hostert
– volume: 151
  start-page: 124
  year: 2014
  end-page: 137
  ident: bib0275
  article-title: Using Landsat-derived disturbance and recovery history and lidar to map forest biomass dynamics
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Yang
– volume: 170
  start-page: 121
  year: 2015
  end-page: 132
  ident: bib0130
  article-title: Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Hobart
– volume: 10
  start-page: 590
  year: 2017
  end-page: 596
  ident: bib0175
  article-title: Estimation of aboveground forest biomass in Galicia (NW Spain) by the combined use of LiDAR, LANDSAT ETM+ and National Forest Inventory data
  publication-title: iForest Biogeosci. For.
  contributor:
    fullname: López-Sánchez
– year: 2012
  ident: bib0245
  article-title: Capacity Development in National Forest Monitoring: Experiences and Progress for REDD+
  contributor:
    fullname: Penman
– volume: 361
  start-page: 194
  year: 2016
  end-page: 207
  ident: bib0010
  article-title: Trends in post-disturbance recovery rates of Canada’s forests following wildfire and harvest
  publication-title: For. Ecol. Manage.
  contributor:
    fullname: White
– volume: 118
  start-page: 83
  year: 2012
  end-page: 94
  ident: bib0370
  article-title: Object-based cloud and cloud shadow detection in Landsat imagery
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Woodcock
– volume: 209
  start-page: 90
  year: 2018
  end-page: 106
  ident: bib0235
  article-title: Large-area mapping of Canadian boreal forest cover, height, biomass and other structural attributes using Landsat composites and lidar plots
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Zald
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: bib0210
  article-title: Classification and regression by random forest
  publication-title: R news
  contributor:
    fullname: Wiener
– volume: 43
  start-page: 28
  year: 2017
  end-page: 47
  ident: bib0070
  article-title: Using Landsat time-series and LiDAR to inform aboveground forest biomass baselines in Northern Minnesota, USA
  publication-title: Can. J. Remote. Sens.
  contributor:
    fullname: Cohen
– volume: 1
  start-page: 80
  year: 1945
  end-page: 83
  ident: bib0340
  article-title: Individual comparisons by ranking methods
  publication-title: Biom. Bull.
  contributor:
    fullname: Wilcoxon
– volume: 114
  start-page: 183
  year: 2010
  end-page: 198
  ident: bib0155
  article-title: An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Vogelmann
– volume: 139
  start-page: 277
  year: 2013
  end-page: 290
  ident: bib0220
  article-title: Monitoring coniferous forest biomass change using a Landsat trajectory-based approach
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Hostert
– year: 2009
  ident: bib0300
  publication-title: National Forest Inventories
– volume: 115
  start-page: 2850
  year: 2011
  end-page: 2860
  ident: bib0205
  article-title: The BIOMASS mission: mapping global forest biomass to better understand the terrestrial carbon cycle
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Ulander
– year: 2013
  ident: bib0310
  article-title: National Forest monitoring systems: monitoring and measurement, reporting and verification (M & MRV) in the context of REDD+ activities
  publication-title: 7th Meeting of the UN-REDD Programme Policy Board
  contributor:
    fullname: UN-REDD Programme Secretariat
– volume: 217
  start-page: 461
  year: 2018
  end-page: 475
  ident: bib0260
  article-title: A spatial and temporal analysis of forest dynamics using Landsat time-series
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Hislop
– volume: 13
  year: 2018
  ident: bib0180
  article-title: An empirical, integrated forest biomass monitoring system
  publication-title: Environ. Res. Lett.
  contributor:
    fullname: Seidl
– year: 2013
  ident: bib0075
  article-title: Victoria’s State of the Forest Report 2013
  contributor:
    fullname: Department of Environment and Primary Industries
– year: 2019
  ident: bib0025
  article-title: Bureau of Meteorology (BOM)
  contributor:
    fullname: BOM
– volume: 38
  start-page: 600
  year: 2014
  end-page: 618
  ident: bib0355
  article-title: Lidar plots — a new large-area data collection option: context, concepts, and case study
  publication-title: Can. J. Remote. Sens.
  contributor:
    fullname: Chen
– volume: 69
  start-page: 121
  year: 2012
  end-page: 133
  ident: bib0305
  article-title: Using multi-frequency radar and discrete-return LiDAR measurements to estimate above-ground biomass and biomass components in a coastal temperate forest
  publication-title: Isprs J. Photogramm. Remote. Sens.
  contributor:
    fullname: McCardle
– volume: 5
  start-page: 3906
  year: 2014
  ident: bib0050
  article-title: Recovery and resilience of tropical forests after disturbance
  publication-title: Nat. Commun.
  contributor:
    fullname: Willis
– volume: 40
  start-page: 192
  year: 2014
  end-page: 212
  ident: bib0325
  article-title: Pixel-based image compositing for large-area dense time series applications and science
  publication-title: Can. J. Remote. Sens.
  contributor:
    fullname: Dyk
– volume: 32
  start-page: 407
  year: 2004
  end-page: 499
  ident: bib0080
  article-title: Least angle regression
  publication-title: Ann. Statist.
  contributor:
    fullname: Tibshirani
– volume: 8
  start-page: 99
  year: 2017
  ident: bib0120
  article-title: Estimating large area forest carbon stocks—a pragmatic design based strategy
  publication-title: Forests
  contributor:
    fullname: Stone
– volume: 143
  start-page: 26
  year: 2014
  end-page: 38
  ident: bib0360
  article-title: Influence of lidar, Landsat imagery, disturbance history, plot location accuracy, and plot size on accuracy of imputation maps of forest composition and structure
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Braaten
– volume: 176
  start-page: 188
  year: 2016
  end-page: 201
  ident: bib0365
  article-title: Integrating Landsat pixel composites and change metrics with lidar plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Coops
– year: 2005
  ident: bib0195
  article-title: Landscape Assessment: Remote Sensing of Severity, the Normalized Burn Ratio and Ground Measure of Severity, the Composite Burn Index. FIREMON: Fire Effects Monitoring and Inventory System Ogden
  contributor:
    fullname: Benson
– volume: 8
  start-page: 98
  year: 2017
  ident: bib0035
  article-title: How similar are forest disturbance maps derived from different Landsat time series algorithms?
  publication-title: Forests
  contributor:
    fullname: Zhu
– year: 2016
  ident: bib0315
  article-title: Victorian Ecosystems and Vegetation
  contributor:
    fullname: Viridans
– year: 2018
  ident: bib0135
  article-title: A New semi-automatic seamless cloud-free Landsat mosaicing approach tracks forest change over large extents
  publication-title: IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
  contributor:
    fullname: Nguyen
– year: 2010
  ident: bib0100
  article-title: Second SRTM Derived Digital Elevation Models User Guide
  contributor:
    fullname: Inskeep
– volume: 112
  start-page: 2232
  year: 2008
  end-page: 2245
  ident: bib0160
  article-title: Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Falkowski
– volume: 44
  start-page: 521
  year: 2014
  end-page: 532
  ident: bib0015
  article-title: Mapping attributes of Canada’s forests at moderate resolution through kNN and MODIS imagery
  publication-title: Can. J. For. Res.
  contributor:
    fullname: Hall
– volume: 178
  start-page: 158
  year: 2016
  end-page: 171
  ident: bib0030
  article-title: Estimation of forest biomass dynamics in subtropical forests using multi-temporal airborne LiDAR data
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: She
– volume: 13
  start-page: 71
  year: 2002
  end-page: 84
  ident: bib0215
  article-title: Performance of partial Mann–Kendall tests for trend detection in the presence of covariates
  publication-title: Environmetrics: The official journal of the International Environmetrics Society
  contributor:
    fullname: Grimvall
– volume: 39
  start-page: 4254
  year: 2018
  end-page: 4284
  ident: bib0350
  article-title: Land cover 2.0
  publication-title: Int. J. Remote Sens.
  contributor:
    fullname: Hermosilla
– volume: 205
  start-page: 131
  year: 2018
  end-page: 140
  ident: bib0045
  article-title: A LandTrendr multispectral ensemble for forest disturbance detection
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Gorelick
– volume: 37
  start-page: 4302
  year: 2017
  end-page: 4315
  ident: bib0090
  article-title: WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas
  publication-title: Int. J. Climatol.
  contributor:
    fullname: Hijmans
– volume: 9
  year: 2017
  ident: bib0320
  article-title: Wall-to-Wall tree type mapping from countrywide airborne remote sensing surveys
  publication-title: Remote Sens. (Basel)
  contributor:
    fullname: Rehush
– volume: 10
  start-page: 1825
  year: 2018
  ident: bib0250
  article-title: A comparison of imputation approaches for estimating forest biomass using Landsat time-series and inventory data
  publication-title: Remote Sens. (Basel)
  contributor:
    fullname: Hislop
– volume: 9
  start-page: 598
  year: 2017
  ident: bib0065
  article-title: Evaluating site-specific and generic spatial models of aboveground forest biomass based on Landsat time-series and LiDAR strip samples in the Eastern USA
  publication-title: Remote Sens. (Basel)
  contributor:
    fullname: Woodall
– volume: 122
  start-page: 146
  year: 2012
  end-page: 165
  ident: bib0270
  article-title: Using Landsat-derived disturbance history (1972–2010) to predict current forest structure
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Kennedy
– volume: 42
  start-page: 619
  year: 2016
  end-page: 641
  ident: bib0330
  article-title: Remote sensing technologies for enhancing forest inventories: a review
  publication-title: Can. J. Remote. Sens.
  contributor:
    fullname: Tompalski
– volume: 114
  start-page: 183
  year: 2010
  ident: 10.1016/j.jag.2019.101952_bib0155
  article-title: An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.08.017
  contributor:
    fullname: Huang
– start-page: 245
  year: 1945
  ident: 10.1016/j.jag.2019.101952_bib0225
  article-title: Nonparametric tests against trend
  publication-title: Econometrica: Journal of the Econometric Society
  doi: 10.2307/1907187
  contributor:
    fullname: Mann
– volume: 151
  start-page: 72
  year: 2014
  ident: 10.1016/j.jag.2019.101952_bib0110
  article-title: Forest disturbances, forest recovery, and changes in forest types across the Carpathian ecoregion from 1985 to 2010 based on Landsat image composites
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.04.022
  contributor:
    fullname: Griffiths
– volume: 54
  start-page: 535
  year: 2004
  ident: 10.1016/j.jag.2019.101952_bib0040
  article-title: Landsat’s role in ecological applications of remote sensing
  publication-title: BioScience
  doi: 10.1641/0006-3568(2004)054[0535:LRIEAO]2.0.CO;2
  contributor:
    fullname: Cohen
– volume: 32
  start-page: 407
  year: 2004
  ident: 10.1016/j.jag.2019.101952_bib0080
  article-title: Least angle regression
  publication-title: Ann. Statist.
  doi: 10.1214/009053604000000067
  contributor:
    fullname: Efron
– volume: 7
  start-page: 2832
  year: 2015
  ident: 10.1016/j.jag.2019.101952_bib0005
  article-title: Estimating forest biomass dynamics by integrating multi-temporal Landsat satellite images with ground and airborne LiDAR data in the coal valley mine, Alberta, Canada
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs70302832
  contributor:
    fullname: Badreldin
– volume: 8
  start-page: 98
  year: 2017
  ident: 10.1016/j.jag.2019.101952_bib0035
  article-title: How similar are forest disturbance maps derived from different Landsat time series algorithms?
  publication-title: Forests
  doi: 10.3390/f8040098
  contributor:
    fullname: Cohen
– volume: 216
  start-page: 697
  year: 2018
  ident: 10.1016/j.jag.2019.101952_bib0230
  article-title: Three decades of forest structural dynamics over Canada’s forested ecosystems using Landsat time-series and lidar plots
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.07.024
  contributor:
    fullname: Matasci
– year: 2012
  ident: 10.1016/j.jag.2019.101952_bib0245
  contributor:
    fullname: Mora
– volume: 122
  start-page: 117
  year: 2012
  ident: 10.1016/j.jag.2019.101952_bib0190
  article-title: Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.09.024
  contributor:
    fullname: Kennedy
– volume: 114
  start-page: 2897
  year: 2010
  ident: 10.1016/j.jag.2019.101952_bib0185
  article-title: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr — temporal segmentation algorithms
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.07.008
  contributor:
    fullname: Kennedy
– volume: 93
  start-page: 14
  year: 2014
  ident: 10.1016/j.jag.2019.101952_bib0105
  article-title: Historical forest biomass dynamics modelled with Landsat spectral trajectories
  publication-title: Isprs J. Photogramm. Remote. Sens.
  doi: 10.1016/j.isprsjprs.2014.03.008
  contributor:
    fullname: Gómez
– volume: 139
  start-page: 277
  year: 2013
  ident: 10.1016/j.jag.2019.101952_bib0220
  article-title: Monitoring coniferous forest biomass change using a Landsat trajectory-based approach
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.08.010
  contributor:
    fullname: Main-Knorn
– year: 2016
  ident: 10.1016/j.jag.2019.101952_bib0315
  contributor:
    fullname: Viridans
– year: 2018
  ident: 10.1016/j.jag.2019.101952_bib0295
  article-title: Creating robust reference (training) datasets for large area time series disturbance attribution
  contributor:
    fullname: Soto-Berelov
– volume: 44
  start-page: 521
  year: 2014
  ident: 10.1016/j.jag.2019.101952_bib0015
  article-title: Mapping attributes of Canada’s forests at moderate resolution through kNN and MODIS imagery
  publication-title: Can. J. For. Res.
  doi: 10.1139/cjfr-2013-0401
  contributor:
    fullname: Beaudoin
– volume: 13
  start-page: 71
  year: 2002
  ident: 10.1016/j.jag.2019.101952_bib0215
  article-title: Performance of partial Mann–Kendall tests for trend detection in the presence of covariates
  publication-title: Environmetrics: The official journal of the International Environmetrics Society
  doi: 10.1002/env.507
  contributor:
    fullname: Libiseller
– year: 2019
  ident: 10.1016/j.jag.2019.101952_bib0025
  contributor:
    fullname: BOM
– volume: 10
  start-page: 1825
  year: 2018
  ident: 10.1016/j.jag.2019.101952_bib0250
  article-title: A comparison of imputation approaches for estimating forest biomass using Landsat time-series and inventory data
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs10111825
  contributor:
    fullname: Nguyen
– volume: 37
  start-page: 4302
  year: 2017
  ident: 10.1016/j.jag.2019.101952_bib0090
  article-title: WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.5086
  contributor:
    fullname: Fick
– volume: 10
  start-page: 460
  year: 2018
  ident: 10.1016/j.jag.2019.101952_bib0140
  article-title: Using Landsat spectral indices in time-series to assess wildfire disturbance and recovery
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs10030460
  contributor:
    fullname: Hislop
– volume: 151
  start-page: 124
  year: 2014
  ident: 10.1016/j.jag.2019.101952_bib0275
  article-title: Using Landsat-derived disturbance and recovery history and lidar to map forest biomass dynamics
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.05.033
  contributor:
    fullname: Pflugmacher
– year: 2010
  ident: 10.1016/j.jag.2019.101952_bib0100
  contributor:
    fullname: Gallant
– year: 2018
  ident: 10.1016/j.jag.2019.101952_bib0135
  article-title: A New semi-automatic seamless cloud-free Landsat mosaicing approach tracks forest change over large extents
  publication-title: IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
  contributor:
    fullname: Hislop
– year: 2019
  ident: 10.1016/j.jag.2019.101952_bib0145
  article-title: High fire disturbance in forests leads to longer recovery, but varies by forest type
  publication-title: Remote Sens. Ecol. Conserv.
  doi: 10.1002/rse2.113
  contributor:
    fullname: Hislop
– volume: 37
  start-page: 138
  year: 2015
  ident: 10.1016/j.jag.2019.101952_bib0280
  article-title: Forest recovery trends derived from Landsat time series for North American boreal forests
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/2150704X.2015.1126375
  contributor:
    fullname: Pickell
– volume: 47
  start-page: 583
  year: 1952
  ident: 10.1016/j.jag.2019.101952_bib0200
  article-title: Use of ranks in one-criterion variance analysis
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1952.10483441
  contributor:
    fullname: Kruskal
– year: 2005
  ident: 10.1016/j.jag.2019.101952_bib0150
  article-title: Tropical deforestation as a source of greenhouse gas emissions
  contributor:
    fullname: Houghton
– volume: 10
  start-page: 590
  year: 2017
  ident: 10.1016/j.jag.2019.101952_bib0175
  article-title: Estimation of aboveground forest biomass in Galicia (NW Spain) by the combined use of LiDAR, LANDSAT ETM+ and National Forest Inventory data
  publication-title: iForest Biogeosci. For.
  doi: 10.3832/ifor1989-010
  contributor:
    fullname: Jiménez
– volume: 13
  year: 2018
  ident: 10.1016/j.jag.2019.101952_bib0180
  article-title: An empirical, integrated forest biomass monitoring system
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aa9d9e
  contributor:
    fullname: Kennedy
– volume: 2
  start-page: 18
  year: 2002
  ident: 10.1016/j.jag.2019.101952_bib0210
  article-title: Classification and regression by random forest
  publication-title: R news
  contributor:
    fullname: Liaw
– volume: 114
  start-page: 1053
  year: 2010
  ident: 10.1016/j.jag.2019.101952_bib0285
  article-title: Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: a comparison of empirical modeling approaches
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.12.018
  contributor:
    fullname: Powell
– volume: 23
  start-page: 1
  year: 2008
  ident: 10.1016/j.jag.2019.101952_bib0060
  article-title: yaImpute: an R package for kNN imputation
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v023.i10
  contributor:
    fullname: Crookston
– volume: 205
  start-page: 131
  year: 2018
  ident: 10.1016/j.jag.2019.101952_bib0045
  article-title: A LandTrendr multispectral ensemble for forest disturbance detection
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.11.015
  contributor:
    fullname: Cohen
– volume: 122
  start-page: 146
  year: 2012
  ident: 10.1016/j.jag.2019.101952_bib0270
  article-title: Using Landsat-derived disturbance history (1972–2010) to predict current forest structure
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.09.025
  contributor:
    fullname: Pflugmacher
– volume: 115
  start-page: 2850
  year: 2011
  ident: 10.1016/j.jag.2019.101952_bib0205
  article-title: The BIOMASS mission: mapping global forest biomass to better understand the terrestrial carbon cycle
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.03.020
  contributor:
    fullname: Le Toan
– year: 2012
  ident: 10.1016/j.jag.2019.101952_bib0170
  contributor:
    fullname: Isenburg
– volume: 178
  start-page: 158
  year: 2016
  ident: 10.1016/j.jag.2019.101952_bib0030
  article-title: Estimation of forest biomass dynamics in subtropical forests using multi-temporal airborne LiDAR data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.03.012
  contributor:
    fullname: Cao
– volume: 328
  start-page: 335
  year: 2014
  ident: 10.1016/j.jag.2019.101952_bib0165
  article-title: Estimating above-ground biomass of tropical rainforest of different degradation levels in Northern Borneo using airborne LiDAR
  publication-title: For. Ecol. Manage.
  doi: 10.1016/j.foreco.2014.06.003
  contributor:
    fullname: Ioki
– volume: 143
  start-page: 26
  year: 2014
  ident: 10.1016/j.jag.2019.101952_bib0360
  article-title: Influence of lidar, Landsat imagery, disturbance history, plot location accuracy, and plot size on accuracy of imputation maps of forest composition and structure
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.12.013
  contributor:
    fullname: Zald
– volume: 361
  start-page: 194
  year: 2016
  ident: 10.1016/j.jag.2019.101952_bib0010
  article-title: Trends in post-disturbance recovery rates of Canada’s forests following wildfire and harvest
  publication-title: For. Ecol. Manage.
  doi: 10.1016/j.foreco.2015.11.015
  contributor:
    fullname: Bartels
– volume: 176
  start-page: 188
  year: 2016
  ident: 10.1016/j.jag.2019.101952_bib0365
  article-title: Integrating Landsat pixel composites and change metrics with lidar plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.01.015
  contributor:
    fullname: Zald
– volume: 194
  start-page: 303
  year: 2017
  ident: 10.1016/j.jag.2019.101952_bib0335
  article-title: A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.03.035
  contributor:
    fullname: White
– volume: 66
  start-page: 174
  year: 2018
  ident: 10.1016/j.jag.2019.101952_bib0020
  article-title: Updating stand-level forest inventories using airborne laser scanning and Landsat time series data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  contributor:
    fullname: Bolton
– volume: 112
  start-page: 2232
  year: 2008
  ident: 10.1016/j.jag.2019.101952_bib0160
  article-title: Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.10.009
  contributor:
    fullname: Hudak
– volume: 40
  start-page: 192
  year: 2014
  ident: 10.1016/j.jag.2019.101952_bib0325
  article-title: Pixel-based image compositing for large-area dense time series applications and science
  publication-title: Can. J. Remote. Sens.
  doi: 10.1080/07038992.2014.945827
  contributor:
    fullname: White
– volume: 9
  start-page: 598
  year: 2017
  ident: 10.1016/j.jag.2019.101952_bib0065
  article-title: Evaluating site-specific and generic spatial models of aboveground forest biomass based on Landsat time-series and LiDAR strip samples in the Eastern USA
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs9060598
  contributor:
    fullname: Deo
– volume: 5
  start-page: 6481
  year: 2013
  ident: 10.1016/j.jag.2019.101952_bib0095
  article-title: Seasonal composite Landsat TM/ETM+ images using the medoid (a multi-dimensional median)
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs5126481
  contributor:
    fullname: Flood
– volume: 39
  start-page: 4254
  year: 2018
  ident: 10.1016/j.jag.2019.101952_bib0350
  article-title: Land cover 2.0
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2018.1452075
  contributor:
    fullname: Wulder
– volume: 1
  start-page: 80
  year: 1945
  ident: 10.1016/j.jag.2019.101952_bib0340
  article-title: Individual comparisons by ranking methods
  publication-title: Biom. Bull.
  doi: 10.2307/3001968
  contributor:
    fullname: Wilcoxon
– volume: 17
  start-page: 142
  year: 2013
  ident: 10.1016/j.jag.2019.101952_bib0290
  article-title: Observation of trends in biomass loss as a result of disturbance in the Conterminous U.S.: 1986–2004
  publication-title: Ecosystems
  doi: 10.1007/s10021-013-9713-9
  contributor:
    fullname: Powell
– volume: 9
  year: 2017
  ident: 10.1016/j.jag.2019.101952_bib0320
  article-title: Wall-to-Wall tree type mapping from countrywide airborne remote sensing surveys
  publication-title: Remote Sens. (Basel)
  contributor:
    fullname: Waser
– volume: 10
  start-page: 5421
  year: 2013
  ident: 10.1016/j.jag.2019.101952_bib0240
  article-title: Detecting tropical forest biomass dynamics from repeated airborne lidar measurements
  publication-title: Biogeosciences
  doi: 10.5194/bg-10-5421-2013
  contributor:
    fullname: Meyer
– volume: 42
  start-page: 619
  year: 2016
  ident: 10.1016/j.jag.2019.101952_bib0330
  article-title: Remote sensing technologies for enhancing forest inventories: a review
  publication-title: Can. J. Remote. Sens.
  doi: 10.1080/07038992.2016.1207484
  contributor:
    fullname: White
– volume: 93
  start-page: 179
  year: 2004
  ident: 10.1016/j.jag.2019.101952_bib0345
  article-title: Estimating time since forest harvest using segmented Landsat ETM+ imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2004.07.009
  contributor:
    fullname: Wulder
– volume: 170
  start-page: 121
  year: 2015
  ident: 10.1016/j.jag.2019.101952_bib0130
  article-title: Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.09.004
  contributor:
    fullname: Hermosilla
– volume: 118
  start-page: 83
  year: 2012
  ident: 10.1016/j.jag.2019.101952_bib0370
  article-title: Object-based cloud and cloud shadow detection in Landsat imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.10.028
  contributor:
    fullname: Zhu
– year: 2005
  ident: 10.1016/j.jag.2019.101952_bib0195
  contributor:
    fullname: Key
– volume: 4
  start-page: 984
  year: 2013
  ident: 10.1016/j.jag.2019.101952_bib0125
  article-title: Above-ground biomass and biomass components estimation using LiDAR data in a coniferous forest
  publication-title: Forests
  doi: 10.3390/f4040984
  contributor:
    fullname: He
– volume: 151
  start-page: 3
  year: 2014
  ident: 10.1016/j.jag.2019.101952_bib0265
  article-title: Scale considerations for integrating forest inventory plot data and satellite image data for regional forest mapping
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.08.048
  contributor:
    fullname: Ohmann
– volume: 24
  start-page: 235
  year: 2009
  ident: 10.1016/j.jag.2019.101952_bib0085
  article-title: The roles of nearest neighbor methods in imputing missing data in forest inventory and monitoring databases
  publication-title: Scand. J. For. Res.
  doi: 10.1080/02827580902870490
  contributor:
    fullname: Eskelson
– volume: 217
  start-page: 461
  year: 2018
  ident: 10.1016/j.jag.2019.101952_bib0260
  article-title: A spatial and temporal analysis of forest dynamics using Landsat time-series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.08.028
  contributor:
    fullname: Nguyen
– volume: 17
  start-page: 301
  year: 1985
  ident: 10.1016/j.jag.2019.101952_bib0055
  article-title: A TM tasseled cap equivalent transformation for reflectance factor data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(85)90102-6
  contributor:
    fullname: Crist
– year: 2019
  ident: 10.1016/j.jag.2019.101952_bib0255
  article-title: Estimate forest biomass dynamics using multi-temporal lidar and single-date inventory data
  contributor:
    fullname: Nguyen
– volume: 43
  start-page: 28
  year: 2017
  ident: 10.1016/j.jag.2019.101952_bib0070
  article-title: Using Landsat time-series and LiDAR to inform aboveground forest biomass baselines in Northern Minnesota, USA
  publication-title: Can. J. Remote. Sens.
  doi: 10.1080/07038992.2017.1259556
  contributor:
    fullname: Deo
– volume: 367
  start-page: 86
  year: 2016
  ident: 10.1016/j.jag.2019.101952_bib0115
  article-title: A strategic forest inventory for public land in Victoria, Australia
  publication-title: For. Ecol. Manage.
  doi: 10.1016/j.foreco.2016.02.026
  contributor:
    fullname: Haywood
– volume: 8
  start-page: 99
  year: 2017
  ident: 10.1016/j.jag.2019.101952_bib0120
  article-title: Estimating large area forest carbon stocks—a pragmatic design based strategy
  publication-title: Forests
  doi: 10.3390/f8040099
  contributor:
    fullname: Haywood
– volume: 38
  start-page: 600
  year: 2014
  ident: 10.1016/j.jag.2019.101952_bib0355
  article-title: Lidar plots — a new large-area data collection option: context, concepts, and case study
  publication-title: Can. J. Remote. Sens.
  doi: 10.5589/m12-049
  contributor:
    fullname: Wulder
– year: 2013
  ident: 10.1016/j.jag.2019.101952_bib0075
  contributor:
    fullname: Department of Environment and Primary Industries
– volume: 5
  start-page: 3906
  year: 2014
  ident: 10.1016/j.jag.2019.101952_bib0050
  article-title: Recovery and resilience of tropical forests after disturbance
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4906
  contributor:
    fullname: Cole
– volume: 209
  start-page: 90
  year: 2018
  ident: 10.1016/j.jag.2019.101952_bib0235
  article-title: Large-area mapping of Canadian boreal forest cover, height, biomass and other structural attributes using Landsat composites and lidar plots
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.12.020
  contributor:
    fullname: Matasci
– year: 2013
  ident: 10.1016/j.jag.2019.101952_bib0310
  article-title: National Forest monitoring systems: monitoring and measurement, reporting and verification (M & MRV) in the context of REDD+ activities
  publication-title: 7th Meeting of the UN-REDD Programme Policy Board
  contributor:
    fullname: UN-REDD Programme Secretariat
– year: 2009
  ident: 10.1016/j.jag.2019.101952_bib0300
– volume: 69
  start-page: 121
  year: 2012
  ident: 10.1016/j.jag.2019.101952_bib0305
  article-title: Using multi-frequency radar and discrete-return LiDAR measurements to estimate above-ground biomass and biomass components in a coastal temperate forest
  publication-title: Isprs J. Photogramm. Remote. Sens.
  doi: 10.1016/j.isprsjprs.2012.02.009
  contributor:
    fullname: Tsui
SSID ssj0017768
Score 2.4743853
Snippet •A robust framework for monitoring forest AGB dynamics across space and time.•Estimating annual forest AGB using Landsat time-series and inventory...
Understanding forest biomass dynamics is crucial for carbon and environmental monitoring, especially in the context of climate change. In this study, we...
SourceID doaj
crossref
elsevier
SourceType Open Website
Aggregation Database
Publisher
StartPage 101952
SubjectTerms Aboveground biomass
Australia
Forest disturbance
Forest recovery
Landsat time-series
Lidar
Single-date inventory
Title Monitoring aboveground forest biomass dynamics over three decades using Landsat time-series and single-date inventory data
URI https://dx.doi.org/10.1016/j.jag.2019.101952
https://doaj.org/article/7278177a841b4b7ba8405becc06e8fa0
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELaACQYEBUR5yQMTkoWTOLYz8ijqgFgAiS3yE7VCBdEWCX49d3ECZUAsbIltxZG_s-7O_u6OkGNhveHeOiZ9YZkwgbPKwXavLI_RW2hoaiwNb9XNg74cYJqcr1JfyAlL6YHTwp2CftWZUkaLzAqrLDzwEifmMuhokrfOZedMtfcHSqUguFJWTIsi7-4zG2bX2Dwip6vC96rMf2ikJnH_gmJaUDZXG2S9tRLpWfq7TbIUJj2ytpA7sEd2Bt8hajC03aPTLfKRtimOooDwW8DAjYmnYJ2CBqAYbw8GM_WpFP2UIoeTzgDSQH1AtvyUIhn-kV5jFLCZUSw_z1BSoQeaKHY-BYZHBXTUcNafX98pUk23yf3V4O5iyNoKC8wJlc-Yk7mQMZROO1VmAJr30upQRGeMyGKlRZnzAOueCQeui-HcKS6s1IUvXaxUsUNWJs-TsEtopTNpbKGcKaLwuTc-j7YA-y0C9ILbPjnpVrl-SYk06o5hNq4BkhohqRMkfXKOOHwNxBzYTQNIRt1KRv2XZPSJ6FCsW3MimQnwqdHvc-_9x9z7ZDVHxxzTvGYHZGX2Og-HZHnq50eNoH4Crj_vQQ
link.rule.ids 315,782,786,866,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monitoring+aboveground+forest+biomass+dynamics+over+three+decades+using+Landsat+time-series+and+single-date+inventory+data&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Nguyen%2C+Trung+H.&rft.au=Jones%2C+Simon+D.&rft.au=Soto-Berelov%2C+Mariela&rft.au=Haywood%2C+Andrew&rft.date=2020-02-01&rft.pub=Elsevier+B.V&rft.issn=1569-8432&rft.eissn=1872-826X&rft.volume=84&rft_id=info:doi/10.1016%2Fj.jag.2019.101952&rft.externalDocID=S0303243419305070
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon