Is the intensification of precipitation extremes with global warming better detected at hourly than daily resolutions?
Although it has been documented that daily precipitation extremes are increasing worldwide, faster increases may be expected for subdaily extremes. Here after a careful quality control procedure, we compared trends in hourly and daily precipitation extremes using a large network of stations across t...
Saved in:
Published in: | Geophysical research letters Vol. 44; no. 2; pp. 974 - 983 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Washington
John Wiley & Sons, Inc
28-01-2017
American Geophysical Union |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Although it has been documented that daily precipitation extremes are increasing worldwide, faster increases may be expected for subdaily extremes. Here after a careful quality control procedure, we compared trends in hourly and daily precipitation extremes using a large network of stations across the United States (U.S.) within the 1950–2011 period. A greater number of significant increasing trends in annual and seasonal maximum precipitation were detected from daily extremes, with the primary exception of wintertime. Our results also show that the mean percentage change in annual maximum daily precipitation across the U.S. per global warming degree is ~6.9% °C−1 (in agreement with the Clausius‐Clapeyron rate) while lower sensitivities were observed for hourly extremes, suggesting that changes in the magnitude of subdaily extremes in response to global warming emerge more slowly than those for daily extremes in the climate record.
Key Points
We compared long‐term trends in hourly and daily precipitation extremes using quality‐controlled stations
Upward trends in precipitation extreme were evident across the U.S., but overall, trends were better detected at daily resolutions than at hourly resolutions
Daily precipitation extremes scale with mean global temperature following the CC rate, while hourly extremes show lower sensitivities |
---|---|
AbstractList | Although it has been documented that daily precipitation extremes are increasing worldwide, faster increases may be expected for subdaily extremes. Here after a careful quality control procedure, we compared trends in hourly and daily precipitation extremes using a large network of stations across the United States (U.S.) within the 1950–2011 period. A greater number of significant increasing trends in annual and seasonal maximum precipitation were detected from daily extremes, with the primary exception of wintertime. Our results also show that the mean percentage change in annual maximum daily precipitation across the U.S. per global warming degree is ~6.9% °C
−1
(in agreement with the Clausius‐Clapeyron rate) while lower sensitivities were observed for hourly extremes, suggesting that changes in the magnitude of subdaily extremes in response to global warming emerge more slowly than those for daily extremes in the climate record.
We compared long‐term trends in hourly and daily precipitation extremes using quality‐controlled stations
Upward trends in precipitation extreme were evident across the U.S., but overall, trends were better detected at daily resolutions than at hourly resolutions
Daily precipitation extremes scale with mean global temperature following the CC rate, while hourly extremes show lower sensitivities Although it has been documented that daily precipitation extremes are increasing worldwide, faster increases may be expected for subdaily extremes. Here after a careful quality control procedure, we compared trends in hourly and daily precipitation extremes using a large network of stations across the United States (U.S.) within the 1950–2011 period. A greater number of significant increasing trends in annual and seasonal maximum precipitation were detected from daily extremes, with the primary exception of wintertime. Our results also show that the mean percentage change in annual maximum daily precipitation across the U.S. per global warming degree is ~6.9% °C−1 (in agreement with the Clausius‐Clapeyron rate) while lower sensitivities were observed for hourly extremes, suggesting that changes in the magnitude of subdaily extremes in response to global warming emerge more slowly than those for daily extremes in the climate record. Key Points We compared long‐term trends in hourly and daily precipitation extremes using quality‐controlled stations Upward trends in precipitation extreme were evident across the U.S., but overall, trends were better detected at daily resolutions than at hourly resolutions Daily precipitation extremes scale with mean global temperature following the CC rate, while hourly extremes show lower sensitivities Although it has been documented that daily precipitation extremes are increasing worldwide, faster increases may be expected for subdaily extremes. Here after a careful quality control procedure, we compared trends in hourly and daily precipitation extremes using a large network of stations across the United States (U.S.) within the 1950-2011 period. A greater number of significant increasing trends in annual and seasonal maximum precipitation were detected from daily extremes, with the primary exception of wintertime. Our results also show that the mean percentage change in annual maximum daily precipitation across the U.S. per global warming degree is ~6.9%°C-1 (in agreement with the Clausius-Clapeyron rate) while lower sensitivities were observed for hourly extremes, suggesting that changes in the magnitude of subdaily extremes in response to global warming emerge more slowly than those for daily extremes in the climate record. Although it has been documented that daily precipitation extremes are increasing worldwide, faster increases may be expected for subdaily extremes. Here after a careful quality control procedure, we compared trends in hourly and daily precipitation extremes using a large network of stations across the United States (U.S.) within the 1950–2011 period. A greater number of significant increasing trends in annual and seasonal maximum precipitation were detected from daily extremes, with the primary exception of wintertime. Our results also show that the mean percentage change in annual maximum daily precipitation across the U.S. per global warming degree is ~6.9% °C−1 (in agreement with the Clausius‐Clapeyron rate) while lower sensitivities were observed for hourly extremes, suggesting that changes in the magnitude of subdaily extremes in response to global warming emerge more slowly than those for daily extremes in the climate record. Although it has been documented that daily precipitation extremes are increasing worldwide, faster increases may be expected for subdaily extremes. Here after a careful quality control procedure, we compared trends in hourly and daily precipitation extremes using a large network of stations across the United States (U.S.) within the 1950-2011 period. A greater number of significant increasing trends in annual and seasonal maximum precipitation were detected from daily extremes, with the primary exception of wintertime. Our results also show that the mean percentage change in annual maximum daily precipitation across the U.S. per global warming degree is ~6.9% degree C super(-1) (in agreement with the Clausius-Clapeyron rate) while lower sensitivities were observed for hourly extremes, suggesting that changes in the magnitude of subdaily extremes in response to global warming emerge more slowly than those for daily extremes in the climate record. Key Points * We compared long-term trends in hourly and daily precipitation extremes using quality-controlled stations * Upward trends in precipitation extreme were evident across the U.S., but overall, trends were better detected at daily resolutions than at hourly resolutions * Daily precipitation extremes scale with mean global temperature following the CC rate, while hourly extremes show lower sensitivities Abstract Although it has been documented that daily precipitation extremes are increasing worldwide, faster increases may be expected for subdaily extremes. Here after a careful quality control procedure, we compared trends in hourly and daily precipitation extremes using a large network of stations across the United States (U.S.) within the 1950–2011 period. A greater number of significant increasing trends in annual and seasonal maximum precipitation were detected from daily extremes, with the primary exception of wintertime. Our results also show that the mean percentage change in annual maximum daily precipitation across the U.S. per global warming degree is ~6.9% °C −1 (in agreement with the Clausius‐Clapeyron rate) while lower sensitivities were observed for hourly extremes, suggesting that changes in the magnitude of subdaily extremes in response to global warming emerge more slowly than those for daily extremes in the climate record. |
Author | Fowler, H. J. Blenkinsop, S. Barbero, R. Lenderink, G. |
Author_xml | – sequence: 1 givenname: R. orcidid: 0000-0001-8610-0018 surname: Barbero fullname: Barbero, R. email: renaud.barbero@ncl.ac.uk organization: Newcastle University – sequence: 2 givenname: H. J. orcidid: 0000-0001-8848-3606 surname: Fowler fullname: Fowler, H. J. organization: Newcastle University – sequence: 3 givenname: G. orcidid: 0000-0002-1572-4867 surname: Lenderink fullname: Lenderink, G. organization: Royal Netherlands Meteorological Institute – sequence: 4 givenname: S. surname: Blenkinsop fullname: Blenkinsop, S. organization: Newcastle University |
BackLink | https://hal.inrae.fr/hal-04210225$$DView record in HAL |
BookMark | eNqN0lFrFDEQB_AgFbxW3_wAAV8UPJ3JZneyT1KKXgsHguhzyO7O9lL2NmeS6_W-vXusFOlD8SnD8OMPk5lzcTaGkYV4i_AJAdRnBVit1kBYI70QC6y1XhoAOhMLgHqqFVWvxHlKdwBQQIELcX-TZN6w9GPmMfnety77MMrQy13k1u98nhv8kCNvOcmDzxt5O4TGDfLg4taPt7LhnDnKjjO3mTvpstyEfRyOU7YbZef8VEZOYdifwtKX1-Jl74bEb_6-F-LXt68_r66X6--rm6vL9bLVpPRSaYPkGlWiqbE3jtBwoXpVUQNM0FBvmqajsq1qKFXTVVT2pmdS5MigKYsL8WHO3bjB7qLfuni0wXl7fbm2px5ohaBUeY-TfT_bXQy_95yy3frU8jC4kcM-WTRGI1JF1X9QIlNojcVE3z2hd9PPjNPQdloTVqVWoJ9VhgC0Nuo0zcdZtTGkFLl_HAnBni7A_nsBE1czP_iBj89au_qxLkuNuvgDaS2xZA |
CitedBy_id | crossref_primary_10_1007_s10712_022_09737_w crossref_primary_10_1088_1748_9326_ab98b4 crossref_primary_10_1029_2018WR022732 crossref_primary_10_1038_s41598_023_32372_3 crossref_primary_10_1029_2024GL108565 crossref_primary_10_1029_2020WR029496 crossref_primary_10_31435_rsglobal_ijitss_30062024_8128 crossref_primary_10_1016_j_rsase_2021_100618 crossref_primary_10_3390_w11101981 crossref_primary_10_1016_j_jhydrol_2021_127391 crossref_primary_10_1175_JHM_D_18_0196_1 crossref_primary_10_1007_s11069_022_05210_4 crossref_primary_10_1016_j_scitotenv_2022_156297 crossref_primary_10_1016_j_wace_2022_100433 crossref_primary_10_1126_science_abn8657 crossref_primary_10_12677_OJNS_2020_85054 crossref_primary_10_1029_2021WR031641 crossref_primary_10_1029_2019JD031210 crossref_primary_10_1029_2021JD035539 crossref_primary_10_5194_gmd_11_3713_2018 crossref_primary_10_1175_JAMC_D_18_0180_1 crossref_primary_10_1016_j_jhydrol_2021_126296 crossref_primary_10_1016_j_jhydrol_2024_131309 crossref_primary_10_1007_s00382_018_4123_5 crossref_primary_10_1007_s10584_019_02523_5 crossref_primary_10_1016_j_jhydrol_2024_131025 crossref_primary_10_1029_2020GL090317 crossref_primary_10_1002_wat2_1718 crossref_primary_10_5194_esurf_7_345_2019 crossref_primary_10_5194_hess_26_1545_2022 crossref_primary_10_1016_j_jhydrol_2024_130734 crossref_primary_10_1098_rsta_2020_0137 crossref_primary_10_1098_rsta_2019_0551 crossref_primary_10_5194_hess_21_5823_2017 crossref_primary_10_1029_2020GL089723 crossref_primary_10_1175_JCLI_D_18_0143_1 crossref_primary_10_1002_joc_8351 crossref_primary_10_1088_1748_9326_ad21b1 crossref_primary_10_2166_wcc_2023_420 crossref_primary_10_1002_joc_8072 crossref_primary_10_1088_1748_9326_ab214a crossref_primary_10_5194_hess_22_2041_2018 crossref_primary_10_1016_j_atmosres_2024_107253 crossref_primary_10_5194_esd_11_469_2020 crossref_primary_10_1029_2021WR031854 crossref_primary_10_12677_OJNS_2022_106125 crossref_primary_10_1002_joc_7789 crossref_primary_10_1016_j_wace_2022_100417 crossref_primary_10_1088_1748_9326_abab35 crossref_primary_10_1016_j_envsci_2019_05_020 crossref_primary_10_1007_s00703_020_00730_9 crossref_primary_10_1002_vzj2_20160 crossref_primary_10_1098_rsta_2019_0623 crossref_primary_10_3390_rs15174179 crossref_primary_10_1038_s41598_019_52277_4 crossref_primary_10_1175_JHM_D_21_0195_1 crossref_primary_10_1111_nyas_14337 crossref_primary_10_1007_s00477_023_02433_0 crossref_primary_10_1016_j_jhydrol_2019_05_054 crossref_primary_10_1016_j_jhydrol_2021_126071 crossref_primary_10_1029_2018GL077994 crossref_primary_10_1175_JCLI_D_20_0616_1 crossref_primary_10_5194_esd_9_955_2018 crossref_primary_10_1002_joc_7835 crossref_primary_10_3390_w12040929 crossref_primary_10_5194_nhess_19_421_2019 crossref_primary_10_1140_epjp_s13360_021_02243_9 crossref_primary_10_1007_s00704_021_03602_3 crossref_primary_10_1029_2020GL089300 crossref_primary_10_1038_s41558_018_0245_3 crossref_primary_10_1029_2019GL084015 crossref_primary_10_2166_nh_2023_045 crossref_primary_10_3390_atmos15020170 crossref_primary_10_1029_2019EA000665 crossref_primary_10_1002_joc_5781 crossref_primary_10_1029_2018WR023749 crossref_primary_10_1002_asl_1240 crossref_primary_10_3354_cr01512 crossref_primary_10_1007_s00382_017_3857_9 crossref_primary_10_1016_j_uclim_2024_101990 crossref_primary_10_1002_joc_6639 crossref_primary_10_1175_JCLI_D_19_0920_1 crossref_primary_10_1029_2023EF003617 crossref_primary_10_1016_j_jhydrol_2022_127758 crossref_primary_10_1214_22_AOAS1675 crossref_primary_10_1038_s41598_023_48969_7 crossref_primary_10_1016_j_pdisas_2021_100212 crossref_primary_10_1038_s41597_021_01003_9 crossref_primary_10_1029_2019GL082461 crossref_primary_10_1088_1748_9326_ac59a6 crossref_primary_10_1175_JHM_D_17_0097_1 crossref_primary_10_1016_j_coastaleng_2021_103896 crossref_primary_10_5194_essd_15_4849_2023 crossref_primary_10_1088_1748_9326_ac0caa crossref_primary_10_1175_JCLI_D_17_0435_1 crossref_primary_10_1002_2017GL074530 crossref_primary_10_1016_j_scitotenv_2024_173672 crossref_primary_10_12677_CCRL_2020_95054 crossref_primary_10_1002_wat2_1519 crossref_primary_10_1088_1748_9326_aac334 crossref_primary_10_1016_j_rse_2023_113490 crossref_primary_10_1029_2018GL078465 crossref_primary_10_1007_s10584_019_02415_8 crossref_primary_10_1016_j_ejrh_2023_101480 crossref_primary_10_1029_2022EF002967 crossref_primary_10_1029_2019WR026924 crossref_primary_10_1016_j_wace_2023_100585 crossref_primary_10_5194_asr_15_117_2018 crossref_primary_10_1016_j_scitotenv_2020_137688 crossref_primary_10_1038_s41467_021_27111_z crossref_primary_10_1038_s43017_020_00128_6 crossref_primary_10_1016_j_jhydrol_2023_129805 crossref_primary_10_1016_j_gloplacha_2019_103004 crossref_primary_10_1016_j_advwatres_2018_05_001 crossref_primary_10_1016_j_jhydrol_2020_125151 crossref_primary_10_1029_2019GL083371 crossref_primary_10_1016_j_atmosres_2021_105872 crossref_primary_10_3390_atmos11080786 crossref_primary_10_1016_j_jhydrol_2022_128180 crossref_primary_10_1029_2022WR032723 crossref_primary_10_1098_rsta_2019_0542 crossref_primary_10_1098_rsta_2019_0541 crossref_primary_10_3390_w10091109 crossref_primary_10_1002_2017GL074024 crossref_primary_10_1007_s00704_024_04897_8 crossref_primary_10_5194_nhess_21_1195_2021 crossref_primary_10_1038_s41597_020_00681_1 crossref_primary_10_1002_joc_5694 crossref_primary_10_1016_j_wace_2019_100219 crossref_primary_10_1002_hyp_13449 crossref_primary_10_1088_1748_9326_aa8e50 crossref_primary_10_1016_j_atmosres_2023_106873 crossref_primary_10_1088_1755_1315_609_1_012059 crossref_primary_10_1016_j_wace_2020_100266 crossref_primary_10_3390_atmos14121722 crossref_primary_10_1002_hyp_11421 crossref_primary_10_3390_w11122616 crossref_primary_10_3389_feart_2021_681312 crossref_primary_10_3390_rs15112778 crossref_primary_10_1029_2023JD039062 crossref_primary_10_1175_JAS_D_18_0343_1 |
Cites_doi | 10.1038/nclimate2617 10.1007/s00382-012-1568-9 10.1088/1748-9326/10/8/085001 10.1002/joc.616 10.1002/2014RG000475 10.1002/joc.2088 10.1002/2015JD024288 10.1175/1520-0493(2000)128<1194:COHREI>2.0.CO;2 10.1002/joc.1696 10.1175/JCLI-D-12-00502.1 10.1175/bams-d-11-00262.1 10.1029/2012GL052790 10.1007/BF01095163 10.1175/1520-0442(2000)013<3625:PADFTI>2.0.CO;2 10.1007/s40641-015-0009-3 10.1175/JCLI3339.1 10.1175/JHM-D-11-0108.1 10.1029/2010GL045081 10.5194/hess-15-3033-2011 10.1007/s00382-014-2242-1 10.1175/BAMS-D-13-00212.1 10.1029/2011GL048426 10.1029/2009JD012511 10.1175/BAMS-84-9-1205 10.1038/nclimate2258 10.2307/2346729 10.1016/0022-1694(84)90032-5 10.1002/joc.4735 10.1175/JCLI-D-12-00043.1 10.1007/s00382-006-0180-2 10.1038/nclimate2516 10.5194/hess-19-877-2015 10.1088/1748-9326/11/4/044003 10.1175/2007JAMC1611.1 10.1002/2013EF000185 10.1175/JHM-D-11-039.1 10.1002/2015GL066483 10.1029/2006GL027504 10.1029/2010RG000345 10.1038/nclimate2579 10.1088/1748-9326/10/5 10.1038/ngeo262 10.1038/nclimate2941 10.1002/2014GL062247 10.1175/JHM-D-14-0147.1 10.1038/ngeo1731 10.1002/2016GL068509 10.1175/2009JAMC2179.1 10.1038/nclimate1828 10.1002/2015WR017408 10.1007/s10584-014-1254-5 10.1029/2010GL045164 10.1175/2007JCLI1671.1 10.1029/2009JD012008 10.1038/nature09763 10.1175/JCLI-D-15-0441.1 10.1002/2014RG000464 10.1002/(SICI)1097-0088(199701)17:1<25::AID-JOC103>3.0.CO;2-J 10.1080/01621459.1968.10480934 10.1038/ngeo2596 10.1002/joc.4577 10.1002/2014JD022819 10.1002/grl.51010 10.1175/JHM632.1 |
ContentType | Journal Article |
Copyright | 2017. American Geophysical Union. All Rights Reserved. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2017. American Geophysical Union. All Rights Reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 1XC VOOES |
DOI | 10.1002/2016GL071917 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aerospace Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics Environmental Sciences |
EISSN | 1944-8007 |
EndPage | 983 |
ExternalDocumentID | oai_HAL_hal_04210225v1 4315786701 10_1002_2016GL071917 GRL55414 |
Genre | article |
GeographicLocations | United States--US USA |
GeographicLocations_xml | – name: United States--US – name: USA |
GrantInformation_xml | – fundername: European Research Council funderid: ERC‐2013‐CoG‐617329 – fundername: Royal Society – fundername: Wolfson Foundation funderid: WM140025 – fundername: INTENSE |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 8R4 8R5 A00 AAESR AAHHS AAIHA AASGY AAXRX AAZKR ABCUV ABPPZ ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEFZC AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB AVUZU AZFZN AZVAB BENPR BFHJK BMXJE BRXPI CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS EJD F5P G-S GODZA HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A AAYXX ALXUD CITATION PYCSY 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 1XC VOOES |
ID | FETCH-LOGICAL-c4724-24817ab251891f8a718e32f267b0e70b7f8bbd75c69052bd675f8fe727a781853 |
IEDL.DBID | 33P |
ISSN | 0094-8276 |
IngestDate | Tue Oct 15 15:59:56 EDT 2024 Fri Oct 25 03:30:59 EDT 2024 Fri Oct 25 00:04:09 EDT 2024 Tue Nov 19 04:10:53 EST 2024 Tue Nov 19 05:39:19 EST 2024 Thu Nov 21 20:52:20 EST 2024 Sat Aug 24 00:58:48 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4724-24817ab251891f8a718e32f267b0e70b7f8bbd75c69052bd675f8fe727a781853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1572-4867 0000-0001-8610-0018 0000-0001-8848-3606 |
OpenAccessLink | https://hal.inrae.fr/hal-04210225 |
PQID | 1870044825 |
PQPubID | 54723 |
PageCount | 10 |
ParticipantIDs | hal_primary_oai_HAL_hal_04210225v1 proquest_miscellaneous_1884117676 proquest_miscellaneous_1877834413 proquest_journals_1911654204 proquest_journals_1870044825 crossref_primary_10_1002_2016GL071917 wiley_primary_10_1002_2016GL071917_GRL55414 |
PublicationCentury | 2000 |
PublicationDate | 28 January 2017 |
PublicationDateYYYYMMDD | 2017-01-28 |
PublicationDate_xml | – month: 01 year: 2017 text: 28 January 2017 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geophysical research letters |
PublicationYear | 2017 |
Publisher | John Wiley & Sons, Inc American Geophysical Union |
Publisher_xml | – name: John Wiley & Sons, Inc – name: American Geophysical Union |
References | 1995; 31 2013; 3 2013; 26 2006; 33 1975 2011; 15 2008; 1 2012; 13 2011; 470 2013; 6 2009; 114 2009; 48 1968; 63 2007; 28 1979; 28 2014; 127 2011; 400 2014; 4 2014; 2 2000; 13 2000; 128 2015; 42 2013; 94 2007; 8 2016; 43 1997; 17 2008; 21 2014; 52 2003; 84 2015; 16 2015; 5 2010; 37 2015; 19 2015; 51 2015; 49–59 2015; 53 2013; 40 2015; 96 2015; 120 2015; 10 2011; 31 2007 2016; 121 2012; 39 2014; 41 2011; 38 2014; 44 2009; 29 2001; 21 2016; 11 1984; 73 2016; 6 2008; 47 2016 2015 2012; 48 2016; 29 2005; 18 2016; 9 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 Kendall M. G. (e_1_2_6_30_1) 1975 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 Meehl G. A. (e_1_2_6_42_1) 2007 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 48 start-page: 2086 year: 2009 end-page: 2099 article-title: Time‐dependent changes in extreme‐precipitation return‐period amounts in the continental United States publication-title: J. Appl. Meteorol. Climatol. – volume: 94 start-page: 499 issue: 4 year: 2013 end-page: 514 article-title: Monitoring and understanding trends in extreme storms: State of knowledge publication-title: Bull. Am. Meteorol. Soc. – volume: 21 start-page: 495 year: 2001 end-page: 506 article-title: Homogeneity adjustments of temperature and precipitation series—Finnish and Nordic data publication-title: Int. J. Climatol. – volume: 17 start-page: 25 year: 1997 end-page: 34 article-title: Homogenization of Swedish temperature data. Part I: Homogeneity test for linear trends publication-title: Int. J. Climatol. – volume: 5 start-page: 560 issue: 6 year: 2015 end-page: 564 article-title: Anthropogenic contribution to global occurrence of heavy‐precipitation and high‐temperature extremes publication-title: Nat. Clim. Change – volume: 39 year: 2012 article-title: Relationship between hourly extreme precipitation and local air temperature in the United States publication-title: Geophys. Res. Lett. – year: 2015 article-title: Analysis of frequency and magnitude of extreme rainfall events with potential impacts on flooding: A case study from the central United States publication-title: Int. J. Climatol. – volume: 96 start-page: 1097 issue: 7 year: 2015 end-page: 1115 article-title: Challenges in quantifying changes in the global water cycle publication-title: Bull. Am. Meteorol. Soc. – volume: 6 start-page: 181 issue: 3 year: 2013 end-page: 185 article-title: Strong increase in convective precipitation in response to higher temperatures publication-title: Nat. Geosci. – volume: 33 year: 2006 article-title: Robust increases in midlatitude static stability in simulations of global warming publication-title: Geophys. Res. Lett. – volume: 18 start-page: 1326 year: 2005 end-page: 1350 article-title: Trends in intense precipitation in the climate record publication-title: J. Clim. – volume: 28 start-page: 351 year: 2007 end-page: 363 article-title: Testing the Clausius–Clapeyron constraint on changes in extreme precipitation under CO warming publication-title: Climate Dynam. – volume: 26 start-page: 3904 year: 2013 end-page: 3918 article-title: Global increasing trends in annual maximum daily precipitation publication-title: J. Clim. – volume: 121 start-page: 3066 year: 2016 end-page: 3078 article-title: A U.S. based analysis of the ability of the Clausius‐Clapeyron relationship to explain changes in extreme rainfall with changing temperature publication-title: J. Geophys Res. Atmos. – year: 1975 – volume: 3 start-page: 577 year: 2013 end-page: 580 article-title: Trends in hourly rainfall statistics in the United States under a warming climate publication-title: Nat. Clim. Change – volume: 19 start-page: 877 year: 2015 end-page: 891 article-title: Global trends in extreme precipitation: Climate models versus observations publication-title: Hydrol. Earth Syst. Sci. – volume: 26 start-page: 351 issue: 1 year: 2013 end-page: 357 article-title: Changing frequency of heavy rainfall over the central United States publication-title: J. Clim. – volume: 2 start-page: 99 year: 2014 end-page: 113 article-title: Observational‐ and model‐based trends and projections of extreme precipitation over the contiguous United States publication-title: Earth's Future – volume: 4 start-page: 570 year: 2014 end-page: 576 article-title: Heavier summer downpours with climate change revealed by weather forecast resolution model publication-title: Nat. Clim. Change – volume: 31 start-page: 630 year: 2011 end-page: 632 article-title: A note on the use of the standard normal homogeneity test to detect inhomogeneities in climatic time series publication-title: Int. J. Climatol. – volume: 128 start-page: 1194 issue: 4 year: 2000 end-page: 1201 article-title: Climatology of heavy rain events in the United States from hourly precipitation observations publication-title: Mon. Weather Rev. – volume: 400 start-page: 103 issue: 1–2 year: 2011 end-page: 120 article-title: On the frequency of heavy rainfall for the Midwest of the United States publication-title: J. Hydrol. – volume: 114 year: 2009 article-title: Contribution of tropical cyclones to extreme rainfall events in the southeastern United States publication-title: J. Geophys. Res. – volume: 37 year: 2010 article-title: Recent increases in U.S. heavy precipitation associated with tropical cyclones publication-title: Geophys. Res. Lett. – volume: 5 start-page: 250 issue: 3 year: 2015 end-page: 254 article-title: The changing nature of flooding across the central United States publication-title: Nat. Clim. Change – volume: 127 start-page: 353 issue: 2 year: 2014 end-page: 369 article-title: Non‐stationary extreme value analysis in a changing climate publication-title: Clim. Change – volume: 1 start-page: 511 issue: 8 year: 2008 end-page: 514 article-title: Increase in hourly precipitation extremes beyond expectations from temperature changes publication-title: Nat. Geosci. – volume: 21 start-page: 923 year: 2008 end-page: 937 article-title: Downscaling and projection of winter extreme daily precipitation over North America publication-title: J. Clim. – volume: 42 start-page: 9781 year: 2015 end-page: 9789 article-title: Spatially coherent trends of annual maximum daily precipitation in the United States publication-title: Geophys. Res. Lett. – volume: 120 start-page: 2754 year: 2015 end-page: 2772 article-title: Using dynamical downscaling to examine mechanisms contributing to the intensification of Central U.S. heavy rainfall events publication-title: J. Geophys. Res. Atmos. – volume: 29 start-page: 2313 issue: 7 year: 2016 end-page: 2332 article-title: Characterizing recent trends in U.S. heavy precipitation publication-title: J. Clim. – volume: 42 start-page: 74 year: 2015 end-page: 83 article-title: Temperature and CAPE dependence of rainfall extremes in the eastern United States publication-title: Geophys. Res. Lett. – volume: 13 start-page: 3625 issue: 20 year: 2000 end-page: 3637 article-title: Precipitation and damaging floods: Trends in the United States, 1932–97 publication-title: J. Clim. – volume: 37 year: 2010 article-title: Observed relationships between extreme sub‐daily precipitation, surface temperature, and relative humidity publication-title: Geophys. Res. Lett. – volume: 114 year: 2009 article-title: Seasonal characteristics of the relationship between daily precipitation intensity and surface temperature publication-title: J. Geophys. Res. – volume: 470 start-page: 378 year: 2011 end-page: 381 article-title: Human contribution to more‐intense precipitation extremes publication-title: Nature – volume: 53 start-page: 323 year: 2015 end-page: 361 article-title: A review on regional convection‐permitting climate modeling: Demonstrations, prospects, and challenges publication-title: Rev. Geophys. – volume: 44 start-page: 45 issue: 1–2 year: 2014 end-page: 60 article-title: Benefit of convection permitting climate model simulations in the representation of convective precipitation publication-title: Clim. Dyn. – volume: 11 issue: 4 year: 2016 article-title: Contribution of large‐scale circulation anomalies to change in extreme precipitation frequency in the United States publication-title: Environ. Res. Lett – volume: 84 start-page: 1205 issue: 9 year: 2003 end-page: 1217 article-title: The changing character of precipitation publication-title: Bull. Am. Meteorol. Soc. – year: 2007 – volume: 52 start-page: 522 year: 2014 end-page: 555 article-title: Future changes to the intensity and frequency of short‐duration extreme rainfall publication-title: Rev. Geophys. – volume: 48 year: 2012 article-title: Global surface temperature change publication-title: Rev. Geophys. – volume: 38 year: 2011 article-title: Does higher surface temperature intensify extreme precipitation? publication-title: Geophys. Res. Lett. – volume: 9 start-page: 24 issue: 1 year: 2016 end-page: 28 article-title: Downturn in scaling of UK extreme rainfall with temperature for future hottest days publication-title: Nat. Geosci. – volume: 13 start-page: 1131 year: 2012 end-page: 1141 article-title: Meteorological causes of the secular variations in observed extreme precipitation events for the conterminous United States publication-title: J. Hydrometeorol. – volume: 16 start-page: 2537 issue: 6 year: 2015 end-page: 2557 article-title: Climatology of daily precipitation and extreme precipitation events in the northeast United States publication-title: J. Hydrometeorol. – volume: 31 start-page: 601 year: 1995 end-page: 622 article-title: Documenting and detecting long‐term precipitation trends: Where we are and what should be done publication-title: Clim. Change – volume: 15 start-page: 3033 issue: 9 year: 2011 end-page: 3041 article-title: Scaling and trends of hourly precipitation extremes in two different climate zones—Hong Kong and the Netherlands publication-title: Hydrol. Earth Syst. Sci. – volume: 13 start-page: 47 year: 2012 end-page: 66 article-title: Changes in intense precipitation over the central United States publication-title: J. Hydrometeorol. – volume: 29 start-page: 31 year: 2009 end-page: 45 article-title: How spatially coherent and statistically robust are temporal changes in extreme precipitation in the contiguous USA? publication-title: Int. J. Climatol. – volume: 51 start-page: 7785 year: 2015 end-page: 7789 article-title: On Critiques of “Stationarity is Dead: Whither Water Management?” publication-title: Water Resour. Res. – volume: 63 start-page: 1379 year: 1968 end-page: 1389 article-title: Estimates of the regression coefficient based on Kendall's tau publication-title: J. Am. Stat. Assoc. – volume: 40 start-page: 5252 year: 2013 end-page: 5257 article-title: Attributing intensification of precipitation extremes to human influence publication-title: Geophys. Res. Lett. – volume: 6 start-page: 508 year: 2016 end-page: 513 article-title: More extreme precipitation in the world's dry and wet regions publication-title: Nature Clim. Change – volume: 5 start-page: 389 issue: 5 year: 2015 end-page: 390 article-title: Opposing local precipitation extremes publication-title: Nat. Clim. Change – volume: 41 start-page: 1475 year: 2014 end-page: 1495 article-title: Projected increase in summer and winter UK subdaily precipitation extremes from high‐resolution regional climate models publication-title: Clim. Dyn. – volume: 49–59 year: 2015 article-title: Precipitation extremes under climate change publication-title: Curr. Clim. Change Rep. – volume: 73 start-page: 51 year: 1984 end-page: 69 article-title: Tests for detecting a shift in the mean of hydrological time series publication-title: J. Hydrol. – volume: 10 year: 2015 article-title: Temperature influences on intense UK hourly precipitation and dependency on large‐scale circulation publication-title: Environ. Res. Lett. – volume: 43 start-page: 4026 year: 2016 end-page: 4032 article-title: Reduced spatial extent of extreme storms at higher temperatures publication-title: Geophys. Res. Lett. – volume: 47 start-page: 805 issue: 3 year: 2008 end-page: 818 article-title: Flood fatalities in the United States publication-title: J. Appl. Meteorol. Climatol. – year: 2016 article-title: Quality‐control of an hourly rainfall dataset and climatology of extremes for the UK publication-title: Int. J. Climatol. – volume: 8 start-page: 1152 year: 2007 end-page: 1160 article-title: A Monte Carlo assessment of uncertainties in heavy precipitation frequency variations publication-title: J. Hydrometeorol. – volume: 10 start-page: 85,001 issue: 8 year: 2015 article-title: A simple scaling approach to produce climate scenarios of local precipitation extremes for the Netherlands publication-title: Environ. Res. Lett. – volume: 28 start-page: 126 issue: 2 year: 1979 end-page: 135 article-title: A non‐parametric approach to the change‐point problem publication-title: Appl. Stat. – ident: e_1_2_6_17_1 doi: 10.1038/nclimate2617 – ident: e_1_2_6_12_1 doi: 10.1007/s00382-012-1568-9 – ident: e_1_2_6_37_1 doi: 10.1088/1748-9326/10/8/085001 – ident: e_1_2_6_58_1 doi: 10.1002/joc.616 – ident: e_1_2_6_51_1 doi: 10.1002/2014RG000475 – ident: e_1_2_6_56_1 doi: 10.1002/joc.2088 – volume-title: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovern‐ Mental Panel on Climate Change year: 2007 ident: e_1_2_6_42_1 contributor: fullname: Meehl G. A. – ident: e_1_2_6_28_1 doi: 10.1002/2015JD024288 – ident: e_1_2_6_10_1 doi: 10.1175/1520-0493(2000)128<1194:COHREI>2.0.CO;2 – ident: e_1_2_6_52_1 doi: 10.1002/joc.1696 – ident: e_1_2_6_64_1 doi: 10.1175/JCLI-D-12-00502.1 – ident: e_1_2_6_36_1 doi: 10.1175/bams-d-11-00262.1 – ident: e_1_2_6_45_1 doi: 10.1029/2012GL052790 – ident: e_1_2_6_22_1 doi: 10.1007/BF01095163 – ident: e_1_2_6_50_1 doi: 10.1175/1520-0442(2000)013<3625:PADFTI>2.0.CO;2 – ident: e_1_2_6_47_1 doi: 10.1007/s40641-015-0009-3 – ident: e_1_2_6_20_1 doi: 10.1175/JCLI3339.1 – ident: e_1_2_6_35_1 doi: 10.1175/JHM-D-11-0108.1 – ident: e_1_2_6_25_1 doi: 10.1029/2010GL045081 – ident: e_1_2_6_39_1 doi: 10.5194/hess-15-3033-2011 – ident: e_1_2_6_18_1 doi: 10.1007/s00382-014-2242-1 – ident: e_1_2_6_26_1 doi: 10.1175/BAMS-D-13-00212.1 – ident: e_1_2_6_59_1 doi: 10.1029/2011GL048426 – ident: e_1_2_6_32_1 doi: 10.1029/2009JD012511 – ident: e_1_2_6_57_1 doi: 10.1175/BAMS-84-9-1205 – ident: e_1_2_6_31_1 doi: 10.1038/nclimate2258 – ident: e_1_2_6_49_1 doi: 10.2307/2346729 – ident: e_1_2_6_11_1 doi: 10.1016/0022-1694(84)90032-5 – ident: e_1_2_6_9_1 doi: 10.1002/joc.4735 – ident: e_1_2_6_61_1 doi: 10.1175/JCLI-D-12-00043.1 – ident: e_1_2_6_48_1 doi: 10.1007/s00382-006-0180-2 – ident: e_1_2_6_41_1 doi: 10.1038/nclimate2516 – ident: e_1_2_6_60_1 doi: 10.1175/JCLI-D-12-00043.1 – ident: e_1_2_6_4_1 doi: 10.5194/hess-19-877-2015 – ident: e_1_2_6_66_1 doi: 10.1088/1748-9326/11/4/044003 – ident: e_1_2_6_5_1 doi: 10.1175/2007JAMC1611.1 – ident: e_1_2_6_29_1 doi: 10.1002/2013EF000185 – ident: e_1_2_6_21_1 doi: 10.1175/JHM-D-11-039.1 – ident: e_1_2_6_55_1 doi: 10.1002/2015GL066483 – volume-title: Rank Correlation Methods year: 1975 ident: e_1_2_6_30_1 contributor: fullname: Kendall M. G. – ident: e_1_2_6_19_1 doi: 10.1029/2006GL027504 – ident: e_1_2_6_23_1 doi: 10.1029/2010RG000345 – ident: e_1_2_6_68_1 doi: 10.1038/nclimate2579 – ident: e_1_2_6_8_1 doi: 10.1088/1748-9326/10/5 – ident: e_1_2_6_38_1 doi: 10.1038/ngeo262 – ident: e_1_2_6_16_1 doi: 10.1038/nclimate2941 – ident: e_1_2_6_40_1 doi: 10.1002/2014GL062247 – ident: e_1_2_6_2_1 doi: 10.1175/JHM-D-14-0147.1 – ident: e_1_2_6_7_1 doi: 10.1038/ngeo1731 – ident: e_1_2_6_63_1 doi: 10.1002/2016GL068509 – ident: e_1_2_6_15_1 doi: 10.1175/2009JAMC2179.1 – ident: e_1_2_6_46_1 doi: 10.1038/nclimate1828 – ident: e_1_2_6_43_1 doi: 10.1002/2015WR017408 – ident: e_1_2_6_14_1 doi: 10.1007/s10584-014-1254-5 – ident: e_1_2_6_34_1 doi: 10.1029/2010GL045164 – ident: e_1_2_6_62_1 doi: 10.1175/2007JCLI1671.1 – ident: e_1_2_6_6_1 doi: 10.1029/2009JD012008 – ident: e_1_2_6_44_1 doi: 10.1038/nature09763 – ident: e_1_2_6_27_1 doi: 10.1175/JCLI-D-15-0441.1 – ident: e_1_2_6_65_1 doi: 10.1002/2014RG000464 – ident: e_1_2_6_3_1 doi: 10.1002/(SICI)1097-0088(199701)17:1<25::AID-JOC103>3.0.CO;2-J – ident: e_1_2_6_54_1 doi: 10.1080/01621459.1968.10480934 – ident: e_1_2_6_13_1 doi: 10.1038/ngeo2596 – ident: e_1_2_6_53_1 doi: 10.1002/joc.4577 – ident: e_1_2_6_24_1 doi: 10.1002/2014JD022819 – ident: e_1_2_6_67_1 doi: 10.1002/grl.51010 – ident: e_1_2_6_33_1 doi: 10.1175/JHM632.1 |
SSID | ssj0003031 |
Score | 2.6140943 |
Snippet | Although it has been documented that daily precipitation extremes are increasing worldwide, faster increases may be expected for subdaily extremes. Here after... Abstract Although it has been documented that daily precipitation extremes are increasing worldwide, faster increases may be expected for subdaily extremes.... |
SourceID | hal proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 974 |
SubjectTerms | Amplification Annual precipitation Atmospheric precipitations Climate Climate change Daily Daily precipitation Environmental Sciences Extreme values Extreme weather Geophysics Global warming Hourly hourly precipitation extremes Maximum precipitation Meteorology Precipitation Quality control Sensitivity Stations Trends |
Title | Is the intensification of precipitation extremes with global warming better detected at hourly than daily resolutions? |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2016GL071917 https://www.proquest.com/docview/1870044825 https://www.proquest.com/docview/1911654204 https://search.proquest.com/docview/1877834413 https://search.proquest.com/docview/1884117676 https://hal.inrae.fr/hal-04210225 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxtBEB9UEHyprVp6fpRt0Sc5vN3bu928KGI1EUIRW8G3Yze7q4IkwTOK_31n9i4xQhFKycvlbu_YZHc-fnMzvwHY5YUzhXM61R4hikSPNjU5fhVah7xj8MOpdrj3S_281j9OiSbncFoL0_BDzAJuJBlRX5OAG1sfvJKGouUqu320kAg4UAUjUIgVHPnFTBGjdm4a5nVkqoUq27x3vP1g_uY3FmnxlvIh55zNeZc12pyz1f-d7Uf40Hqb7LjZHp9gwQ_XYLkbu_m-4FHM_xzU6_B0XjN0Bdldk9Ee2kgeGwU2Jv6LcUvlzVCXU0SxZhTAZQ2dCHs2lFFzw2ysDWLO05sJ75h5ZLc4hfsXRgF65swdHiK-n273ow24Ojv9fdJL25YM6UAqIVMhNVfGolOkOzxog5bN5yKIUtnMq8yqoK11qhgg6C6EdQhHgg4enSSjomvwGZaGo6H_AgyBjI11rCpHSOq9KVUWNLHbG8RkhUpgb7os1bhh3qgajmVRzf-bCXzHNZsNIbrs3nG_onOokAjQFk88ge3pklatkNYV18TtLxEj__1yh6iJpMhkAt9ml1H66JWKGfrRJD4idirh-XtjtORclapMYD_ukXd_T9W97BfUnH3zn0ZvwYogjyPjKGfbsPT4MPE7sFi7ydcoFX8AqDAH3Q |
link.rule.ids | 230,315,782,786,887,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-toIm98LGByIDhTdvTFDV2nNh9QoiPFi1D02DS3iKntgFpaquFgvjvuXPSrkgT0jT1JU2cyK19H7_L3e8APvLMmsxaHWuHEEWiRxubFL8KrX3aM_jhVDs8uFDnP_XxCdHkHMxqYRp-iHnAjSQj6GsScApId_-whqLpyvsFmkhEHB1YljnuRarhSL_NVTHq56ZlXk_GWqi8zXzH-7uLdz-xSZ1ryohccDcXndZgdU7X_nu-67DaOpzssNkhG_DCjV7Dy35o6PuARyEFdFi_gbuzmqE3yG6apHbfBvPY2LMJUWBMWjZvhuqcgoo1oxguaxhF2L2hpJorVoXyIGYdvZxwlplbdo1T-PXAKEbPrLnBQ4T4sx1_sAk_Tk8ujwZx25UhHkolZCyk5spU6BfpHvfaoHFzqfAiV1XiVFIpr6vKqmyIuDsTlUVE4rV36CcZFbyDLVgajUduGxhimSqUsqoUUalzJleJ10RwbxCWZSqCT7N1KScN-UbZ0CyLcvHfjOADLtp8CDFmDw6Lks6hTiJMm93xCHZna1q2clqXXBO9v0SY_PfLPWInkiKREbyfX0YBpLcqZuTG0_CI0KyEp8-N0ZJzlas8gs9hkzz7e8r-9yKj_uxv_2n0PqwMLr8WZXF2_mUHXglyQBKOYrcLS7e_p24POrWdvgsi8ghhMwwF |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9R0CZegH0gwte8aXuaImLHid0XEALaolUI7UPaW-TUNiChtiIUxH_PnZOWTkJIE-pL2jhVWvvufr_L-XcAX3lmTWatjrVDiiIR0cYmxbdCa5-2Db447R3u_VJnf_XxCcnk7E_3wtT6ELOEG1lG8Ndk4GPr955EQzFy5d0-RkgkHC1YkojESTs_Tc9nnhjdc90xry1jLVTeFL7j9XvzV_8TklqXVBA5hzbnMWsIOp3V197uGqw0cJMd1uvjHSy44Xt40w3tfB_wKBSADqoPcHdaMcSC7KouafdNKo-NPBuTAMa40fJm6MwppVgxyuCyWk-E3RsqqblgZdgcxKyjRxPOMnPLLvEWrh8YZeiZNVd4iAR_ut4PPsKfzsnvo17c9GSIB1IJGQupuTIloiLd5l4bDG0uFV7kqkycSkrldVlalQ2QdWeitMhHvPYOUZJRARusw-JwNHQbwJDJlGEjq0qRkzpncpV4TfL2BklZpiL4Np2WYlxLbxS1yLIo5v_NCL7gnM2GkF5277Bf0GfokYjRZnc8gu3plBaNlVYF1yTuL5EkP3-6TdpEUiQygs-z02h-9EzFDN1oEr4itCrh6UtjtORc5SqP4HtYIy_-nqL7s59Rd_bN_xr9Cd6eH3eK_unZjy1YFoQ-Eo42tw2LtzcTtwOtyk52g4E8AgIOCqs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Is+the+intensification+of+precipitation+extremes+with+global+warming+better+detected+at+hourly+than+daily+resolutions%3F&rft.jtitle=Geophysical+research+letters&rft.au=Barbero%2C+R.&rft.au=Fowler%2C+H.+J.&rft.au=Lenderink%2C+G.&rft.au=Blenkinsop%2C+S.&rft.date=2017-01-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=44&rft.issue=2&rft.spage=974&rft.epage=983&rft_id=info:doi/10.1002%2F2016GL071917&rft.externalDBID=10.1002%252F2016GL071917&rft.externalDocID=GRL55414 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |