Stability, biophysical properties and effect of ultracentrifugation and diafiltration on measles virus and mumps virus

Measles virus and mumps virus (MeV and MuV) are enveloped RNA viruses used for production of live attenuated vaccines for prophylaxis of measles and mumps disease, respectively. For biotechnological production of and basic research on these viruses, the preparation of highly purified and infectious...

Full description

Saved in:
Bibliographic Details
Published in:Archives of virology Vol. 161; no. 6; pp. 1455 - 1467
Main Authors: Sviben, Dora, Forčić, Dubravko, Kurtović, Tihana, Halassy, Beata, Brgles, Marija
Format: Journal Article
Language:English
Published: Vienna Springer Vienna 01-06-2016
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Measles virus and mumps virus (MeV and MuV) are enveloped RNA viruses used for production of live attenuated vaccines for prophylaxis of measles and mumps disease, respectively. For biotechnological production of and basic research on these viruses, the preparation of highly purified and infectious viruses is a prerequisite, and to meet that aim, knowledge of their stability and biophysical properties is crucial. Our goal was to carry out a detailed investigation of the stability of MeV and MuV under various pH, temperature, shear stress, filtration and storage conditions, as well as to evaluate two commonly used purification techniques, ultracentrifugation and diafiltration, with regard to their efficiency and effect on virus properties. Virus titers were estimated by CCID 50 assay, particle size and concentration were measured by Nanoparticle tracking analysis (NTA) measurements, and the host cell protein content was determined by ELISA. The results demonstrated the stability of MuV and MeV at pH <9 and above pH 4 and 5, respectively, and aggregation was observed at pH >9. Storage without stabilizer did not result in structural changes, but the reduction in infectivity after 24 hours was significant at +37 °C. Vortexing of the viruses resulted in significant particle degradation, leading to lower virus titers, whereas pipetting had much less impact on virus viability. Diafiltration resulted in higher recovery of both total and infectious virus particles than ultracentrifugation. These results provide important data for research on all upstream and downstream processes on these two viruses regarding biotechnological production and basic research.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0304-8608
1432-8798
DOI:10.1007/s00705-016-2801-3