Preferential Cell Death of CD8+ Effector Memory (CCR7-CD45RA-) T Cells by Hydrogen Peroxide-Induced Oxidative Stress

T cells are used in many cell-based cancer treatments. However, oxidative stress that is induced during various chronic inflammatory conditions, such as cancer, can impair the immune system and have detrimental effects on T cell function. In this study, we have investigated the sensitivity of differ...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of immunology (1950) Vol. 174; no. 10; pp. 6080 - 6087
Main Authors: Takahashi, Akihiro, Hanson, Mikael G. V, Norell, Hakan R, Havelka, Aleksandra Mandic, Kono, Koji, Malmberg, Karl-Johan, Kiessling, Rolf V. R
Format: Journal Article
Language:English
Published: United States Am Assoc Immnol 15-05-2005
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract T cells are used in many cell-based cancer treatments. However, oxidative stress that is induced during various chronic inflammatory conditions, such as cancer, can impair the immune system and have detrimental effects on T cell function. In this study, we have investigated the sensitivity of different human T cell subsets to H(2)O(2)-induced oxidative stress. We showed that central memory (CD45RA(-)CCR7(+)) and effector memory (CD45RA(-)CCR7(-)) T cells are more sensitive to H(2)O(2) as compared with naive (CD45RA(+)CCR7(+)) T cells. Furthermore, the study showed that CD8(+) effector memory T cells are more sensitive to low levels of H(2)O(2) (5 microM) compared with other types of T cells investigated. H(2)O(2)-exposed CD45RO(+) T cells showed mitochondrial depolarization prior to caspase 3 activity. Moreover, the pan-caspase inhibitor z-Val-Ala-Asp(OMe)-fluoromethylketone rescued cells from death. These experiments suggest that H(2)O(2)-induced cell death of CD45RO(+) T cells acts via the mitochondrial pathway and that caspase involvement is needed. This study suggests that oxidative stress in cancer patients can be disadvantageous for T cell-based adoptive cell transfer therapies, since effector memory T cells are the primary phenotype of the cells administered.
AbstractList T cells are used in many cell-based cancer treatments. However, oxidative stress that is induced during various chronic inflammatory conditions, such as cancer, can impair the immune system and have detrimental effects on T cell function. In this study, we have investigated the sensitivity of different human T cell subsets to H(2)O(2)-induced oxidative stress. We showed that central memory (CD45RA(-)CCR7(+)) and effector memory (CD45RA(-)CCR7(-)) T cells are more sensitive to H(2)O(2) as compared with naive (CD45RA(+)CCR7(+)) T cells. Furthermore, the study showed that CD8(+) effector memory T cells are more sensitive to low levels of H(2)O(2) (5 microM) compared with other types of T cells investigated. H(2)O(2)-exposed CD45RO(+) T cells showed mitochondrial depolarization prior to caspase 3 activity. Moreover, the pan-caspase inhibitor z-Val-Ala-Asp(OMe)-fluoromethylketone rescued cells from death. These experiments suggest that H(2)O(2)-induced cell death of CD45RO(+) T cells acts via the mitochondrial pathway and that caspase involvement is needed. This study suggests that oxidative stress in cancer patients can be disadvantageous for T cell-based adoptive cell transfer therapies, since effector memory T cells are the primary phenotype of the cells administered.
T cells are used in many cell-based cancer treatments. However, oxidative stress that is induced during various chronic inflammatory conditions, such as cancer, can impair the immune system and have detrimental effects on T cell function. In this study, we have investigated the sensitivity of different human T cell subsets to H2O2-induced oxidative stress. We showed that central memory (CD45RA−CCR7+) and effector memory (CD45RA−CCR7−) T cells are more sensitive to H2O2 as compared with naive (CD45RA+CCR7+) T cells. Furthermore, the study showed that CD8+ effector memory T cells are more sensitive to low levels of H2O2 (5 μM) compared with other types of T cells investigated. H2O2-exposed CD45RO+ T cells showed mitochondrial depolarization prior to caspase 3 activity. Moreover, the pan-caspase inhibitor z-Val-Ala-Asp(OMe)-fluoromethylketone rescued cells from death. These experiments suggest that H2O2-induced cell death of CD45RO+ T cells acts via the mitochondrial pathway and that caspase involvement is needed. This study suggests that oxidative stress in cancer patients can be disadvantageous for T cell-based adoptive cell transfer therapies, since effector memory T cells are the primary phenotype of the cells administered.
Author Kiessling, Rolf V. R
Malmberg, Karl-Johan
Norell, Hakan R
Takahashi, Akihiro
Hanson, Mikael G. V
Havelka, Aleksandra Mandic
Kono, Koji
Author_xml – sequence: 1
  fullname: Takahashi, Akihiro
– sequence: 2
  fullname: Hanson, Mikael G. V
– sequence: 3
  fullname: Norell, Hakan R
– sequence: 4
  fullname: Havelka, Aleksandra Mandic
– sequence: 5
  fullname: Kono, Koji
– sequence: 6
  fullname: Malmberg, Karl-Johan
– sequence: 7
  fullname: Kiessling, Rolf V. R
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15879102$$D View this record in MEDLINE/PubMed
http://kipublications.ki.se/Default.aspx?queryparsed=id:1948992$$DView record from Swedish Publication Index
BookMark eNp1kcFu1DAQhi1URLeFN0DIJ1SEsowTx3GOVballYpalXK2nHjcTUnirZ2w3bfHy24pF04ej75vRpr_iBwMbkBC3jOYc-Dll4e276fBdXNW8HlsCpDwisxYnkMiBIgDMgNI04QVojgkRyE8AICAlL8hhyyXRckgnZHxxqNFj8PY6o5W2HV0gXpcUmdptZCf6Zm12IzO02_YO7-hJ1V1WyTVgue3p8knevfHCbTe0IuN8e4eB3qD3j21BpPLwUwNGnodf3psfyH9PnoM4S15bXUX8N3-PSY_zs_uqovk6vrrZXV6lTS8gDGx0lie5sbUImfWNJnJ04JBlmJWcrCYaiGttVoD2IyXpTCFrKExtRSpNLnNjkmymxvWuJpqtfJtr_1GOd2qfetnrFDlEkqeRb74L7_yzrxIzyIruSzLNJofd2bEHicMo-rb0MTL6AHdFJQoJIiMbVfwHdh4F0K8_d8lDNQ2V_Wcq4q5bpvbXKP2YT9_qns0L9I-yAic7IBle79ctx5V6HXXRZyp9Xr976zf46GwpA
CitedBy_id crossref_primary_10_1002_ijc_26355
crossref_primary_10_1016_j_livres_2024_06_002
crossref_primary_10_1007_s00204_021_03030_2
crossref_primary_10_1089_ars_2011_4073
crossref_primary_10_1002_adbi_202101320
crossref_primary_10_1002_jcp_30303
crossref_primary_10_1038_cddis_2013_473
crossref_primary_10_3389_fimmu_2018_00339
crossref_primary_10_3390_cancers13071626
crossref_primary_10_1186_s12929_015_0194_3
crossref_primary_10_3109_08830185_2012_679989
crossref_primary_10_1155_2018_2426712
crossref_primary_10_1016_j_cyto_2011_04_014
crossref_primary_10_3389_fonc_2019_01166
crossref_primary_10_1155_2017_4234765
crossref_primary_10_1007_s10522_016_9642_z
crossref_primary_10_1371_journal_pone_0058764
crossref_primary_10_1073_pnas_0605993103
crossref_primary_10_3390_antiox9121188
crossref_primary_10_3390_ijms21061943
crossref_primary_10_1007_s12253_014_9860_0
crossref_primary_10_1109_TPS_2022_3182717
crossref_primary_10_1016_j_freeradbiomed_2007_03_026
crossref_primary_10_1111_joim_12229
crossref_primary_10_1016_j_bbi_2014_01_002
crossref_primary_10_3389_fimmu_2018_00648
crossref_primary_10_1016_j_ijrobp_2020_06_022
crossref_primary_10_1007_s00262_006_0261_4
crossref_primary_10_1016_j_jinf_2016_06_012
crossref_primary_10_1016_j_redox_2019_101141
crossref_primary_10_3389_fimmu_2022_927593
crossref_primary_10_1182_blood_2010_09_307041
crossref_primary_10_1007_s11046_015_9966_2
crossref_primary_10_3390_antiox10111846
crossref_primary_10_1007_s00262_023_03406_6
crossref_primary_10_1177_0961203316640919
crossref_primary_10_3390_jcm10132872
crossref_primary_10_1089_ars_2012_5068
crossref_primary_10_1007_s00262_008_0580_8
crossref_primary_10_1089_ars_2013_5752
crossref_primary_10_1177_2397847319842845
crossref_primary_10_1097_JES_0b013e318201f39d
crossref_primary_10_1182_blood_2008_09_181040
crossref_primary_10_1182_blood_2013_10_532200
crossref_primary_10_1155_2012_741741
crossref_primary_10_1182_blood_2022017267
crossref_primary_10_1111_jop_13496
crossref_primary_10_1158_0008_5472_CAN_13_0987
crossref_primary_10_1007_s00262_011_1165_5
crossref_primary_10_1080_10715762_2016_1210140
crossref_primary_10_1016_j_freeradbiomed_2012_06_005
crossref_primary_10_3389_fimmu_2021_755856
crossref_primary_10_1016_j_bbi_2013_11_015
crossref_primary_10_1177_2397847318816617
crossref_primary_10_1002_ppap_201600080
crossref_primary_10_3109_08830185_2012_755176
crossref_primary_10_3109_10428194_2015_1106533
crossref_primary_10_1007_s00018_021_03828_4
crossref_primary_10_1016_j_jbc_2021_101106
crossref_primary_10_1158_1078_0432_CCR_12_2191
crossref_primary_10_3390_ijms232113269
crossref_primary_10_1111_ajt_14266
crossref_primary_10_1155_2016_1580967
crossref_primary_10_4049_jimmunol_181_12_8382
crossref_primary_10_1007_s00262_012_1327_0
crossref_primary_10_1038_s41573_024_00979_4
crossref_primary_10_1002_ppap_201800033
crossref_primary_10_4049_jimmunol_1401710
crossref_primary_10_1007_s00262_011_1012_8
crossref_primary_10_1371_journal_pone_0041345
crossref_primary_10_1038_sj_gene_6364416
crossref_primary_10_1111_imr_12115
crossref_primary_10_1016_j_ejca_2008_12_017
crossref_primary_10_1016_j_freeradbiomed_2020_12_009
crossref_primary_10_1182_blood_2006_07_036210
crossref_primary_10_1189_jlb_4A0916_067RR
crossref_primary_10_3389_fimmu_2018_01075
crossref_primary_10_1128_IAI_00744_16
Cites_doi 10.4049/jimmunol.153.11.4880
10.1007/978-1-4684-3593-1_5
10.1038/sj.cdd.4401347
10.1038/ni975
10.1016/S1074-7613(00)80072-2
10.1016/S0022-1759(99)00146-5
10.1101/gad.13.4.382
10.4049/jimmunol.164.4.2170
10.3109/10715769509147548
10.1016/S0165-2478(02)00003-2
10.4049/jimmunol.164.8.3950
10.1073/pnas.93.23.13119
10.1128/MCB.19.9.5923
10.4049/jimmunol.160.12.5729
10.1038/sj.ijo.0802493
10.4049/jimmunol.159.6.2973
10.4049/jimmunol.165.4.1743
10.1126/science.1076514
10.1089/15230860260196344
10.1128/MCB.20.8.2687-2695.2000
10.1146/annurev.immunol.22.012703.104702
10.1042/bst025218s
10.4049/jimmunol.162.8.4527
10.1182/blood.V91.2.585.585_585_594
10.1016/S1074-7613(02)00322-9
10.1128/IAI.66.2.499-504.1998
10.4049/jimmunol.166.1.678
10.1016/S0014-5793(98)00630-9
10.1016/S0891-5849(96)00403-0
10.1002/(SICI)1097-0215(19980925)78:1<16::AID-IJC4>3.0.CO;2-#
10.2337/diabetes.52.6.1423
10.1007/s00262-004-0577-x
10.1046/j.1365-2249.1998.00548.x
10.1016/S0014-5793(97)01068-5
10.1002/eji.1830240417
10.1084/jem.181.5.1881
10.1182/blood.V96.12.3838.h8003838_3838_3846
10.4049/jimmunol.156.1.42
10.1038/44385
10.1016/S0896-6273(00)80052-5
10.1158/1078-0432.CCR-04-0309
10.4049/jimmunol.160.3.1354
10.1182/blood-2004-06-2482
10.1182/blood.V92.12.4808.424k01_4808_4818
10.1016/0304-4157(95)00003-A
10.1101/gad.13.4.400
10.1002/eji.1830260620
10.1084/jem.178.2.427
10.1002/ijc.2910610605
10.1038/sj.onc.1202325
10.4049/jimmunol.167.5.2595
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
ADTPV
AOWAS
DOI 10.4049/jimmunol.174.10.6080
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
SwePub
SwePub Articles
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1550-6606
EndPage 6087
ExternalDocumentID oai_swepub_ki_se_580943
oai_prod_swepub_kib_ki_se_1948992
10_4049_jimmunol_174_10_6080
15879102
www174_10_6080
Genre Research Support, U.S. Gov't, P.H.S
Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: CA102280
GroupedDBID -
08R
2WC
34G
39C
3O-
53G
55
5GY
5RE
5VS
79B
85S
8RP
AALRV
AARDX
ABEFU
ABFLS
ABOCM
ABPPZ
ABPTK
ACGFS
ACIWK
ACNCT
ACPRK
ADACO
ADBBV
ADKFC
AENEX
AETEA
AFFNX
AFRAH
AJYGW
ALMA_UNASSIGNED_HOLDINGS
BAWUL
D0L
DIK
DU5
E3Z
EBS
EJD
F5P
FH7
FRP
G8K
GJ
GX1
H13
IH2
J5H
K-O
K78
KQ8
L7B
MVM
MYA
NEJ
O0-
OK1
P0W
P2P
PQEST
PQQKQ
R.V
RHF
RHI
RZQ
SJN
TWZ
VH1
WH7
WOQ
X
X7M
XJT
ZA5
ZE2
ZGI
---
-~X
.55
.GJ
18M
ABCQX
ABJNI
ACGFO
ADNWM
AFHIN
AFOSN
AHWXS
AI.
AIZAD
BTFSW
CGR
CUY
CVF
ECM
EIF
NPM
TR2
W8F
XSW
XTH
YHG
AAYXX
ABDPE
CITATION
7X8
.HR
1KJ
ABEJV
ADTPV
AOWAS
OHT
SKT
WHG
YCJ
ZXP
ID FETCH-LOGICAL-c470t-f8df425ddb651fdc3d5271032e3940fe2a68fffaa00f34996d78b0cdb8628d5f3
ISSN 0022-1767
IngestDate Wed Nov 27 03:14:17 EST 2024
Wed Oct 30 05:00:46 EDT 2024
Fri Oct 25 21:53:28 EDT 2024
Thu Nov 21 21:18:01 EST 2024
Sat Sep 28 08:38:38 EDT 2024
Tue Nov 10 19:50:43 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c470t-f8df425ddb651fdc3d5271032e3940fe2a68fffaa00f34996d78b0cdb8628d5f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://journals.aai.org/jimmunol/article-pdf/174/10/6080/1192614/6080.pdf
PMID 15879102
PQID 67806313
PQPubID 23479
PageCount 8
ParticipantIDs swepub_primary_oai_swepub_ki_se_580943
swepub_primary_oai_prod_swepub_kib_ki_se_1948992
proquest_miscellaneous_67806313
crossref_primary_10_4049_jimmunol_174_10_6080
pubmed_primary_15879102
highwire_smallpub1_www174_10_6080
ProviderPackageCode RHF
RHI
PublicationCentury 2000
PublicationDate 2005-05-15
PublicationDateYYYYMMDD 2005-05-15
PublicationDate_xml – month: 05
  year: 2005
  text: 2005-05-15
  day: 15
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of immunology (1950)
PublicationTitleAlternate J Immunol
PublicationYear 2005
Publisher Am Assoc Immnol
Publisher_xml – name: Am Assoc Immnol
References 2022123117171495000_R20
2022123117171495000_R22
2022123117171495000_R21
2022123117171495000_R24
2022123117171495000_R23
2022123117171495000_R26
2022123117171495000_R25
2022123117171495000_R17
2022123117171495000_R16
2022123117171495000_R19
2022123117171495000_R18
2022123117171495000_R51
2022123117171495000_R50
2022123117171495000_R53
2022123117171495000_R52
2022123117171495000_R11
2022123117171495000_R55
2022123117171495000_R10
2022123117171495000_R54
2022123117171495000_R13
2022123117171495000_R57
2022123117171495000_R12
2022123117171495000_R56
2022123117171495000_R15
2022123117171495000_R14
2022123117171495000_R58
2022123117171495000_R49
2022123117171495000_R40
2022123117171495000_R42
2022123117171495000_R41
2022123117171495000_R44
2022123117171495000_R43
2022123117171495000_R46
2022123117171495000_R45
2022123117171495000_R48
2022123117171495000_R47
2022123117171495000_R39
2022123117171495000_R38
2022123117171495000_R6
2022123117171495000_R5
2022123117171495000_R4
2022123117171495000_R3
2022123117171495000_R9
2022123117171495000_R8
2022123117171495000_R7
2022123117171495000_R31
2022123117171495000_R30
2022123117171495000_R33
2022123117171495000_R32
2022123117171495000_R2
2022123117171495000_R35
2022123117171495000_R1
2022123117171495000_R34
2022123117171495000_R37
2022123117171495000_R36
2022123117171495000_R28
2022123117171495000_R27
2022123117171495000_R29
References_xml – ident: 2022123117171495000_R6
  doi: 10.4049/jimmunol.153.11.4880
– ident: 2022123117171495000_R49
– ident: 2022123117171495000_R1
  doi: 10.1007/978-1-4684-3593-1_5
– ident: 2022123117171495000_R30
  doi: 10.1038/sj.cdd.4401347
– ident: 2022123117171495000_R53
  doi: 10.1038/ni975
– ident: 2022123117171495000_R23
  doi: 10.1016/S1074-7613(00)80072-2
– ident: 2022123117171495000_R58
– ident: 2022123117171495000_R2
  doi: 10.1016/S0022-1759(99)00146-5
– ident: 2022123117171495000_R41
  doi: 10.1101/gad.13.4.382
– ident: 2022123117171495000_R10
  doi: 10.4049/jimmunol.164.4.2170
– ident: 2022123117171495000_R5
  doi: 10.3109/10715769509147548
– ident: 2022123117171495000_R31
  doi: 10.1016/S0165-2478(02)00003-2
– ident: 2022123117171495000_R36
  doi: 10.4049/jimmunol.164.8.3950
– ident: 2022123117171495000_R17
  doi: 10.1073/pnas.93.23.13119
– ident: 2022123117171495000_R40
  doi: 10.1128/MCB.19.9.5923
– ident: 2022123117171495000_R20
  doi: 10.4049/jimmunol.160.12.5729
– ident: 2022123117171495000_R3
  doi: 10.1038/sj.ijo.0802493
– ident: 2022123117171495000_R11
  doi: 10.4049/jimmunol.159.6.2973
– ident: 2022123117171495000_R39
  doi: 10.4049/jimmunol.165.4.1743
– ident: 2022123117171495000_R56
  doi: 10.1126/science.1076514
– ident: 2022123117171495000_R12
  doi: 10.1089/15230860260196344
– ident: 2022123117171495000_R37
  doi: 10.1128/MCB.20.8.2687-2695.2000
– ident: 2022123117171495000_R22
  doi: 10.1146/annurev.immunol.22.012703.104702
– ident: 2022123117171495000_R46
  doi: 10.1042/bst025218s
– ident: 2022123117171495000_R35
  doi: 10.4049/jimmunol.162.8.4527
– ident: 2022123117171495000_R43
  doi: 10.1182/blood.V91.2.585.585_585_594
– ident: 2022123117171495000_R33
  doi: 10.1016/S1074-7613(02)00322-9
– ident: 2022123117171495000_R42
  doi: 10.1128/IAI.66.2.499-504.1998
– ident: 2022123117171495000_R55
  doi: 10.4049/jimmunol.166.1.678
– ident: 2022123117171495000_R28
  doi: 10.1016/S0014-5793(98)00630-9
– ident: 2022123117171495000_R47
– ident: 2022123117171495000_R13
  doi: 10.1016/S0891-5849(96)00403-0
– ident: 2022123117171495000_R48
  doi: 10.1002/(SICI)1097-0215(19980925)78:1<16::AID-IJC4>3.0.CO;2-#
– ident: 2022123117171495000_R24
  doi: 10.2337/diabetes.52.6.1423
– ident: 2022123117171495000_R14
– ident: 2022123117171495000_R15
  doi: 10.1007/s00262-004-0577-x
– ident: 2022123117171495000_R7
  doi: 10.1046/j.1365-2249.1998.00548.x
– ident: 2022123117171495000_R52
– ident: 2022123117171495000_R26
  doi: 10.1016/S0014-5793(97)01068-5
– ident: 2022123117171495000_R34
  doi: 10.1002/eji.1830240417
– ident: 2022123117171495000_R16
  doi: 10.1084/jem.181.5.1881
– ident: 2022123117171495000_R54
  doi: 10.1182/blood.V96.12.3838.h8003838_3838_3846
– ident: 2022123117171495000_R44
– ident: 2022123117171495000_R19
  doi: 10.4049/jimmunol.156.1.42
– ident: 2022123117171495000_R21
  doi: 10.1038/44385
– ident: 2022123117171495000_R4
  doi: 10.1016/S0896-6273(00)80052-5
– ident: 2022123117171495000_R50
  doi: 10.1158/1078-0432.CCR-04-0309
– ident: 2022123117171495000_R8
  doi: 10.4049/jimmunol.160.3.1354
– ident: 2022123117171495000_R57
  doi: 10.1182/blood-2004-06-2482
– ident: 2022123117171495000_R25
  doi: 10.1182/blood.V92.12.4808.424k01_4808_4818
– ident: 2022123117171495000_R29
  doi: 10.1016/0304-4157(95)00003-A
– ident: 2022123117171495000_R38
  doi: 10.1101/gad.13.4.400
– ident: 2022123117171495000_R18
  doi: 10.1002/eji.1830260620
– ident: 2022123117171495000_R32
  doi: 10.1084/jem.178.2.427
– ident: 2022123117171495000_R45
  doi: 10.1002/ijc.2910610605
– ident: 2022123117171495000_R51
– ident: 2022123117171495000_R27
  doi: 10.1038/sj.onc.1202325
– ident: 2022123117171495000_R9
  doi: 10.4049/jimmunol.167.5.2595
SSID ssj0006024
Score 2.1675665
Snippet T cells are used in many cell-based cancer treatments. However, oxidative stress that is induced during various chronic inflammatory conditions, such as...
SourceID swepub
proquest
crossref
pubmed
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 6080
SubjectTerms Amino Acid Chloromethyl Ketones - pharmacology
Caspase Inhibitors
Cell Death - drug effects
Cell Death - immunology
Cells, Cultured
Cytotoxicity, Immunologic - drug effects
Dose-Response Relationship, Immunologic
Growth Inhibitors - pharmacology
Humans
Hydrogen Peroxide - pharmacology
Immunologic Memory - drug effects
Intracellular Membranes - drug effects
Leukocyte Common Antigens - biosynthesis
Medicin och hälsovetenskap
Membrane Potentials - drug effects
Membrane Potentials - immunology
Mitochondria - drug effects
Mitochondria - immunology
Oxidative Stress - drug effects
Oxidative Stress - immunology
Permeability - drug effects
Receptors, CCR7
Receptors, Chemokine - biosynthesis
T-Lymphocytes, Cytotoxic - cytology
T-Lymphocytes, Cytotoxic - immunology
T-Lymphocytes, Cytotoxic - metabolism
Title Preferential Cell Death of CD8+ Effector Memory (CCR7-CD45RA-) T Cells by Hydrogen Peroxide-Induced Oxidative Stress
URI http://www.jimmunol.org/cgi/content/abstract/174/10/6080
https://www.ncbi.nlm.nih.gov/pubmed/15879102
https://search.proquest.com/docview/67806313
http://kipublications.ki.se/Default.aspx?queryparsed=id:1948992
Volume 174
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6IRAvCAaMcjUSQ6AqkKS59bG0HRXaCtoyaW-WG9ssStegpKX033NOnDTpVAl44KFR48ZJ5O_r8bHPjZA3HndcW3HHiEzVNRwuhQEsEQbwx5K25UW2wK2B8bk_uQyGI2fUalU18eq2_4o0tAHWGDn7D2hvbgoN8B0whyOgDse_wv1bWThkgVvhuC3fEajlFW4Xw-DI_lS6cKRZ5xq9bAtr_2Bw5huDoeOe9Q3cJwiLnjnqpldrkaXf0ZNLZumvWEgDVvFL9BrAM502XAecNPXcOuJMJ6XAKBSd7emosKmZjR2IkCcYV1ZUF-70k_gqztJaMFbBaadxwuWs87nplZuVRpNxYe53EzRH1D1_ylnCyyCeJOdzkXH09hFxtLXV4aKVXgd7NkIPLF_X79iIb13lp-Kp2ZDGnqmrRJUzO5z6u2YNB1ZJOGuUY4E-Xh-gue7dTNI9-cqOL05OWDi6DPfILRvkG4rX8y-TjQLgmbZTJanHt9URm_iUj7uesa0RVVmqd614bqSzLVSg8D65V-JJ-5p0D0hLzg_IbV3NdH1A7pyWfhoPyaLJQopcogULaaoosLBDKw5SzUH6rsnA9zQs-uR0uqYV_-hN_tEN_6jm3yNycTwKB2OjrO9hRI5vLgwVCAVThhBTz7WUiLrCtX1M8Ci7PcdU0uZeoJTi3AQ5AitzT_jB1IzEFFbhgXBV9zHZn6dz-YRQOPdNISK0gjvKdae2rXpmT3V9yUEnjtrEqMaY_dBpXBgsfxETVmHCABNsREza5HUFBMuv-WwGg26x1Wq1dc2rCiEGMhnHhc9luswZKICg-VvdNjnUwNXPdAMfFHS7TUyN5OYXTPOOOhMr25MYPyyXzOo5Qa8HXd7u6LK5Gq90A_QTfvrH93pG7tZ_r-dkf5Et5Quyl4vly4LJvwELFc-q
link.rule.ids 230,315,782,786,887,27933,27934
linkProvider Multiple Vendors
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preferential+cell+death+of+CD8%2B+effector+memory+%28CCR7-CD45RA-%29+T+cells+by+hydrogen+peroxide-induced+oxidative+stress&rft.jtitle=The+Journal+of+immunology+%281950%29&rft.au=Takahashi%2C+Akihiro&rft.au=Hanson%2C+Mikael+G+V&rft.au=Norell%2C+H%C3%A5kan+R&rft.au=Havelka%2C+Aleksandra+Mandic&rft.date=2005-05-15&rft.issn=0022-1767&rft.volume=174&rft.issue=10&rft.spage=6080&rft.epage=6087&rft_id=info:doi/10.4049%2Fjimmunol.174.10.6080&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1767&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1767&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1767&client=summon