Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation
Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS Vol. 113; no. 51; pp. E8210 - E8218 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
National Academy of Sciences
20-12-2016
Proceedings of the National Academy of Sciences |
Series: | PNAS Plus |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III–V semiconductor technologies. In this CPV⁺ scheme (“+” denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV⁺ modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation. |
---|---|
AbstractList | Emerging classes ofconcentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV+ scheme ("+" denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV+ modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation. Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV scheme ("+" denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation. Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV+ scheme ("+" denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV+ modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation. Concentrator photovoltaic (CPV) systems, wherein light focuses onto multijunction solar cells, offer the highest efficiencies in converting sunlight to electricity. The performance is intrinsically limited, however, by an inability to capture diffuse illumination, due to narrow acceptance angles of the concentrator optics. Here we demonstrate concepts where flat-plate solar cells mount onto the backplanes of the most sophisticated CPV modules to yield an additive contribution to the overall output. Outdoor testing results with two different hybrid module designs demonstrate absolute gains in average daily efficiencies of between 1.02% and 8.45% depending on weather conditions. The findings suggest pathways to significant improvements in the efficiencies, with economics that could potentially expand their deployment to a wide range of geographic locations. Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III–V semiconductor technologies. In this CPV + scheme (“+” denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV + modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation. Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III–V semiconductor technologies. In this CPV⁺ scheme (“+” denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV⁺ modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation. Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV^sup +^ scheme ("+" denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV+modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation. |
Author | Meitl, Matthew He, Junwen Nuzzo, Ralph G. Sheng, Xing Burroughs, Scott Alivisatos, A. Paul Paik, Ungyu Lee, Jeong Chul Bronstein, Noah D. Fisher, Brent Lumb, Matthew Bahabry, Rabab R. Gumus, Abdurrahman Han, Seungyong Rogers, John A. Xu, Lu Hussain, Muhammad Mustafa Yao, Yuan Anderson, Mikayla A. Scheiman, David Kang, Yongseon Lee, Kyu-Tae Lee, Jung Woo |
Author_xml | – sequence: 1 givenname: Kyu-Tae surname: Lee fullname: Lee, Kyu-Tae organization: Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL 61801 – sequence: 2 givenname: Yuan surname: Yao fullname: Yao, Yuan organization: Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801 – sequence: 3 givenname: Junwen surname: He fullname: He, Junwen organization: Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 – sequence: 4 givenname: Brent surname: Fisher fullname: Fisher, Brent organization: Semprius, Durham, NC 27713 – sequence: 5 givenname: Xing surname: Sheng fullname: Sheng, Xing organization: Department of Electronic Engineering, Tsinghua University, Beijing, China 100084 – sequence: 6 givenname: Matthew surname: Lumb fullname: Lumb, Matthew organization: US Naval Research Laboratory, Washington, DC 20375 – sequence: 7 givenname: Lu surname: Xu fullname: Xu, Lu organization: Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 – sequence: 8 givenname: Mikayla A. surname: Anderson fullname: Anderson, Mikayla A. organization: Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 – sequence: 9 givenname: David surname: Scheiman fullname: Scheiman, David organization: US Naval Research Laboratory, Washington, DC 20375 – sequence: 10 givenname: Seungyong surname: Han fullname: Han, Seungyong organization: Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801 – sequence: 11 givenname: Yongseon surname: Kang fullname: Kang, Yongseon organization: Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801 – sequence: 12 givenname: Abdurrahman surname: Gumus fullname: Gumus, Abdurrahman organization: Integrated Nanotechnology Lab, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia – sequence: 13 givenname: Rabab R. surname: Bahabry fullname: Bahabry, Rabab R. organization: Integrated Nanotechnology Lab, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia – sequence: 14 givenname: Jung Woo surname: Lee fullname: Lee, Jung Woo organization: Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801 – sequence: 15 givenname: Ungyu surname: Paik fullname: Paik, Ungyu organization: Department of Materials Science and Engineering, Hanyang University, Seoul 133-791, Republic of Korea – sequence: 16 givenname: Noah D. surname: Bronstein fullname: Bronstein, Noah D. organization: Department of Chemistry, University of California, Berkeley, CA 94720 – sequence: 17 givenname: A. Paul surname: Alivisatos fullname: Alivisatos, A. Paul organization: Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 – sequence: 18 givenname: Matthew surname: Meitl fullname: Meitl, Matthew organization: Semprius, Durham, NC 27713 – sequence: 19 givenname: Scott surname: Burroughs fullname: Burroughs, Scott organization: Semprius, Durham, NC 27713 – sequence: 20 givenname: Muhammad Mustafa surname: Hussain fullname: Hussain, Muhammad Mustafa organization: Integrated Nanotechnology Lab, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia – sequence: 21 givenname: Jeong Chul surname: Lee fullname: Lee, Jeong Chul organization: Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801 – sequence: 22 givenname: Ralph G. surname: Nuzzo fullname: Nuzzo, Ralph G. organization: Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801 – sequence: 23 givenname: John A. surname: Rogers fullname: Rogers, John A. organization: Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27930331$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1334550$$D View this record in Osti.gov |
BookMark | eNpdkc2P1SAUxYkZ47wZXbvSEN246QwUWtqNiXnxK5nEja4JpTDlhcetQJ_Rv16ajjPqBhLO7x7uvecCnQUIBqHnlFxRItj1HFS6oi0VrKeUskdoR0lPq5b35AztCKlF1fGan6OLlA6EkL7pyBN0XoueEcboDv3aQ9Am5KgyRDxPkOEEPiun8RHGxRusop5cNjov0ST8w-UJazWrwXmXXXmxpa48rDJWYcQawsnE5CBgsNgu3uNbD4PyOIFXEUc1OpWL_BQ9tson8-zuvkTfPrz_uv9U3Xz5-Hn_7qbSXJBc6UFR3bfc8tYYa7Ulg2C2ra0dOKs7I6weRDnJYJloaGssI9QOQz02Rgmm2SV6u_nOy3A04zatl3N0RxV_SlBO_qsEN8lbOMmGdkLwphi82gwgZSeTXrcxlTFDWYqkjPGmIQV6c_dLhO-LSVkeXdLGexUMLEnSjouuF7XoCvr6P_QASwxlB4VqSiy8Favh9UbpCClFY-87pkSu4cs1fPkQfql4-feg9_yftAvwYgMOqaT9oLdc1KU19hv4DLs6 |
CitedBy_id | crossref_primary_10_1109_JPHOTOV_2018_2877015 crossref_primary_10_1016_j_rineng_2022_100665 crossref_primary_10_3390_app10062051 crossref_primary_10_3390_ma16114004 crossref_primary_10_1038_s41598_018_33200_9 crossref_primary_10_1364_OL_44_003274 crossref_primary_10_1016_j_chemosphere_2018_09_114 crossref_primary_10_1175_JCLI_D_20_0979_1 crossref_primary_10_3389_fenrg_2022_842201 crossref_primary_10_1002_aenm_201700345 crossref_primary_10_1002_admt_201700169 crossref_primary_10_1002_pip_3387 crossref_primary_10_1016_j_solener_2019_05_048 crossref_primary_10_1002_pip_3124 crossref_primary_10_1364_OL_475800 crossref_primary_10_1002_aenm_202003286 crossref_primary_10_1002_aenm_201601992 crossref_primary_10_1038_s43246_020_00106_x crossref_primary_10_1109_JPHOTOV_2018_2877004 crossref_primary_10_1016_j_energy_2020_118854 crossref_primary_10_1063_1_5046752 crossref_primary_10_3390_en13215721 crossref_primary_10_1002_pip_3239 crossref_primary_10_1016_j_solener_2017_08_017 crossref_primary_10_1364_OE_443820 crossref_primary_10_1002_solr_202300363 crossref_primary_10_1002_ese3_550 crossref_primary_10_1021_acsami_9b09377 crossref_primary_10_1117_1_JPE_9_014501 crossref_primary_10_1038_s41597_021_01016_4 crossref_primary_10_1002_pip_3410 crossref_primary_10_1002_pip_3034 |
Cites_doi | 10.1109/PVSC.1988.105803 10.1039/c3cp54096k 10.1063/1.3658283 10.1038/nmat3263 10.1109/JPHOTOV.2013.2273097 10.1109/PVSC.2010.5616766 10.1039/c3ee42230e 10.1002/aenm.201201064 10.1016/j.rser.2012.11.005 10.1063/1.2734507 10.1002/pip.2298 10.1117/12.893385 10.1021/acsphotonics.5b00630 10.1038/nmat3946 10.1109/PVSC.1990.111616 10.1109/ECTC.2008.4550113 10.1063/1.4822190 10.1002/adma.201201386 10.1016/S0038-092X(01)00054-8 10.1016/j.rser.2011.07.104 10.1063/1.3600702 10.1063/1.3509179 10.1117/12.736897 10.1088/2040-8978/18/7/073004 10.1117/1.JPE.2.021805 10.1063/1.1736034 10.1038/nature09054 10.1063/1.2753729 10.1109/JPHOTOV.2013.2288026 10.1038/ncomms1318 10.1364/OE.22.000A28 10.1002/pip.2788 10.2172/1055376 10.1021/acsphotonics.5b00334 10.1002/pip.2544 10.1109/PVSC.2011.6186407 10.1021/nn404418h 10.1038/srep00349 10.1063/1.3509212 10.1002/pip.2475 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Dec 20, 2016 |
Copyright_xml | – notice: Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Dec 20, 2016 |
CorporateAuthor | Energy Frontier Research Centers (EFRC) (United States). Light-Material Interactions in Energy Conversion (LMI) Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
CorporateAuthor_xml | – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) – name: Energy Frontier Research Centers (EFRC) (United States). Light-Material Interactions in Energy Conversion (LMI) |
DBID | NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 OTOTI 5PM |
DOI | 10.1073/pnas.1617391113 |
DatabaseName | PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Virology and AIDS Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | CPV modules harvesting full global solar radiation |
EISSN | 1091-6490 |
EndPage | E8218 |
ExternalDocumentID | 1334550 4287956701 10_1073_pnas_1617391113 27930331 26472972 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Feature |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GrantInformation_xml | – fundername: U.S. Department of Energy (DOE) grantid: DE-AR0000624 – fundername: U.S. Department of Energy (DOE) grantid: DE-SC0001293 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK ADACV ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DOOOF DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 79B ADZLD ASUFR DNJUQ DWIUU OTOTI ZA5 5PM |
ID | FETCH-LOGICAL-c470t-cba1c964f46eeffcf0b73f62ffb4328e7fcb7e7f0bf37516ef301fbb2d5ea73c3 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:15:55 EDT 2024 Mon Mar 25 05:14:56 EDT 2024 Sat Aug 17 01:00:57 EDT 2024 Thu Oct 10 20:11:36 EDT 2024 Thu Nov 21 22:21:49 EST 2024 Sat Sep 28 08:48:04 EDT 2024 Mon Nov 25 04:44:45 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 51 |
Keywords | multijunction solar cells diffuse light capture concentration optics photovoltaics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c470t-cba1c964f46eeffcf0b73f62ffb4328e7fcb7e7f0bf37516ef301fbb2d5ea73c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 National Research Foundation of Korea (NRF) SC0001293; AR0000624; AC02-05CH11231 National Natural Science Foundation of China (NSFC) USDOE Office of Science (SC), Basic Energy Sciences (BES) Reviewers: Y.C., Stanford University; and G.P.W., Argonne National Laboratory. Author contributions: K.-T.L., Y.Y., J.H., X.S., J.C.L., R.G.N., and J.A.R. designed research; K.-T.L., Y.Y., J.H., B.F., M.L., L.X., M.A.A., D.S., S.H., Y.K., A.G., R.R.B., J.W.L., U.P., N.D.B., A.P.A., M.M., S.B., M.M.H., J.C.L., R.G.N., and J.A.R. performed research; K.-T.L., Y.Y., J.H., B.F., J.C.L., R.G.N., and J.A.R. analyzed data; and K.-T.L., Y.Y., J.H., R.G.N., and J.A.R. wrote the paper. Contributed by John A. Rogers, October 21, 2016 (sent for review September 7, 2016; reviewed by Yi Cui and Gary P. Wiederrecht) 1K.-T.L., Y.Y., and J.H. contributed equally to this work. |
OpenAccessLink | https://www.pnas.org/content/pnas/113/51/E8210.full.pdf |
PMID | 27930331 |
PQID | 1853314670 |
PQPubID | 42026 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5187745 osti_scitechconnect_1334550 proquest_miscellaneous_1847897278 proquest_journals_1853314670 crossref_primary_10_1073_pnas_1617391113 pubmed_primary_27930331 jstor_primary_26472972 |
PublicationCentury | 2000 |
PublicationDate | 2016-12-20 |
PublicationDateYYYYMMDD | 2016-12-20 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2016 |
Publisher | National Academy of Sciences Proceedings of the National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences – name: Proceedings of the National Academy of Sciences |
References | 22349847 - Nat Mater. 2012 Feb 21;11(3):174-7 22470842 - Sci Rep. 2012;2:349 24377269 - ACS Nano. 2014 Jan 28;8(1):44-53 22936418 - Adv Mater. 2012 Oct 9;24(39):5284-318 21673664 - Nat Commun. 2011 Jun 14;2:343 20485431 - Nature. 2010 May 20;465(7296):329-33 24921997 - Opt Express. 2014 Jan 13;22 Suppl 1:A28-34 24113691 - Phys Chem Chem Phys. 2013 Dec 21;15(47):20434-7 24776535 - Nat Mater. 2014 Jun;13(6):593-8 Menard E (e_1_3_3_39_2) 2011 Hernández M (e_1_3_3_34_2) 2007 Kost C (e_1_3_3_38_2) 2013 Fraas LM (e_1_3_3_20_2) 1990 Furman B (e_1_3_3_29_2) 2010 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 Luque A (e_1_3_3_2_2) 2011 e_1_3_3_15_2 e_1_3_3_14_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_31_2 Gueymard C (e_1_3_3_46_2) 1995 e_1_3_3_40_2 King RR (e_1_3_3_10_2) 2009 Marion W (e_1_3_3_35_2) 1994 Takamoto T (e_1_3_3_18_2) 1997 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_23_2 Bower CA (e_1_3_3_28_2) 2008 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_25_2 e_1_3_3_43_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 |
References_xml | – ident: e_1_3_3_19_2 doi: 10.1109/PVSC.1988.105803 – ident: e_1_3_3_42_2 doi: 10.1039/c3cp54096k – ident: e_1_3_3_11_2 doi: 10.1063/1.3658283 – volume-title: Levelized Cost of Electricity Renewable Energy Technologies Study year: 2013 ident: e_1_3_3_38_2 contributor: fullname: Kost C – start-page: 55 volume-title: The 24th European Photovoltaic Solar Energy Conference and Exhibition year: 2009 ident: e_1_3_3_10_2 contributor: fullname: King RR – start-page: 1 volume-title: SMARTS2: A Simple Model of the Atmospheric Radiative Transfer of Sunshine: Algorithms and Performance Assessment year: 1995 ident: e_1_3_3_46_2 contributor: fullname: Gueymard C – ident: e_1_3_3_4_2 doi: 10.1038/nmat3263 – start-page: 1031 volume-title: The 26th IEEE Photovoltaic Specialists Conference year: 1997 ident: e_1_3_3_18_2 contributor: fullname: Takamoto T – ident: e_1_3_3_17_2 doi: 10.1109/JPHOTOV.2013.2273097 – start-page: 000475 volume-title: Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE year: 2010 ident: e_1_3_3_29_2 doi: 10.1109/PVSC.2010.5616766 contributor: fullname: Furman B – ident: e_1_3_3_32_2 doi: 10.1039/c3ee42230e – ident: e_1_3_3_41_2 doi: 10.1002/aenm.201201064 – ident: e_1_3_3_21_2 doi: 10.1016/j.rser.2012.11.005 – ident: e_1_3_3_8_2 doi: 10.1063/1.2734507 – ident: e_1_3_3_23_2 doi: 10.1002/pip.2298 – ident: e_1_3_3_22_2 doi: 10.1117/12.893385 – ident: e_1_3_3_44_2 doi: 10.1021/acsphotonics.5b00630 – ident: e_1_3_3_13_2 doi: 10.1038/nmat3946 – start-page: 190 volume-title: The 21st IEEE Photovoltaic Specialists Conference year: 1990 ident: e_1_3_3_20_2 doi: 10.1109/PVSC.1990.111616 contributor: fullname: Fraas LM – start-page: 1105 volume-title: 58th Electronic Components and Technology Conference, 2008, ECTC 2008 year: 2008 ident: e_1_3_3_28_2 doi: 10.1109/ECTC.2008.4550113 contributor: fullname: Bower CA – ident: e_1_3_3_12_2 doi: 10.1063/1.4822190 – ident: e_1_3_3_26_2 doi: 10.1002/adma.201201386 – ident: e_1_3_3_37_2 – ident: e_1_3_3_47_2 doi: 10.1016/S0038-092X(01)00054-8 – ident: e_1_3_3_1_2 doi: 10.1016/j.rser.2011.07.104 – ident: e_1_3_3_6_2 doi: 10.1063/1.3600702 – ident: e_1_3_3_27_2 doi: 10.1063/1.3509179 – volume-title: Handbook of Photovoltaic Science and Engineering year: 2011 ident: e_1_3_3_2_2 contributor: fullname: Luque A – start-page: 667005 volume-title: Proceedings of SPIE, Nonimaging Optics and Efficient Illumination Systems IV year: 2007 ident: e_1_3_3_34_2 doi: 10.1117/12.736897 contributor: fullname: Hernández M – ident: e_1_3_3_45_2 doi: 10.1088/2040-8978/18/7/073004 – ident: e_1_3_3_7_2 doi: 10.1117/1.JPE.2.021805 – ident: e_1_3_3_3_2 doi: 10.1063/1.1736034 – ident: e_1_3_3_30_2 doi: 10.1038/nature09054 – ident: e_1_3_3_9_2 doi: 10.1063/1.2753729 – ident: e_1_3_3_24_2 doi: 10.1109/JPHOTOV.2013.2288026 – start-page: 1 volume-title: Solar Radiation Data Manual for Flat-Plate And Concentrating Collectors year: 1994 ident: e_1_3_3_35_2 contributor: fullname: Marion W – ident: e_1_3_3_31_2 doi: 10.1038/ncomms1318 – ident: e_1_3_3_36_2 doi: 10.1364/OE.22.000A28 – ident: e_1_3_3_5_2 doi: 10.1002/pip.2788 – ident: e_1_3_3_33_2 doi: 10.2172/1055376 – ident: e_1_3_3_43_2 doi: 10.1021/acsphotonics.5b00334 – ident: e_1_3_3_25_2 doi: 10.1002/pip.2544 – start-page: 002268 volume-title: Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE year: 2011 ident: e_1_3_3_39_2 doi: 10.1109/PVSC.2011.6186407 contributor: fullname: Menard E – ident: e_1_3_3_40_2 doi: 10.1021/nn404418h – ident: e_1_3_3_14_2 doi: 10.1038/srep00349 – ident: e_1_3_3_15_2 doi: 10.1063/1.3509212 – ident: e_1_3_3_16_2 doi: 10.1002/pip.2475 |
SSID | ssj0009580 |
Score | 2.4751852 |
Snippet | Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV... Concentrator photovoltaic (CPV) systems, wherein light focuses onto multijunction solar cells, offer the highest efficiencies in converting sunlight to... Emerging classes ofconcentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV... |
SourceID | pubmedcentral osti proquest crossref pubmed jstor |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | E8210 |
SubjectTerms | concentration optics diffuse light capture Electricity generation multijunction solar cells Photovoltaic cells photovoltaics Physical Sciences PNAS Plus SOLAR ENERGY Ultraviolet radiation Weather |
SummonAdditionalLinks | – databaseName: JSTOR Health & General Sciences Collection dbid: JSG link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB3RnnoBSimEtsiVQCqH0CT2ZrzHqvRDHLgUJG6R7dhqpTZZNdkLv54ZJ9nuIpC45BBbduLxzDx7xs8AH4xDba3TaakzlSplVToPFtM8sDN3CjFGTK9v8NtP_eWCaXI-TmdhOK0y5gXGKD4BJHvvTwvmOJ8jWdotHbXv683VGrOuHs6ZFGRuVaEm_h6Up4vGdJ8ZwEtWabnheobsQzLELanS3-Dln1mSa27n8sV_fvBLeD7iSnE2TIRdeOabV7A7am4nTkZ66U978OucTypyZ9ScWNy2fUsmqjd3Tjy09fLei_XgQid4p1Y48qkxjZYW1oJwLr_gYmGaWsTM9bjtJtogeENfDDwjouOFs3hk_gOeAK_hx-XF9_PrdLyBISUpZX3qrMndvFRBld6H4EJmUYayCMEqWWiPwVmkZ2aDxFle-kD2Ilhb1DNvUDq5D9tN2_i3IGhdNDfSeMcM_iqTulRWSkJTmJU-r_METibhVIuBaKOKAXKUFcuxepJjAvtxxFf1puFO4IClWRF4YAZcx6lCrq9oGc5ntxM4nIRcjYpKrRJckewtqPh4VUwqxnET0_h2yXUUamoedQJvhjnx1DXZt4xaSAA3ZsuqAtN3b5Y0d7eRxnuWa8Les3f_-psD2CF0Fm9JKrJD2O4fl_4Itrp6-T5qwG_k5QXP priority: 102 providerName: JSTOR |
Title | Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation |
URI | https://www.jstor.org/stable/26472972 https://www.ncbi.nlm.nih.gov/pubmed/27930331 https://www.proquest.com/docview/1853314670 https://search.proquest.com/docview/1847897278 https://www.osti.gov/biblio/1334550 https://pubmed.ncbi.nlm.nih.gov/PMC5187745 |
Volume | 113 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwEB2xPXFBFCiElpUrcSiH7Ca2E3uPaNuqVVWEBEjcotix1ZW6yarJXvh6Zpxkt0U9cckhdpwoM-N5Y4_fAHwurdLGWB3nOpGxlEbGC29UnHpy5lYqFXZMr36ob7_1-QXR5GTjWZiQtG_Nalbfr2f16i7kVm7Wdj7mic2_3y6zVCNqyeYTmCA2HEP0HdOu7s-dcJx-JZcjn48S801dtjMC9IJMnErocFTPpK8wt_dKfWIiztENWtlzyPPfBMpHHunyNbwaoCT72n_yIbxw9Rs4HIy1ZWcDo_SXt_BnSYcTaRB8I9vcNV2Ds1JXrixbN9X23rHH-wkto8VZZtGNhsxZjKUZQlu6Qc2srCsWktXDShtrPKM1fNZTi7CWYmX2QJQHJPN38Ovy4ufyKh6KLsQomKSLrSlTu8ill7lz3lufGCV8zr03UnDtlLdG4TUxXqgszZ3HKcIbw6vMlUpYcQQHdVO7D8AwFFqUonSWSPtlInQujRAIoFSSu7RKIzgbf3qx6bk1irAnrkRBoir2oorgKAhl148T7f1C8QiOSUoF4gUivbWUHWS7AiNvOq4dwckovGKwTRwVEYogB4HNp7tmtCraKilr12ypj1Qah1c6gve9rPevHnQmAvVEC3YdiLH7aQsqcmDuHhT3438_eQwvEbGFykk8OYGD7mHrPsGkrbZTjAeub6Yhp3UaCmdMg138BXFLETk |
link.rule.ids | 230,315,729,782,786,808,811,887,27933,27934,53800,53802,58025,58037,58258,58270 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwEB1BOcAFKFAILWAkkMohrRM7sfeISqtFlF4oErfIdmy1UklWTfbSr--Mk2x3EUhccogtO_F4Zp4942eAD8Ypba3Taam5TKW0Mp0Fq9IskDN3UqkYMZ3_UGe_9Jdjosn5OJ2FobTKmBcYo_gIkOyVP8yJ43ym0NI-KDQXasjcW-PW1cNJkxwNrszlxOCjxOGiMd0BQXhBSi02nM-Qf4imuEVl-hvA_DNPcs3xnDz5z09-Co9HZMk-D1NhG-755hlsj7rbsf2RYPrTc7g5orOK1Bk2xxYXbd-ikerNpWO_23p55dl6eKFjtFfLHHrVmEiLS2uGSJdeUDEzTc1i7nrceGNtYLSlzwamEdbR0pldEwMCTYEX8PPk-Pxono53MKQoJ96nzprMzUoZZOl9CC5wq0Qo8xCsFLn2Kjir8MltEKrISh_QYgRr87rwRgkndmCraRv_ChiujGZGGO-Iw19yoUtphUA8pXjpszpLYH8STrUYqDaqGCJXoiI5VndyTGAnjviq3jTcCeySNCuED8SB6yhZyPUVLsTp9HYCe5OQq1FVsVUELIL8BRa_XxWjklHkxDS-XVIdqTQ2r3QCL4c5cdc1WjiOLSSgNmbLqgIReG-WNJcXkci7yDSi7-L1v_7mHTycn38_rU6_nn3bhUeI1eKdSTnfg63-eunfwP2uXr6N2nAL44QJMg |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB21VKp6gUJLCdDWlXqAQ7pJ7MTeYwWsqFohpLZSb5Ht2AKJJiuSvfDrmXGSZbeiBy45xJbzMZ6ZN57xM8BnbaUyxqq4UImIhTAinnoj49STM7dCypAxPf8pL_6o0zOiyTke98JQWWWoCwxZfARI5sZN5pWfZMRzPpVobV_kGNWo_nCAFX5d1e82ydDoikyMLD6ST-a1br8QjOek2HzNAfU1iGiOG1Sox0Dmv7WSK85ntvWE134NmwPCZF_7KbENz1y9A9uDDrfsaCCaPn4Ddye0Z5EeiEOy-VXTNWisOn1t2d-mWtw4tppmaBmt2TKL3jUU1GKIzRDx0g1qZrquWKhhDwtwrPGMlvZZzzjCWgqh2S0xIdBUeAu_Z2e_Ts7j4SyGGOWVdLE1OrXTQnhROOe99YmR3BeZ90bwTDnprZF4TYznMk8L59FyeGOyKndacst3YaNuarcHDCOkqebaWeLyFwlXhTCcI66SSeHSKo3gaBRQOe8pN8qQKpe8JFmWD7KMYDf89WW_8XdHcEASLRFGEBeupaIh25UYkNMu7ggOR0GXg8riqAhcOPkNbP60bEZlowyKrl2zoD5CKhxeqgje9fPi4dFo6RIcIQK5NmOWHYjIe72lvr4KhN55qhCF5_v_-5qP8PLydFb--Hbx_QBeIWQLRydlySFsdLcL9x6et9XiQ1CIe0LHC6s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Concentrator+photovoltaic+module+architectures+with+capabilities+for+capture+and+conversion+of+full+global+solar+radiation&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Lee%2C+Kyu-Tae&rft.au=Yao%2C+Yuan&rft.au=He%2C+Junwen&rft.au=Fisher%2C+Brent&rft.date=2016-12-20&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=113&rft.issue=51&rft.spage=E8210&rft.epage=E8218&rft_id=info:doi/10.1073%2Fpnas.1617391113&rft.externalDocID=26472972 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |