Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation

Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 113; no. 51; pp. E8210 - E8218
Main Authors: Lee, Kyu-Tae, Yao, Yuan, He, Junwen, Fisher, Brent, Sheng, Xing, Lumb, Matthew, Xu, Lu, Anderson, Mikayla A., Scheiman, David, Han, Seungyong, Kang, Yongseon, Gumus, Abdurrahman, Bahabry, Rabab R., Lee, Jung Woo, Paik, Ungyu, Bronstein, Noah D., Alivisatos, A. Paul, Meitl, Matthew, Burroughs, Scott, Hussain, Muhammad Mustafa, Lee, Jeong Chul, Nuzzo, Ralph G., Rogers, John A.
Format: Journal Article
Language:English
Published: United States National Academy of Sciences 20-12-2016
Proceedings of the National Academy of Sciences
Series:PNAS Plus
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III–V semiconductor technologies. In this CPV⁺ scheme (“+” denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV⁺ modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.
AbstractList Emerging classes ofconcentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV+ scheme ("+" denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV+ modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.
Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV scheme ("+" denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.
Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV+ scheme ("+" denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV+ modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.
Concentrator photovoltaic (CPV) systems, wherein light focuses onto multijunction solar cells, offer the highest efficiencies in converting sunlight to electricity. The performance is intrinsically limited, however, by an inability to capture diffuse illumination, due to narrow acceptance angles of the concentrator optics. Here we demonstrate concepts where flat-plate solar cells mount onto the backplanes of the most sophisticated CPV modules to yield an additive contribution to the overall output. Outdoor testing results with two different hybrid module designs demonstrate absolute gains in average daily efficiencies of between 1.02% and 8.45% depending on weather conditions. The findings suggest pathways to significant improvements in the efficiencies, with economics that could potentially expand their deployment to a wide range of geographic locations. Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III–V semiconductor technologies. In this CPV + scheme (“+” denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV + modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.
Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III–V semiconductor technologies. In this CPV⁺ scheme (“+” denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV⁺ modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.
Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV^sup +^ scheme ("+" denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV+modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.
Author Meitl, Matthew
He, Junwen
Nuzzo, Ralph G.
Sheng, Xing
Burroughs, Scott
Alivisatos, A. Paul
Paik, Ungyu
Lee, Jeong Chul
Bronstein, Noah D.
Fisher, Brent
Lumb, Matthew
Bahabry, Rabab R.
Gumus, Abdurrahman
Han, Seungyong
Rogers, John A.
Xu, Lu
Hussain, Muhammad Mustafa
Yao, Yuan
Anderson, Mikayla A.
Scheiman, David
Kang, Yongseon
Lee, Kyu-Tae
Lee, Jung Woo
Author_xml – sequence: 1
  givenname: Kyu-Tae
  surname: Lee
  fullname: Lee, Kyu-Tae
  organization: Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL 61801
– sequence: 2
  givenname: Yuan
  surname: Yao
  fullname: Yao, Yuan
  organization: Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
– sequence: 3
  givenname: Junwen
  surname: He
  fullname: He, Junwen
  organization: Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
– sequence: 4
  givenname: Brent
  surname: Fisher
  fullname: Fisher, Brent
  organization: Semprius, Durham, NC 27713
– sequence: 5
  givenname: Xing
  surname: Sheng
  fullname: Sheng, Xing
  organization: Department of Electronic Engineering, Tsinghua University, Beijing, China 100084
– sequence: 6
  givenname: Matthew
  surname: Lumb
  fullname: Lumb, Matthew
  organization: US Naval Research Laboratory, Washington, DC 20375
– sequence: 7
  givenname: Lu
  surname: Xu
  fullname: Xu, Lu
  organization: Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
– sequence: 8
  givenname: Mikayla A.
  surname: Anderson
  fullname: Anderson, Mikayla A.
  organization: Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
– sequence: 9
  givenname: David
  surname: Scheiman
  fullname: Scheiman, David
  organization: US Naval Research Laboratory, Washington, DC 20375
– sequence: 10
  givenname: Seungyong
  surname: Han
  fullname: Han, Seungyong
  organization: Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
– sequence: 11
  givenname: Yongseon
  surname: Kang
  fullname: Kang, Yongseon
  organization: Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
– sequence: 12
  givenname: Abdurrahman
  surname: Gumus
  fullname: Gumus, Abdurrahman
  organization: Integrated Nanotechnology Lab, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
– sequence: 13
  givenname: Rabab R.
  surname: Bahabry
  fullname: Bahabry, Rabab R.
  organization: Integrated Nanotechnology Lab, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
– sequence: 14
  givenname: Jung Woo
  surname: Lee
  fullname: Lee, Jung Woo
  organization: Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
– sequence: 15
  givenname: Ungyu
  surname: Paik
  fullname: Paik, Ungyu
  organization: Department of Materials Science and Engineering, Hanyang University, Seoul 133-791, Republic of Korea
– sequence: 16
  givenname: Noah D.
  surname: Bronstein
  fullname: Bronstein, Noah D.
  organization: Department of Chemistry, University of California, Berkeley, CA 94720
– sequence: 17
  givenname: A. Paul
  surname: Alivisatos
  fullname: Alivisatos, A. Paul
  organization: Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
– sequence: 18
  givenname: Matthew
  surname: Meitl
  fullname: Meitl, Matthew
  organization: Semprius, Durham, NC 27713
– sequence: 19
  givenname: Scott
  surname: Burroughs
  fullname: Burroughs, Scott
  organization: Semprius, Durham, NC 27713
– sequence: 20
  givenname: Muhammad Mustafa
  surname: Hussain
  fullname: Hussain, Muhammad Mustafa
  organization: Integrated Nanotechnology Lab, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
– sequence: 21
  givenname: Jeong Chul
  surname: Lee
  fullname: Lee, Jeong Chul
  organization: Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
– sequence: 22
  givenname: Ralph G.
  surname: Nuzzo
  fullname: Nuzzo, Ralph G.
  organization: Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
– sequence: 23
  givenname: John A.
  surname: Rogers
  fullname: Rogers, John A.
  organization: Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27930331$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1334550$$D View this record in Osti.gov
BookMark eNpdkc2P1SAUxYkZ47wZXbvSEN246QwUWtqNiXnxK5nEja4JpTDlhcetQJ_Rv16ajjPqBhLO7x7uvecCnQUIBqHnlFxRItj1HFS6oi0VrKeUskdoR0lPq5b35AztCKlF1fGan6OLlA6EkL7pyBN0XoueEcboDv3aQ9Am5KgyRDxPkOEEPiun8RHGxRusop5cNjov0ST8w-UJazWrwXmXXXmxpa48rDJWYcQawsnE5CBgsNgu3uNbD4PyOIFXEUc1OpWL_BQ9tson8-zuvkTfPrz_uv9U3Xz5-Hn_7qbSXJBc6UFR3bfc8tYYa7Ulg2C2ra0dOKs7I6weRDnJYJloaGssI9QOQz02Rgmm2SV6u_nOy3A04zatl3N0RxV_SlBO_qsEN8lbOMmGdkLwphi82gwgZSeTXrcxlTFDWYqkjPGmIQV6c_dLhO-LSVkeXdLGexUMLEnSjouuF7XoCvr6P_QASwxlB4VqSiy8Favh9UbpCClFY-87pkSu4cs1fPkQfql4-feg9_yftAvwYgMOqaT9oLdc1KU19hv4DLs6
CitedBy_id crossref_primary_10_1109_JPHOTOV_2018_2877015
crossref_primary_10_1016_j_rineng_2022_100665
crossref_primary_10_3390_app10062051
crossref_primary_10_3390_ma16114004
crossref_primary_10_1038_s41598_018_33200_9
crossref_primary_10_1364_OL_44_003274
crossref_primary_10_1016_j_chemosphere_2018_09_114
crossref_primary_10_1175_JCLI_D_20_0979_1
crossref_primary_10_3389_fenrg_2022_842201
crossref_primary_10_1002_aenm_201700345
crossref_primary_10_1002_admt_201700169
crossref_primary_10_1002_pip_3387
crossref_primary_10_1016_j_solener_2019_05_048
crossref_primary_10_1002_pip_3124
crossref_primary_10_1364_OL_475800
crossref_primary_10_1002_aenm_202003286
crossref_primary_10_1002_aenm_201601992
crossref_primary_10_1038_s43246_020_00106_x
crossref_primary_10_1109_JPHOTOV_2018_2877004
crossref_primary_10_1016_j_energy_2020_118854
crossref_primary_10_1063_1_5046752
crossref_primary_10_3390_en13215721
crossref_primary_10_1002_pip_3239
crossref_primary_10_1016_j_solener_2017_08_017
crossref_primary_10_1364_OE_443820
crossref_primary_10_1002_solr_202300363
crossref_primary_10_1002_ese3_550
crossref_primary_10_1021_acsami_9b09377
crossref_primary_10_1117_1_JPE_9_014501
crossref_primary_10_1038_s41597_021_01016_4
crossref_primary_10_1002_pip_3410
crossref_primary_10_1002_pip_3034
Cites_doi 10.1109/PVSC.1988.105803
10.1039/c3cp54096k
10.1063/1.3658283
10.1038/nmat3263
10.1109/JPHOTOV.2013.2273097
10.1109/PVSC.2010.5616766
10.1039/c3ee42230e
10.1002/aenm.201201064
10.1016/j.rser.2012.11.005
10.1063/1.2734507
10.1002/pip.2298
10.1117/12.893385
10.1021/acsphotonics.5b00630
10.1038/nmat3946
10.1109/PVSC.1990.111616
10.1109/ECTC.2008.4550113
10.1063/1.4822190
10.1002/adma.201201386
10.1016/S0038-092X(01)00054-8
10.1016/j.rser.2011.07.104
10.1063/1.3600702
10.1063/1.3509179
10.1117/12.736897
10.1088/2040-8978/18/7/073004
10.1117/1.JPE.2.021805
10.1063/1.1736034
10.1038/nature09054
10.1063/1.2753729
10.1109/JPHOTOV.2013.2288026
10.1038/ncomms1318
10.1364/OE.22.000A28
10.1002/pip.2788
10.2172/1055376
10.1021/acsphotonics.5b00334
10.1002/pip.2544
10.1109/PVSC.2011.6186407
10.1021/nn404418h
10.1038/srep00349
10.1063/1.3509212
10.1002/pip.2475
ContentType Journal Article
Copyright Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Dec 20, 2016
Copyright_xml – notice: Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Dec 20, 2016
CorporateAuthor Energy Frontier Research Centers (EFRC) (United States). Light-Material Interactions in Energy Conversion (LMI)
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
– name: Energy Frontier Research Centers (EFRC) (United States). Light-Material Interactions in Energy Conversion (LMI)
DBID NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
OTOTI
5PM
DOI 10.1073/pnas.1617391113
DatabaseName PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic


CrossRef
Virology and AIDS Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate CPV modules harvesting full global solar radiation
EISSN 1091-6490
EndPage E8218
ExternalDocumentID 1334550
4287956701
10_1073_pnas_1617391113
27930331
26472972
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Feature
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: U.S. Department of Energy (DOE)
  grantid: DE-AR0000624
– fundername: U.S. Department of Energy (DOE)
  grantid: DE-SC0001293
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADACV
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DOOOF
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
79B
ADZLD
ASUFR
DNJUQ
DWIUU
OTOTI
ZA5
5PM
ID FETCH-LOGICAL-c470t-cba1c964f46eeffcf0b73f62ffb4328e7fcb7e7f0bf37516ef301fbb2d5ea73c3
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:15:55 EDT 2024
Mon Mar 25 05:14:56 EDT 2024
Sat Aug 17 01:00:57 EDT 2024
Thu Oct 10 20:11:36 EDT 2024
Thu Nov 21 22:21:49 EST 2024
Sat Sep 28 08:48:04 EDT 2024
Mon Nov 25 04:44:45 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 51
Keywords multijunction solar cells
diffuse light capture
concentration optics
photovoltaics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-cba1c964f46eeffcf0b73f62ffb4328e7fcb7e7f0bf37516ef301fbb2d5ea73c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
National Research Foundation of Korea (NRF)
SC0001293; AR0000624; AC02-05CH11231
National Natural Science Foundation of China (NSFC)
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Reviewers: Y.C., Stanford University; and G.P.W., Argonne National Laboratory.
Author contributions: K.-T.L., Y.Y., J.H., X.S., J.C.L., R.G.N., and J.A.R. designed research; K.-T.L., Y.Y., J.H., B.F., M.L., L.X., M.A.A., D.S., S.H., Y.K., A.G., R.R.B., J.W.L., U.P., N.D.B., A.P.A., M.M., S.B., M.M.H., J.C.L., R.G.N., and J.A.R. performed research; K.-T.L., Y.Y., J.H., B.F., J.C.L., R.G.N., and J.A.R. analyzed data; and K.-T.L., Y.Y., J.H., R.G.N., and J.A.R. wrote the paper.
Contributed by John A. Rogers, October 21, 2016 (sent for review September 7, 2016; reviewed by Yi Cui and Gary P. Wiederrecht)
1K.-T.L., Y.Y., and J.H. contributed equally to this work.
OpenAccessLink https://www.pnas.org/content/pnas/113/51/E8210.full.pdf
PMID 27930331
PQID 1853314670
PQPubID 42026
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5187745
osti_scitechconnect_1334550
proquest_miscellaneous_1847897278
proquest_journals_1853314670
crossref_primary_10_1073_pnas_1617391113
pubmed_primary_27930331
jstor_primary_26472972
PublicationCentury 2000
PublicationDate 2016-12-20
PublicationDateYYYYMMDD 2016-12-20
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-20
  day: 20
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2016
Publisher National Academy of Sciences
Proceedings of the National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
– name: Proceedings of the National Academy of Sciences
References 22349847 - Nat Mater. 2012 Feb 21;11(3):174-7
22470842 - Sci Rep. 2012;2:349
24377269 - ACS Nano. 2014 Jan 28;8(1):44-53
22936418 - Adv Mater. 2012 Oct 9;24(39):5284-318
21673664 - Nat Commun. 2011 Jun 14;2:343
20485431 - Nature. 2010 May 20;465(7296):329-33
24921997 - Opt Express. 2014 Jan 13;22 Suppl 1:A28-34
24113691 - Phys Chem Chem Phys. 2013 Dec 21;15(47):20434-7
24776535 - Nat Mater. 2014 Jun;13(6):593-8
Menard E (e_1_3_3_39_2) 2011
Hernández M (e_1_3_3_34_2) 2007
Kost C (e_1_3_3_38_2) 2013
Fraas LM (e_1_3_3_20_2) 1990
Furman B (e_1_3_3_29_2) 2010
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
Luque A (e_1_3_3_2_2) 2011
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_31_2
Gueymard C (e_1_3_3_46_2) 1995
e_1_3_3_40_2
King RR (e_1_3_3_10_2) 2009
Marion W (e_1_3_3_35_2) 1994
Takamoto T (e_1_3_3_18_2) 1997
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_23_2
Bower CA (e_1_3_3_28_2) 2008
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_25_2
e_1_3_3_43_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
References_xml – ident: e_1_3_3_19_2
  doi: 10.1109/PVSC.1988.105803
– ident: e_1_3_3_42_2
  doi: 10.1039/c3cp54096k
– ident: e_1_3_3_11_2
  doi: 10.1063/1.3658283
– volume-title: Levelized Cost of Electricity Renewable Energy Technologies Study
  year: 2013
  ident: e_1_3_3_38_2
  contributor:
    fullname: Kost C
– start-page: 55
  volume-title: The 24th European Photovoltaic Solar Energy Conference and Exhibition
  year: 2009
  ident: e_1_3_3_10_2
  contributor:
    fullname: King RR
– start-page: 1
  volume-title: SMARTS2: A Simple Model of the Atmospheric Radiative Transfer of Sunshine: Algorithms and Performance Assessment
  year: 1995
  ident: e_1_3_3_46_2
  contributor:
    fullname: Gueymard C
– ident: e_1_3_3_4_2
  doi: 10.1038/nmat3263
– start-page: 1031
  volume-title: The 26th IEEE Photovoltaic Specialists Conference
  year: 1997
  ident: e_1_3_3_18_2
  contributor:
    fullname: Takamoto T
– ident: e_1_3_3_17_2
  doi: 10.1109/JPHOTOV.2013.2273097
– start-page: 000475
  volume-title: Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE
  year: 2010
  ident: e_1_3_3_29_2
  doi: 10.1109/PVSC.2010.5616766
  contributor:
    fullname: Furman B
– ident: e_1_3_3_32_2
  doi: 10.1039/c3ee42230e
– ident: e_1_3_3_41_2
  doi: 10.1002/aenm.201201064
– ident: e_1_3_3_21_2
  doi: 10.1016/j.rser.2012.11.005
– ident: e_1_3_3_8_2
  doi: 10.1063/1.2734507
– ident: e_1_3_3_23_2
  doi: 10.1002/pip.2298
– ident: e_1_3_3_22_2
  doi: 10.1117/12.893385
– ident: e_1_3_3_44_2
  doi: 10.1021/acsphotonics.5b00630
– ident: e_1_3_3_13_2
  doi: 10.1038/nmat3946
– start-page: 190
  volume-title: The 21st IEEE Photovoltaic Specialists Conference
  year: 1990
  ident: e_1_3_3_20_2
  doi: 10.1109/PVSC.1990.111616
  contributor:
    fullname: Fraas LM
– start-page: 1105
  volume-title: 58th Electronic Components and Technology Conference, 2008, ECTC 2008
  year: 2008
  ident: e_1_3_3_28_2
  doi: 10.1109/ECTC.2008.4550113
  contributor:
    fullname: Bower CA
– ident: e_1_3_3_12_2
  doi: 10.1063/1.4822190
– ident: e_1_3_3_26_2
  doi: 10.1002/adma.201201386
– ident: e_1_3_3_37_2
– ident: e_1_3_3_47_2
  doi: 10.1016/S0038-092X(01)00054-8
– ident: e_1_3_3_1_2
  doi: 10.1016/j.rser.2011.07.104
– ident: e_1_3_3_6_2
  doi: 10.1063/1.3600702
– ident: e_1_3_3_27_2
  doi: 10.1063/1.3509179
– volume-title: Handbook of Photovoltaic Science and Engineering
  year: 2011
  ident: e_1_3_3_2_2
  contributor:
    fullname: Luque A
– start-page: 667005
  volume-title: Proceedings of SPIE, Nonimaging Optics and Efficient Illumination Systems IV
  year: 2007
  ident: e_1_3_3_34_2
  doi: 10.1117/12.736897
  contributor:
    fullname: Hernández M
– ident: e_1_3_3_45_2
  doi: 10.1088/2040-8978/18/7/073004
– ident: e_1_3_3_7_2
  doi: 10.1117/1.JPE.2.021805
– ident: e_1_3_3_3_2
  doi: 10.1063/1.1736034
– ident: e_1_3_3_30_2
  doi: 10.1038/nature09054
– ident: e_1_3_3_9_2
  doi: 10.1063/1.2753729
– ident: e_1_3_3_24_2
  doi: 10.1109/JPHOTOV.2013.2288026
– start-page: 1
  volume-title: Solar Radiation Data Manual for Flat-Plate And Concentrating Collectors
  year: 1994
  ident: e_1_3_3_35_2
  contributor:
    fullname: Marion W
– ident: e_1_3_3_31_2
  doi: 10.1038/ncomms1318
– ident: e_1_3_3_36_2
  doi: 10.1364/OE.22.000A28
– ident: e_1_3_3_5_2
  doi: 10.1002/pip.2788
– ident: e_1_3_3_33_2
  doi: 10.2172/1055376
– ident: e_1_3_3_43_2
  doi: 10.1021/acsphotonics.5b00334
– ident: e_1_3_3_25_2
  doi: 10.1002/pip.2544
– start-page: 002268
  volume-title: Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE
  year: 2011
  ident: e_1_3_3_39_2
  doi: 10.1109/PVSC.2011.6186407
  contributor:
    fullname: Menard E
– ident: e_1_3_3_40_2
  doi: 10.1021/nn404418h
– ident: e_1_3_3_14_2
  doi: 10.1038/srep00349
– ident: e_1_3_3_15_2
  doi: 10.1063/1.3509212
– ident: e_1_3_3_16_2
  doi: 10.1002/pip.2475
SSID ssj0009580
Score 2.4751852
Snippet Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV...
Concentrator photovoltaic (CPV) systems, wherein light focuses onto multijunction solar cells, offer the highest efficiencies in converting sunlight to...
Emerging classes ofconcentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV...
SourceID pubmedcentral
osti
proquest
crossref
pubmed
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage E8210
SubjectTerms concentration optics
diffuse light capture
Electricity generation
multijunction solar cells
Photovoltaic cells
photovoltaics
Physical Sciences
PNAS Plus
SOLAR ENERGY
Ultraviolet radiation
Weather
SummonAdditionalLinks – databaseName: JSTOR Health & General Sciences Collection
  dbid: JSG
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB3RnnoBSimEtsiVQCqH0CT2ZrzHqvRDHLgUJG6R7dhqpTZZNdkLv54ZJ9nuIpC45BBbduLxzDx7xs8AH4xDba3TaakzlSplVToPFtM8sDN3CjFGTK9v8NtP_eWCaXI-TmdhOK0y5gXGKD4BJHvvTwvmOJ8jWdotHbXv683VGrOuHs6ZFGRuVaEm_h6Up4vGdJ8ZwEtWabnheobsQzLELanS3-Dln1mSa27n8sV_fvBLeD7iSnE2TIRdeOabV7A7am4nTkZ66U978OucTypyZ9ScWNy2fUsmqjd3Tjy09fLei_XgQid4p1Y48qkxjZYW1oJwLr_gYmGaWsTM9bjtJtogeENfDDwjouOFs3hk_gOeAK_hx-XF9_PrdLyBISUpZX3qrMndvFRBld6H4EJmUYayCMEqWWiPwVmkZ2aDxFle-kD2Ilhb1DNvUDq5D9tN2_i3IGhdNDfSeMcM_iqTulRWSkJTmJU-r_METibhVIuBaKOKAXKUFcuxepJjAvtxxFf1puFO4IClWRF4YAZcx6lCrq9oGc5ntxM4nIRcjYpKrRJckewtqPh4VUwqxnET0_h2yXUUamoedQJvhjnx1DXZt4xaSAA3ZsuqAtN3b5Y0d7eRxnuWa8Les3f_-psD2CF0Fm9JKrJD2O4fl_4Itrp6-T5qwG_k5QXP
  priority: 102
  providerName: JSTOR
Title Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation
URI https://www.jstor.org/stable/26472972
https://www.ncbi.nlm.nih.gov/pubmed/27930331
https://www.proquest.com/docview/1853314670
https://search.proquest.com/docview/1847897278
https://www.osti.gov/biblio/1334550
https://pubmed.ncbi.nlm.nih.gov/PMC5187745
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwEB2xPXFBFCiElpUrcSiH7Ca2E3uPaNuqVVWEBEjcotix1ZW6yarJXvh6Zpxkt0U9cckhdpwoM-N5Y4_fAHwurdLGWB3nOpGxlEbGC29UnHpy5lYqFXZMr36ob7_1-QXR5GTjWZiQtG_Nalbfr2f16i7kVm7Wdj7mic2_3y6zVCNqyeYTmCA2HEP0HdOu7s-dcJx-JZcjn48S801dtjMC9IJMnErocFTPpK8wt_dKfWIiztENWtlzyPPfBMpHHunyNbwaoCT72n_yIbxw9Rs4HIy1ZWcDo_SXt_BnSYcTaRB8I9vcNV2Ds1JXrixbN9X23rHH-wkto8VZZtGNhsxZjKUZQlu6Qc2srCsWktXDShtrPKM1fNZTi7CWYmX2QJQHJPN38Ovy4ufyKh6KLsQomKSLrSlTu8ill7lz3lufGCV8zr03UnDtlLdG4TUxXqgszZ3HKcIbw6vMlUpYcQQHdVO7D8AwFFqUonSWSPtlInQujRAIoFSSu7RKIzgbf3qx6bk1irAnrkRBoir2oorgKAhl148T7f1C8QiOSUoF4gUivbWUHWS7AiNvOq4dwckovGKwTRwVEYogB4HNp7tmtCraKilr12ypj1Qah1c6gve9rPevHnQmAvVEC3YdiLH7aQsqcmDuHhT3438_eQwvEbGFykk8OYGD7mHrPsGkrbZTjAeub6Yhp3UaCmdMg138BXFLETk
link.rule.ids 230,315,729,782,786,808,811,887,27933,27934,53800,53802,58025,58037,58258,58270
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwEB1BOcAFKFAILWAkkMohrRM7sfeISqtFlF4oErfIdmy1UklWTfbSr--Mk2x3EUhccogtO_F4Zp4942eAD8Ypba3Taam5TKW0Mp0Fq9IskDN3UqkYMZ3_UGe_9Jdjosn5OJ2FobTKmBcYo_gIkOyVP8yJ43ym0NI-KDQXasjcW-PW1cNJkxwNrszlxOCjxOGiMd0BQXhBSi02nM-Qf4imuEVl-hvA_DNPcs3xnDz5z09-Co9HZMk-D1NhG-755hlsj7rbsf2RYPrTc7g5orOK1Bk2xxYXbd-ikerNpWO_23p55dl6eKFjtFfLHHrVmEiLS2uGSJdeUDEzTc1i7nrceGNtYLSlzwamEdbR0pldEwMCTYEX8PPk-Pxono53MKQoJ96nzprMzUoZZOl9CC5wq0Qo8xCsFLn2Kjir8MltEKrISh_QYgRr87rwRgkndmCraRv_ChiujGZGGO-Iw19yoUtphUA8pXjpszpLYH8STrUYqDaqGCJXoiI5VndyTGAnjviq3jTcCeySNCuED8SB6yhZyPUVLsTp9HYCe5OQq1FVsVUELIL8BRa_XxWjklHkxDS-XVIdqTQ2r3QCL4c5cdc1WjiOLSSgNmbLqgIReG-WNJcXkci7yDSi7-L1v_7mHTycn38_rU6_nn3bhUeI1eKdSTnfg63-eunfwP2uXr6N2nAL44QJMg
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB21VKp6gUJLCdDWlXqAQ7pJ7MTeYwWsqFohpLZSb5Ht2AKJJiuSvfDrmXGSZbeiBy45xJbzMZ6ZN57xM8BnbaUyxqq4UImIhTAinnoj49STM7dCypAxPf8pL_6o0zOiyTke98JQWWWoCwxZfARI5sZN5pWfZMRzPpVobV_kGNWo_nCAFX5d1e82ydDoikyMLD6ST-a1br8QjOek2HzNAfU1iGiOG1Sox0Dmv7WSK85ntvWE134NmwPCZF_7KbENz1y9A9uDDrfsaCCaPn4Ddye0Z5EeiEOy-VXTNWisOn1t2d-mWtw4tppmaBmt2TKL3jUU1GKIzRDx0g1qZrquWKhhDwtwrPGMlvZZzzjCWgqh2S0xIdBUeAu_Z2e_Ts7j4SyGGOWVdLE1OrXTQnhROOe99YmR3BeZ90bwTDnprZF4TYznMk8L59FyeGOyKndacst3YaNuarcHDCOkqebaWeLyFwlXhTCcI66SSeHSKo3gaBRQOe8pN8qQKpe8JFmWD7KMYDf89WW_8XdHcEASLRFGEBeupaIh25UYkNMu7ggOR0GXg8riqAhcOPkNbP60bEZlowyKrl2zoD5CKhxeqgje9fPi4dFo6RIcIQK5NmOWHYjIe72lvr4KhN55qhCF5_v_-5qP8PLydFb--Hbx_QBeIWQLRydlySFsdLcL9x6et9XiQ1CIe0LHC6s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Concentrator+photovoltaic+module+architectures+with+capabilities+for+capture+and+conversion+of+full+global+solar+radiation&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Lee%2C+Kyu-Tae&rft.au=Yao%2C+Yuan&rft.au=He%2C+Junwen&rft.au=Fisher%2C+Brent&rft.date=2016-12-20&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=113&rft.issue=51&rft.spage=E8210&rft.epage=E8218&rft_id=info:doi/10.1073%2Fpnas.1617391113&rft.externalDocID=26472972
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon