Microglia-Mediated Inflammation and Neural Stem Cell Differentiation in Alzheimer’s Disease: Possible Therapeutic Role of KV1.3 Channel Blockade
Increase of deposits of amyloid β peptides in the extracellular matrix is landmark during Alzheimer’s Disease (AD) due to the imbalance in the production vs. clearance. This accumulation of amyloid β deposits triggers microglial activation. Microglia plays a dual role in AD, a protective role by cle...
Saved in:
Published in: | Frontiers in cellular neuroscience Vol. 16; p. 868842 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Lausanne
Frontiers Research Foundation
21-04-2022
Frontiers Media S.A |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Increase of deposits of amyloid β peptides in the extracellular matrix is landmark during Alzheimer’s Disease (AD) due to the imbalance in the production vs. clearance. This accumulation of amyloid β deposits triggers microglial activation. Microglia plays a dual role in AD, a protective role by clearing the deposits of amyloid β peptides increasing the phagocytic response (
CD163, IGF-1
or
BDNF
) and a cytotoxic role, releasing free radicals (ROS or NO) and proinflammatory cytokines (
TNF-
α,
IL-1
β) in response to reactive gliosis activated by the amyloid β aggregates. Microglia activation correlated with an increase K
V
1.3 channels expression, protein levels and current density. Several studies highlight the importance of K
V
1.3 in the activation of inflammatory response and inhibition of neural progenitor cell proliferation and neuronal differentiation. However, little is known about the pathways of this activation in neural stem cells differentiation and proliferation and the role in amyloid β accumulation. In recent studies using
in vitro
cells derived from mice models, it has been demonstrated that K
V
1.3 blockers inhibit microglia-mediated neurotoxicity in culture reducing the expression and production of the pro-inflammatory cytokines
IL-1
β and
TNF-
α through the NF-kB and p38MAPK pathway. Overall, we conclude that K
V
1.3 blockers change the course of AD development, reducing microglial cytotoxic activation and increasing neural stem cell differentiation. However, further investigations are needed to establish the specific pathway and to validate the use of this blocker as therapeutic treatment in Alzheimer patients. |
---|---|
AbstractList | Increase of deposits of amyloid β peptides in the extracellular matrix is landmark during Alzheimer’s Disease (AD) due to the imbalance in the production vs. clearance. This accumulation of amyloid β deposits triggers microglial activation. Microglia plays a dual role in AD, a protective role by clearing the deposits of amyloid β peptides increasing the phagocytic response (
CD163, IGF-1
or
BDNF
) and a cytotoxic role, releasing free radicals (ROS or NO) and proinflammatory cytokines (
TNF-
α,
IL-1
β) in response to reactive gliosis activated by the amyloid β aggregates. Microglia activation correlated with an increase K
V
1.3 channels expression, protein levels and current density. Several studies highlight the importance of K
V
1.3 in the activation of inflammatory response and inhibition of neural progenitor cell proliferation and neuronal differentiation. However, little is known about the pathways of this activation in neural stem cells differentiation and proliferation and the role in amyloid β accumulation. In recent studies using
in vitro
cells derived from mice models, it has been demonstrated that K
V
1.3 blockers inhibit microglia-mediated neurotoxicity in culture reducing the expression and production of the pro-inflammatory cytokines
IL-1
β and
TNF-
α through the NF-kB and p38MAPK pathway. Overall, we conclude that K
V
1.3 blockers change the course of AD development, reducing microglial cytotoxic activation and increasing neural stem cell differentiation. However, further investigations are needed to establish the specific pathway and to validate the use of this blocker as therapeutic treatment in Alzheimer patients. Increase of deposits of amyloid β peptides in the extracellular matrix is landmark during Alzheimer’s Disease (AD) due to the imbalance in the production vs. clearance. This accumulation of amyloid β deposits triggers microglial activation. Microglia plays a dual role in AD, a protective role by clearing the deposits of amyloid β peptides increasing the phagocytic response (CD163, IGF-1 or BDNF) and a cytotoxic role, releasing free radicals (ROS or NO) and proinflammatory cytokines (TNF-α, IL-1β) in response to reactive gliosis activated by the amyloid β aggregates. Microglia activation correlated with an increase KV1.3 channels expression, protein levels and current density. Several studies highlight the importance of KV1.3 in the activation of inflammatory response and inhibition of neural progenitor cell proliferation and neuronal differentiation. However, little is known about the pathways of this activation in neural stem cells differentiation and proliferation and the role in amyloid β accumulation. In recent studies using in vitro cells derived from mice models, it has been demonstrated that KV1.3 blockers inhibit microglia-mediated neurotoxicity in culture reducing the expression and production of the pro-inflammatory cytokines IL-1β and TNF-α through the NF-kB and p38MAPK pathway. Overall, we conclude that KV1.3 blockers change the course of AD development, reducing microglial cytotoxic activation and increasing neural stem cell differentiation. However, further investigations are needed to establish the specific pathway and to validate the use of this blocker as therapeutic treatment in Alzheimer patients. Increase of deposits of amyloid β peptides in the extracellular matrix is landmark during Alzheimer Disease (AD) due to the imbalance in the production vs clearance. This accumulation of amyloid β deposits triggers microglial activation. Microglia plays a dual role in AD, a protective role by clearing the deposits of amyloid β peptides increasing the phagocytic response (CD163, IGF-1 or BDNF) and a cytotoxic role, releasing free radicals (ROS or NO) and proinflammatory cytokines (TNF-α, IL-1β) in response to reactive gliosis activated by the amyloid β aggregates. Microglia activation correlated with an increase KV1.3 channels expression, protein levels and current density. Several studies highlight the importance of KV1.3 in the activation of inflammatory response and inhibition of neural progenitor cell proliferation and neuronal differentiation. However, little is known about the pathways of this activation in neural stem cells differentiation and proliferation and the role in amyloid β accumulation. In recent studies using in vitro cells derived from mice models, it has been demonstrated that KV1.3 blockers inhibit microglia-mediated neurotoxicity in culture reducing the expression and production of the pro-inflammatory cytokines IL-1β and TNF-α through the NF-kB and p38MAPK pathway. Overall, we conclude that KV1.3 blockers change the course of AD development, reducing microglial cytotoxic activation and increasing neural stem cell differentiation. However, further investigations are needed to establish the specific pathway and to validate the use of this blocker as therapeutic treatment in Alzheimer patients. |
Author | Villarroel, Alvaro Revuelta, Miren Casis, Oscar Urrutia, Janire |
AuthorAffiliation | 2 Instituto Biofisika, Consejo Superior de Investigaciones Científicas (CSIC)-University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU) , Leioa , Spain 1 Department of Physiology, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU) , Leioa , Spain 3 Department of Physiology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU) , Vitoria-Gasteiz , Spain |
AuthorAffiliation_xml | – name: 1 Department of Physiology, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU) , Leioa , Spain – name: 3 Department of Physiology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU) , Vitoria-Gasteiz , Spain – name: 2 Instituto Biofisika, Consejo Superior de Investigaciones Científicas (CSIC)-University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU) , Leioa , Spain |
Author_xml | – sequence: 1 givenname: Miren surname: Revuelta fullname: Revuelta, Miren – sequence: 2 givenname: Janire surname: Urrutia fullname: Urrutia, Janire – sequence: 3 givenname: Alvaro surname: Villarroel fullname: Villarroel, Alvaro – sequence: 4 givenname: Oscar surname: Casis fullname: Casis, Oscar |
BookMark | eNpdks1uEzEUhUeoiP7AA7CzxIZNgn9mPDMskEqgENECgsLW8s914uCxgz1TCVY8AztejyfBaSpEWdm69-jT1TnnuDoIMUBVPSR4zljXP7FBg59TTOm8411X0zvVEeGczhqC6cE__8PqOOcNxpzyurtXHbKmYZi0_Kj6eeF0iivv5OwCjJMjGLQM1sthkKOLAclg0FuYkvTo4wgDWoD36IWzFhKE0e1FLqBT_30NboD0-8evXAQZZIan6H3M2SkP6HINSW5hGp1GH2IZRIvefCZzhhZrGQJ49NxH_UUauF_dtdJneHDznlSfzl5eLl7Pzt-9Wi5Oz2e6bvE4U9wCGNYS03S6a1sOWCqplWl6y0BS0jLA0GIGimlrGttCT3slgdum1YSwk2q555ooN2Kb3CDTNxGlE9eDmFZCpnKuB0EwU4rSRhNla6trpaDDXGJsWmMpp4X1bM_aTmoAo4s1xbFb0Nub4NZiFa9Ej8uFGBfA4xtAil8nyKMYXC7pehkgTllQzkndccL7In30n3QTpxSKVUVVcqWsoTsg2atKvDknsH-PIVjs2iOu2yN27RH79rA_tam8yw |
CitedBy_id | crossref_primary_10_3390_molecules27175481 crossref_primary_10_3390_toxins15050340 crossref_primary_10_1016_j_biopha_2024_116651 crossref_primary_10_1080_19336950_2022_2103234 crossref_primary_10_3233_THC_230462 crossref_primary_10_3389_fncel_2023_1130205 crossref_primary_10_3389_fncel_2024_1406709 crossref_primary_10_3390_biomedicines11010120 crossref_primary_10_3390_ijms25020976 crossref_primary_10_1007_s13311_023_01387_z crossref_primary_10_1016_j_pneurobio_2024_102591 |
Cites_doi | 10.1002/acn3.513 10.1016/j.redox.2020.101705 10.1371/journal.pone.0042823 10.3233/JAD-141704 10.1016/j.nrleng.2019.06.008 10.1371/journal.pone.0128463 10.1021/cr078234p 10.1016/j.stem.2018.03.015 10.1016/j.conb.2015.12.004 10.5483/BMBRep.2020.53.1.274 10.3389/fnins.2019.01393 10.1056/NEJMoa1202753 10.1097/WNR.0b013e32835fb6b0 10.1002/glia.22801 10.1007/s00018-015-2082-0 10.1007/s10787-019-00580-x 10.1523/JNEUROSCI.1619-13.2014 10.1523/JNEUROSCI.1146-08.2008 10.1016/S0304-3940(01)01842-0 10.1093/neuonc/not221 10.1172/JCI90606 10.1189/jlb.72.2.233 10.1155/2021/9982954 10.1016/j.tins.2015.08.008 10.1111/acel.13044 10.1002/glia.22967 10.1016/S1474-4422(15)70016-5 10.1186/s40035-020-00221-2 10.1016/j.freeradbiomed.2016.04.200 10.1016/j.xphs.2021.11.003 10.3389/fimmu.2015.00497 10.4049/jimmunol.164.12.6166 10.1016/j.mcn.2006.08.009 10.1007/s13205-022-03123-4 10.1111/j.1471-4159.2006.03967.x 10.1177/0271678X15611434 10.1016/j.jneuroim.2014.08.626 10.1016/j.toxicon.2004.03.025 10.3233/JAD-170819 10.1016/j.stem.2019.05.003 10.1038/307465a0 10.3233/JAD-180766 10.1016/j.expneurol.2020.113399 10.3389/fonc.2019.00933 10.1111/j.1471-4159.2011.07634.x 10.1016/j.tig.2018.02.007 10.1097/NEN.0b013e3182345e46 10.1523/JNEUROSCI.0311-10.2010 10.1186/alzrt187 10.3389/fneur.2018.00549 10.1093/brain/awx346 10.1523/JNEUROSCI.16-08-02659.1996 10.1186/s13024-018-0254-8 10.1517/14728222.2016.1112792 10.1016/j.cell.2010.02.016 10.1093/brain/awv379 10.1186/s13287-021-02399-2 10.1002/glia.22419 10.1016/j.cell.2017.05.018 10.3390/cells10092381 10.1002/glia.23078 10.3390/brainsci11101299 10.1002/med.21800 10.1073/pnas.2013545118 10.1038/nature25975 10.1038/s41419-021-03627-6 10.3389/fncel.2021.683769 10.33594/000000195 10.1016/j.tins.2018.12.007 10.3389/fnagi.2019.00233 10.1523/JNEUROSCI.1251-05.2005 10.3389/fnmol.2021.745066 10.1038/nm1555 10.1016/j.ajpath.2011.07.001 10.1146/annurev-immunol-032414-112212 10.3389/fncel.2015.00426 10.1172/JCI31450 10.1016/j.jalz.2018.07.223 10.3389/fonc.2020.603495 10.1111/nan.12002 10.1007/s10557-021-07264-1 10.1002/glia.22479 10.1016/j.celrep.2019.03.099 10.1172/JCI136174 10.15252/emmm.201606210 10.3389/fncel.2021.765205 10.1016/j.imbio.2011.07.017 10.3389/fimmu.2021.675660 10.1016/j.neuint.2020.104925 10.1126/science.1197623 10.1016/bs.apcsb.2015.10.006 10.3390/antiox9080743 10.1002/glia.23457 10.1083/jcb.201709069 10.2174/092986707780831186 10.3389/fnmol.2016.00089 10.1016/j.stemcr.2020.12.011 10.22365/jpsych.2016.274.264 |
ContentType | Journal Article |
Copyright | 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2022 Revuelta, Urrutia, Villarroel and Casis. 2022 Revuelta, Urrutia, Villarroel and Casis |
Copyright_xml | – notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2022 Revuelta, Urrutia, Villarroel and Casis. 2022 Revuelta, Urrutia, Villarroel and Casis |
DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PIMPY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fncel.2022.868842 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Biological Science Collection ProQuest Science Journals Biological Science Database Publicly Available Content Database (Proquest) (PQ_SDU_P3) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest Biological Science Collection ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1662-5102 |
EndPage | 868842 |
ExternalDocumentID | oai_doaj_org_article_103bb225c1bf4fc4bbe806a00d7df262 10_3389_fncel_2022_868842 |
GrantInformation_xml | – fundername: ; grantid: PID2020-118814RB-I00 |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ACXDI ADBBV ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CITATION CS3 DIK E3Z EMOBN F5P GROUPED_DOAJ GX1 HCIFZ HYE IAO IEA IHR IHW ISR KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 PGMZT PIMPY PQQKQ PROAC RNS RPM TR2 3V. 7XB 88I 8FK CCPQU DWQXO GNUQQ PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c470t-b6feed371d58c8776e0abacbd59f3ea2173e0e703eb3cfd5f7e929bae6f57c113 |
IEDL.DBID | RPM |
ISSN | 1662-5102 |
IngestDate | Tue Oct 22 15:14:50 EDT 2024 Tue Sep 17 21:15:41 EDT 2024 Thu Oct 24 23:40:02 EDT 2024 Thu Oct 10 18:31:24 EDT 2024 Fri Nov 22 00:41:07 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c470t-b6feed371d58c8776e0abacbd59f3ea2173e0e703eb3cfd5f7e929bae6f57c113 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 This article was submitted to Non-Neuronal Cells, a section of the journal Frontiers in Cellular Neuroscience Reviewed by: Marilia Zaluar P. Guimaraes, Federal University of Rio de Janeiro, Brazil Edited by: Pedro M. Pimentel-Coelho, Federal University of Rio de Janeiro, Brazil These authors have contributed equally to this work and share first authorship |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9070300/ |
PMID | 35530176 |
PQID | 2653023520 |
PQPubID | 4424410 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_103bb225c1bf4fc4bbe806a00d7df262 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9070300 proquest_miscellaneous_2661486169 proquest_journals_2653023520 crossref_primary_10_3389_fncel_2022_868842 |
PublicationCentury | 2000 |
PublicationDate | 2022-04-21 |
PublicationDateYYYYMMDD | 2022-04-21 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Frontiers in cellular neuroscience |
PublicationYear | 2022 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Wildsmith (B91) 2013; 5 Heneka (B31) 2015; 14 Gallo (B22) 1996; 16 Dolga (B17) 2012; 60 Liu (B46) 2021; 12 Rather (B71) 2021; 2021 Sarlus (B75) 2017; 127 Jeong (B36) 2014; 276 Wang (B89) 2010; 30 Geribaldi-Doldán (B23) 2021; 10 Keren-Shaul (B40) 2017; 169 Wu (B92) 2021; 12 Le (B43) 2016; 9 Shen (B79) 2001; 305 Parkitny (B61) 2021; 11 Kumar (B41) 2016; 103 Rangaraju (B67) 2018; 13 Chen (B9) 2021; 14 Fordyce (B20) 2005; 25 Verheijen (B88) 2018; 34 Kaur (B39) 2019; 27 Crehan (B13) 2012; 217 Martínez-Mármol (B50) 2016; 73 Olmos-Alonso (B58) 2016; 139 Bi (B4) 2021; 15 Feske (B19) 2015; 33 Rao (B69) 2022; 12 Rasmussen (B70) 2018; 14 Cummings (B14) 2019; 67 Hemonnot (B30) 2019; 11 Richard (B72) 2008; 28 Mawuenyega (B51) 2010; 330 Gubiè (B26) 2021; 41 Styles (B85) 2021; 12 Shigemoto-Mogami (B80) 2014; 34 Griffin (B25) 2002; 72 Yin (B95) 2016; 100 Kamphuis (B38) 2012; 7 Stamouli (B83) 2016; 27 Zhao (B98) 2013; 24 Shaftel (B78) 2007; 117 Simpson (B81) 2020; 9 Hong (B32) 2016; 36 Charolidi (B7) 2015; 10 Nicolazzo (B57) 2022; 111 Yoo (B96) 2020; 53 Rangaraju (B68) 2015; 44 Mills (B52) 2000; 164 Schmidt (B76) 2021; 16 El Khoury (B18) 2007; 13 Pannasch (B59) 2006; 33 Ma (B48) 2020; 332 Sorrells (B82) 2018; 555 Boyd (B6) 2021; 10 Teisseyre (B86) 2019; 9 Huang (B33) 2021; 15 Wulff (B93) 2007; 14 Nguyen (B56) 2017; 65 Zayas-Arrabal (B97) 2021 Crampton (B12) 2012; 120 Liebau (B45) 2006; 99 Maezawa (B49) 2018; 141 Di Lucente (B16) 2018; 66 Montgomery (B54) 2011; 179 Checchetto (B8) 2019; 53 Guillot-Sestier (B28) 2015; 38 Chen (B10) 2016; 36 Izquierdo (B34) 2019; 42 DeCoursey (B15) 1984; 307 Bernhardi (B3) 2015; 9 Moreno-Cugnon (B55) 2019; 18 Ramesha (B66) 2021; 118 Hansen (B29) 2018; 217 Jiang (B37) 2015; 63 Sala Frigerio (B73) 2019; 27 Chen (B11) 2018; 5 Kwon (B42) 2020; 9 Peng (B62) 2014; 16 Stebbing (B84) 2015; 6 Miners (B53) 2011; 70 Glass (B24) 2010; 140 Sarkar (B74) 2020; 130 Guedes (B27) 2018; 9 Luo (B47) 2021; 142 Qin (B65) 2013; 61 Wulff (B94) 2008; 108 Jäger (B35) 2004; 43 Boldrini (B5) 2018; 22 Bateman (B1) 2012; 367 Peruzzo (B64) 2020; 37 Bello-Medina (B2) 2021 Pappalardo (B60) 2016; 64 Tobin (B87) 2019; 24 Forloni (B21) 2018; 62 Lee (B44) 2013; 39 Wang (B90) 2020; 13 Selkoe (B77) 2016; 8 Pérez-Verdaguer (B63) 2016; 20 |
References_xml | – volume: 5 start-page: 147 year: 2018 ident: B11 article-title: Inhibition of the potassium channel Kv1.3 reduces infarction and inflammation in ischemic stroke. publication-title: Ann. Clin. Translat. Neurol. doi: 10.1002/acn3.513 contributor: fullname: Chen – volume: 37 year: 2020 ident: B64 article-title: Insight into the mechanism of cytotoxicity of membrane-permeant psoralenic Kv1.3 channel inhibitors by chemical dissection of a novel member of the family. publication-title: Redox Biol. doi: 10.1016/j.redox.2020.101705 contributor: fullname: Peruzzo – volume: 7 year: 2012 ident: B38 article-title: GFAP Isoforms in Adult Mouse Brain with a Focus on Neurogenic Astrocytes and Reactive Astrogliosis in Mouse Models of Alzheimer Disease. publication-title: PLoS One doi: 10.1371/journal.pone.0042823 contributor: fullname: Kamphuis – volume: 44 start-page: 797 year: 2015 ident: B68 article-title: Potassium Channel Kv1.3 Is Highly Expressed by Microglia in Human Alzheimer’s Disease. publication-title: J. Alzheimer’s Dis. doi: 10.3233/JAD-141704 contributor: fullname: Rangaraju – year: 2021 ident: B2 article-title: Oxidative stress, the immune response, synaptic plasticity, and cognition in transgenic models of Alzheimer disease. publication-title: Neurología doi: 10.1016/j.nrleng.2019.06.008 contributor: fullname: Bello-Medina – volume: 10 year: 2015 ident: B7 article-title: Microglial Kv1.3 Channels and P2Y12 Receptors Differentially Regulate Cytokine and Chemokine Release from Brain Slices of Young Adult and Aged Mice. publication-title: PLoS One doi: 10.1371/journal.pone.0128463 contributor: fullname: Charolidi – volume: 108 start-page: 1744 year: 2008 ident: B94 article-title: K + Channel Modulators for the Treatment of Neurological Disorders and Autoimmune Diseases. publication-title: Chem. Rev. doi: 10.1021/cr078234p contributor: fullname: Wulff – volume: 22 start-page: 589 year: 2018 ident: B5 article-title: Human Hippocampal Neurogenesis Persists throughout Aging. publication-title: Cell Stem Cell doi: 10.1016/j.stem.2018.03.015 contributor: fullname: Boldrini – volume: 36 start-page: 128 year: 2016 ident: B32 article-title: New insights on the role of microglia in synaptic pruning in health and disease. publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2015.12.004 contributor: fullname: Hong – volume: 53 start-page: 35 year: 2020 ident: B96 article-title: Emerging perspectives on mitochondrial dysfunction and inflammation in Alzheimer’s disease. publication-title: BMB Rep. doi: 10.5483/BMBRep.2020.53.1.274 contributor: fullname: Yoo – volume: 13 year: 2020 ident: B90 article-title: Kv1.3 Channel as a Key Therapeutic Target for Neuroinflammatory Diseases: State of the Art and Beyond. publication-title: Front. Neurosci. doi: 10.3389/fnins.2019.01393 contributor: fullname: Wang – volume: 367 start-page: 795 year: 2012 ident: B1 article-title: Clinical and Biomarker Changes in Dominantly Inherited Alzheimer’s Disease. publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1202753 contributor: fullname: Bateman – volume: 24 start-page: 318 year: 2013 ident: B98 article-title: Regulation of TREM2 expression by an NF-êB-sensitive miRNA-34a. publication-title: Neuroreport doi: 10.1097/WNR.0b013e32835fb6b0 contributor: fullname: Zhao – volume: 63 start-page: 1057 year: 2015 ident: B37 article-title: A novel role of microglial NADPH oxidase in mediating extra-synaptic function of norepinephrine in regulating brain immune homeostasis. publication-title: Glia doi: 10.1002/glia.22801 contributor: fullname: Jiang – volume: 73 start-page: 1515 year: 2016 ident: B50 article-title: Unconventional EGF-induced ERK1/2-mediated Kv1.3 endocytosis. publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-015-2082-0 contributor: fullname: Martínez-Mármol – volume: 27 start-page: 663 year: 2019 ident: B39 article-title: Activation of microglia and astrocytes: a roadway to neuroinflammation and Alzheimer’s disease. publication-title: Inflammopharmacology doi: 10.1007/s10787-019-00580-x contributor: fullname: Kaur – volume: 34 start-page: 2231 year: 2014 ident: B80 article-title: Microglia enhance neurogenesis and oligodendrogenesis in the early postnatal subventricular zone. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1619-13.2014 contributor: fullname: Shigemoto-Mogami – volume: 28 start-page: 5784 year: 2008 ident: B72 article-title: Toll-like receptor 2 acts as a natural innate immune receptor to clear amyloid beta 1-42 and delay the cognitive decline in a mouse model of Alzheimer’s disease. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1146-08.2008 contributor: fullname: Richard – volume: 305 start-page: 165 year: 2001 ident: B79 article-title: Complement activation by neurofibrillary tangles in Alzheimer’s disease. publication-title: Neurosci. Lett. doi: 10.1016/S0304-3940(01)01842-0 contributor: fullname: Shen – volume: 16 start-page: 528 year: 2014 ident: B62 article-title: Blockade of Kv1.3 channels ameliorates radiation-induced brain injury. publication-title: Neuro-oncology doi: 10.1093/neuonc/not221 contributor: fullname: Peng – volume: 127 start-page: 3240 year: 2017 ident: B75 article-title: Microglia in Alzheimer’s disease. publication-title: J. Clin. Invest. doi: 10.1172/JCI90606 contributor: fullname: Sarlus – volume: 72 start-page: 233 year: 2002 ident: B25 article-title: Interleukin-1 in the genesis and progression of and risk for development of neuronal degeneration in Alzheimer’s disease. publication-title: J. Leukoc Biol. doi: 10.1189/jlb.72.2.233 contributor: fullname: Griffin – volume: 2021 year: 2021 ident: B71 article-title: Inflammation and Alzheimer’s Disease: Mechanisms and Therapeutic Implications by Natural Products. publication-title: Mediators Inflamm. doi: 10.1155/2021/9982954 contributor: fullname: Rather – volume: 38 start-page: 674 year: 2015 ident: B28 article-title: Innate Immunity Fights Alzheimer’s Disease. publication-title: Trends Neurosci. doi: 10.1016/j.tins.2015.08.008 contributor: fullname: Guillot-Sestier – volume: 18 year: 2019 ident: B55 article-title: Neuronal p38α mediates age-associated neural stem cell exhaustion and cognitive decline. publication-title: Aging Cell doi: 10.1111/acel.13044 contributor: fullname: Moreno-Cugnon – volume: 64 start-page: 1628 year: 2016 ident: B60 article-title: Sodium channels in astroglia and microglia. publication-title: Glia doi: 10.1002/glia.22967 contributor: fullname: Pappalardo – volume: 14 start-page: 388 year: 2015 ident: B31 article-title: Neuroinflammation in Alzheimer’s disease. publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(15)70016-5 contributor: fullname: Heneka – volume: 9 year: 2020 ident: B42 article-title: Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. publication-title: Translat. Neurodegen. doi: 10.1186/s40035-020-00221-2 contributor: fullname: Kwon – volume: 100 start-page: 108 year: 2016 ident: B95 article-title: Energy metabolism and inflammation in brain aging and Alzheimer’s disease. publication-title: Free Radical Biol. Med. doi: 10.1016/j.freeradbiomed.2016.04.200 contributor: fullname: Yin – volume: 111 start-page: 638 year: 2022 ident: B57 article-title: Blockade of Microglial Kv1.3 Potassium Channels by the Peptide HsTX1[R14A] Attenuates Lipopolysaccharide-mediated Neuroinflammation. publication-title: J. Pharm. Sci. doi: 10.1016/j.xphs.2021.11.003 contributor: fullname: Nicolazzo – volume: 6 year: 2015 ident: B84 article-title: The Role of Ion Channels in Microglial Activation and Proliferation - A Complex Interplay between Ligand-Gated Ion Channels, K(+) Channels, and Intracellular Ca(2.). publication-title: Front. Immunol. doi: 10.3389/fimmu.2015.00497 contributor: fullname: Stebbing – volume: 164 start-page: 6166 year: 2000 ident: B52 article-title: 1/M-2 Macrophages and the Th1/Th2 Paradigm. publication-title: J. Immunol. doi: 10.4049/jimmunol.164.12.6166 contributor: fullname: Mills – volume: 33 start-page: 401 year: 2006 ident: B59 article-title: The potassium channels Kv1.5 and Kv1.3 modulate distinct functions of microglia. publication-title: Mol. Cell Neurosci. doi: 10.1016/j.mcn.2006.08.009 contributor: fullname: Pannasch – volume: 12 year: 2022 ident: B69 article-title: Hippocampus and its involvement in Alzheimer’s disease: a review. publication-title: 3 Biotech doi: 10.1007/s13205-022-03123-4 contributor: fullname: Rao – volume: 99 start-page: 426 year: 2006 ident: B45 article-title: Selective blockage of K v 1.3 and K v 3.1 channels increases neural progenitor cell proliferation. publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2006.03967.x contributor: fullname: Liebau – volume: 36 start-page: 2146 year: 2016 ident: B10 article-title: The potassium channel KCa3.1 constitutes a pharmacological target for neuroinflammation associated with ischemia/reperfusion stroke. publication-title: J. Cereb. Blood Flow Metabol. doi: 10.1177/0271678X15611434 contributor: fullname: Chen – volume: 276 start-page: 112 year: 2014 ident: B36 article-title: Intravenous immunoglobulin G improves neurobehavioral and histological outcomes after traumatic brain injury in mice. publication-title: J. Neuroimmunol. doi: 10.1016/j.jneuroim.2014.08.626 contributor: fullname: Jeong – volume: 43 start-page: 951 year: 2004 ident: B35 article-title: Characterization of the outer pore region of the apamin-sensitive Ca2+-activated K+ channel rSK2. publication-title: Toxicon doi: 10.1016/j.toxicon.2004.03.025 contributor: fullname: Jäger – volume: 62 start-page: 1261 year: 2018 ident: B21 article-title: Alzheimer’s Disease, Oligomers, and Inflammation. publication-title: J. Alzheimer’s Dis. doi: 10.3233/JAD-170819 contributor: fullname: Forloni – volume: 24 start-page: 974 year: 2019 ident: B87 article-title: Human Hippocampal Neurogenesis Persists in Aged Adults and Alzheimer’s Disease Patients. publication-title: Cell Stem Cell doi: 10.1016/j.stem.2019.05.003 contributor: fullname: Tobin – volume: 307 start-page: 465 year: 1984 ident: B15 article-title: Voltage-gated K+ channels in human T lymphocytes: a role in mitogenesis? publication-title: Nature doi: 10.1038/307465a0 contributor: fullname: DeCoursey – volume: 67 start-page: 779 year: 2019 ident: B14 article-title: Treatment Combinations for Alzheimer’s Disease: Current and Future Pharmacotherapy Options. publication-title: J. Alzheimer’s Dis. doi: 10.3233/JAD-180766 contributor: fullname: Cummings – volume: 332 year: 2020 ident: B48 article-title: Kv1.3 channel blockade alleviates cerebral ischemia/reperfusion injury by reshaping M1/M2 phenotypes and compromising the activation of NLRP3 inflammasome in microglia. publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2020.113399 contributor: fullname: Ma – volume: 9 year: 2019 ident: B86 article-title: Voltage-Gated Potassium Channel Kv1.3 as a Target in Therapy of Cancer. publication-title: Front. Oncol. doi: 10.3389/fonc.2019.00933 contributor: fullname: Teisseyre – volume: 120 start-page: 964 year: 2012 ident: B12 article-title: Exposure of foetal neural progenitor cells to IL-1β impairs their proliferation and alters their differentiation - a role for maternal inflammation? publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2011.07634.x contributor: fullname: Crampton – volume: 34 start-page: 434 year: 2018 ident: B88 article-title: Understanding Alzheimer Disease at the Interface between Genetics and Transcriptomics. publication-title: Trends Gen. doi: 10.1016/j.tig.2018.02.007 contributor: fullname: Verheijen – volume: 70 start-page: 944 year: 2011 ident: B53 article-title: Aβ-Degrading Enzymes: Potential for Treatment of Alzheimer Disease. publication-title: J. Neuropathol. Exp. Neurol. doi: 10.1097/NEN.0b013e3182345e46 contributor: fullname: Miners – volume: 30 start-page: 5020 year: 2010 ident: B89 article-title: Activated T-Cells Inhibit Neurogenesis by Releasing Granzyme B: Rescue by Kv1.3 Blockers. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0311-10.2010 contributor: fullname: Wang – volume: 5 year: 2013 ident: B91 article-title: Evidence for impaired amyloid β clearance in Alzheimer’s disease. publication-title: Alzheimer’s Res. Ther. doi: 10.1186/alzrt187 contributor: fullname: Wildsmith – volume: 9 year: 2018 ident: B27 article-title: Roles of Microglial and Monocyte Chemokines and Their Receptors in Regulating Alzheimer’s Disease-Associated Amyloid-β and Tau Pathologies. publication-title: Front. Neurol. doi: 10.3389/fneur.2018.00549 contributor: fullname: Guedes – volume: 141 start-page: 596 year: 2018 ident: B49 article-title: Kv1.3 inhibition as a potential microglia-targeted therapy for Alzheimer’s disease: preclinical proof of concept. publication-title: Brain doi: 10.1093/brain/awx346 contributor: fullname: Maezawa – volume: 16 start-page: 2659 year: 1996 ident: B22 article-title: Oligodendrocyte progenitor cell proliferation and lineage progression are regulated by glutamate receptor-mediated K+ channel block. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.16-08-02659.1996 contributor: fullname: Gallo – volume: 13 year: 2018 ident: B67 article-title: Identification and therapeutic modulation of a pro-inflammatory subset of disease-associated-microglia in Alzheimer’s disease. publication-title: Mol. Neurodegen. doi: 10.1186/s13024-018-0254-8 contributor: fullname: Rangaraju – volume: 20 start-page: 577 year: 2016 ident: B63 article-title: The voltage-gated potassium channel Kv1.3 is a promising multitherapeutic target against human pathologies. publication-title: Expert Opin. Ther. Targets doi: 10.1517/14728222.2016.1112792 contributor: fullname: Pérez-Verdaguer – volume: 140 start-page: 918 year: 2010 ident: B24 article-title: Mechanisms Underlying Inflammation in Neurodegeneration. publication-title: Cell doi: 10.1016/j.cell.2010.02.016 contributor: fullname: Glass – volume: 139 start-page: 891 year: 2016 ident: B58 article-title: Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer’s-like pathology. publication-title: Brain doi: 10.1093/brain/awv379 contributor: fullname: Olmos-Alonso – volume: 12 year: 2021 ident: B92 article-title: Photoactivation of TGFβ/SMAD signaling pathway ameliorates adult hippocampal neurogenesis in Alzheimer’s disease model. publication-title: Stem Cell Res. Ther. doi: 10.1186/s13287-021-02399-2 contributor: fullname: Wu – volume: 60 start-page: 2050 year: 2012 ident: B17 article-title: Activation of KCNN3/SK3/K(Ca)2.3 channels attenuates enhanced calcium influx and inflammatory cytokine production in activated microglia. publication-title: Glia doi: 10.1002/glia.22419 contributor: fullname: Dolga – volume: 169 start-page: 1276 year: 2017 ident: B40 article-title: A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease. publication-title: Cell doi: 10.1016/j.cell.2017.05.018 contributor: fullname: Keren-Shaul – volume: 10 year: 2021 ident: B6 article-title: Control of Neuroinflammation through Radiation-Induced Microglial Changes. publication-title: Cells doi: 10.3390/cells10092381 contributor: fullname: Boyd – volume: 65 start-page: 106 year: 2017 ident: B56 article-title: Differential Kv1.3, KCa3.1, and Kir2.1 expression in “classically” and “alternatively” activated microglia. publication-title: Glia doi: 10.1002/glia.23078 contributor: fullname: Nguyen – volume: 11 year: 2021 ident: B61 article-title: Glial PAMPering and DAMPening of Adult Hippocampal Neurogenesis. publication-title: Brain Sci. doi: 10.3390/brainsci11101299 contributor: fullname: Parkitny – volume: 41 start-page: 2423 year: 2021 ident: B26 article-title: Discovery of KV 1.3 ion channel inhibitors: medicinal chemistry approaches and challenges. publication-title: Med. Res. Rev. doi: 10.1002/med.21800 contributor: fullname: Gubiè – volume: 118 year: 2021 ident: B66 article-title: Unique molecular characteristics and microglial origin of Kv1.3 channel-positive brain myeloid cells in Alzheimer’s disease. publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.2013545118 contributor: fullname: Ramesha – volume: 555 start-page: 377 year: 2018 ident: B82 article-title: Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. publication-title: Nature doi: 10.1038/nature25975 contributor: fullname: Sorrells – volume: 12 year: 2021 ident: B85 article-title: Kv1.3 voltage-gated potassium channels link cellular respiration to proliferation through a non-conducting mechanism. publication-title: Cell Death Dis. doi: 10.1038/s41419-021-03627-6 contributor: fullname: Styles – volume: 15 year: 2021 ident: B33 article-title: BK Channel-Mediated Microglial Phagocytosis Alleviates Neurological Deficit After Ischemic Stroke. publication-title: Front. Cell Neurosci. doi: 10.3389/fncel.2021.683769 contributor: fullname: Huang – volume: 53 start-page: 52 year: 2019 ident: B8 article-title: Mitochondrial Kv1.3: a New Target in Cancer Biology? publication-title: Cell Physiol. Biochem. doi: 10.33594/000000195 contributor: fullname: Checchetto – volume: 42 start-page: 278 year: 2019 ident: B34 article-title: Ion Channels and Receptors as Determinants of Microglial Function. publication-title: Trends Neurosci. doi: 10.1016/j.tins.2018.12.007 contributor: fullname: Izquierdo – volume: 11 year: 2019 ident: B30 article-title: Microglia in Alzheimer Disease: Well-Known Targets and New Opportunities. publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2019.00233 contributor: fullname: Hemonnot – volume: 25 start-page: 7139 year: 2005 ident: B20 article-title: Microglia Kv1.3 Channels Contribute to Their Ability to Kill Neurons. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1251-05.2005 contributor: fullname: Fordyce – volume: 14 year: 2021 ident: B9 article-title: Long Non-coding RNAs and Circular RNAs: Insights Into Microglia and Astrocyte Mediated Neurological Diseases. publication-title: Front. Mol. Neurosci. doi: 10.3389/fnmol.2021.745066 contributor: fullname: Chen – volume: 13 start-page: 432 year: 2007 ident: B18 article-title: Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. publication-title: Nat. Med. doi: 10.1038/nm1555 contributor: fullname: El Khoury – volume: 179 start-page: 2053 year: 2011 ident: B54 article-title: Ablation of TNF-RI/RII Expression in Alzheimer’s Disease Mice Leads to an Unexpected Enhancement of Pathology. publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2011.07.001 contributor: fullname: Montgomery – volume: 33 start-page: 291 year: 2015 ident: B19 article-title: Ion Channels in Innate and Adaptive Immunity. publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-032414-112212 contributor: fullname: Feske – volume: 9 year: 2015 ident: B3 article-title: Role of TGFβ signaling in the pathogenesis of Alzheimer’s disease. publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2015.00426 contributor: fullname: Bernhardi – volume: 117 start-page: 1595 year: 2007 ident: B78 article-title: Sustained hippocampal IL-1 beta overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology. publication-title: J. Clin. Invest. doi: 10.1172/JCI31450 contributor: fullname: Shaftel – volume: 14 start-page: 1589 year: 2018 ident: B70 article-title: An updated Alzheimer hypothesis: complement C3 and risk of Alzheimer‘s disease—A cohort study of 95,442 individuals. publication-title: Alzheimer’s & Dementia doi: 10.1016/j.jalz.2018.07.223 contributor: fullname: Rasmussen – volume: 10 year: 2021 ident: B23 article-title: The Role of Microglia in Glioblastoma. publication-title: Front. Oncol. doi: 10.3389/fonc.2020.603495 contributor: fullname: Geribaldi-Doldán – volume: 39 start-page: 69 year: 2013 ident: B44 article-title: Review: experimental manipulations of microglia in mouse models of Alzheimer’s pathology: activation reduces amyloid but hastens tau pathology. publication-title: Neuropathol. Appl. Neurobiol. doi: 10.1111/nan.12002 contributor: fullname: Lee – year: 2021 ident: B97 article-title: Kv1.3 Channel Blockade Improves Inflammatory Profile, Reduces Cardiac Electrical Remodeling, and Prevents Arrhythmia in Type 2 Diabetic Rats. publication-title: Cardiovascul. Drugs Ther. doi: 10.1007/s10557-021-07264-1 contributor: fullname: Zayas-Arrabal – volume: 61 start-page: 855 year: 2013 ident: B65 article-title: NADPH oxidase and aging drive microglial activation, oxidative stress, and dopaminergic neurodegeneration following systemic LPS administration. publication-title: Glia doi: 10.1002/glia.22479 contributor: fullname: Qin – volume: 27 start-page: 1293 year: 2019 ident: B73 article-title: The Major Risk Factors for Alzheimer’s Disease: Age, Sex, and Genes Modulate the Microglia Response to Abeta Plaques. publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.03.099 contributor: fullname: Sala Frigerio – volume: 130 start-page: 4195 year: 2020 ident: B74 article-title: Kv1.3 modulates neuroinflammation and neurodegeneration in Parkinson’s disease. publication-title: J. Clin. Invest. doi: 10.1172/JCI136174 contributor: fullname: Sarkar – volume: 8 start-page: 595 year: 2016 ident: B77 article-title: The amyloid hypothesis of Alzheimer’s disease at 25 years. publication-title: EMBO Mol. Med. doi: 10.15252/emmm.201606210 contributor: fullname: Selkoe – volume: 15 year: 2021 ident: B4 article-title: Microglia Phenotype and Intracerebral Hemorrhage: A Balance of Yin and Yang. publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2021.765205 contributor: fullname: Bi – volume: 217 start-page: 244 year: 2012 ident: B13 article-title: Complement receptor 1 (CR1) and Alzheimer’s disease. publication-title: Immunobiology doi: 10.1016/j.imbio.2011.07.017 contributor: fullname: Crehan – volume: 12 year: 2021 ident: B46 article-title: Microglia: A Double-Edged Sword in Intracerebral Hemorrhage From Basic Mechanisms to Clinical Research. publication-title: Front. Immunol. doi: 10.3389/fimmu.2021.675660 contributor: fullname: Liu – volume: 142 year: 2021 ident: B47 article-title: Ion channels and transporters in microglial function in physiology and brain diseases. publication-title: Neurochem. Int. doi: 10.1016/j.neuint.2020.104925 contributor: fullname: Luo – volume: 330 year: 2010 ident: B51 article-title: Decreased Clearance of CNS β-Amyloid in Alzheimer’s Disease. publication-title: Science doi: 10.1126/science.1197623 contributor: fullname: Mawuenyega – volume: 103 start-page: 97 year: 2016 ident: B41 article-title: Ion Channels in Neurological Disorders. publication-title: Adv. Protein Chem. Struct. Biol. doi: 10.1016/bs.apcsb.2015.10.006 contributor: fullname: Kumar – volume: 9 year: 2020 ident: B81 article-title: ROS Generation in Microglia: Understanding Oxidative Stress and Inflammation in Neurodegenerative Disease. publication-title: Antioxidants doi: 10.3390/antiox9080743 contributor: fullname: Simpson – volume: 66 start-page: 1881 year: 2018 ident: B16 article-title: The voltage-gated potassium channel Kv1.3 is required for microglial pro-inflammatory activation in vivo. publication-title: Glia doi: 10.1002/glia.23457 contributor: fullname: Di Lucente – volume: 217 start-page: 459 year: 2018 ident: B29 article-title: Microglia in Alzheimer’s disease. publication-title: J. Cell Biol. doi: 10.1083/jcb.201709069 contributor: fullname: Hansen – volume: 14 start-page: 1437 year: 2007 ident: B93 article-title: Modulators of Small- and Intermediate-Conductance Calcium-Activated Potassium Channels and their Therapeutic Indications. publication-title: Curr. Med. Chem. doi: 10.2174/092986707780831186 contributor: fullname: Wulff – volume: 9 year: 2016 ident: B43 article-title: Protective Microglia and Their Regulation in Parkinson’s Disease. publication-title: Front. Mol. Neurosci. doi: 10.3389/fnmol.2016.00089 contributor: fullname: Le – volume: 16 start-page: 281 year: 2021 ident: B76 article-title: Microglia-Secreted Factors Enhance Dopaminergic Differentiation of Tissue- and iPSC-Derived Human Neural Stem Cells. publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2020.12.011 contributor: fullname: Schmidt – volume: 27 start-page: 264 year: 2016 ident: B83 article-title: Pro-inflammatory cytokines in Alzheimer’s disease. publication-title: Psychiatriki doi: 10.22365/jpsych.2016.274.264 contributor: fullname: Stamouli |
SSID | ssj0062648 |
Score | 2.4142551 |
SecondaryResourceType | review_article |
Snippet | Increase of deposits of amyloid β peptides in the extracellular matrix is landmark during Alzheimer’s Disease (AD) due to the imbalance in the production vs.... Increase of deposits of amyloid β peptides in the extracellular matrix is landmark during Alzheimer Disease (AD) due to the imbalance in the production vs... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database |
StartPage | 868842 |
SubjectTerms | Alzheimer's disease Animal models Brain Brain-derived neurotrophic factor CD163 antigen Cell activation Cell culture Cell differentiation Cell division Cell proliferation Chemokines Cytokines Cytotoxicity Extracellular matrix Free radicals Genotype & phenotype Gliosis Homeostasis IL-1β Inflammation Insulin-like growth factor I Kinases KV1.3 Microglia neural stem cell (NSC) Neural stem cells neurodegenaration Neurodegenerative diseases Neuroscience Neurotoxicity NF-κB protein Nitric oxide Peptides Phagocytes Potassium channels (voltage-gated) Proteins Stem cell transplantation Tumor necrosis factor-TNF Tumor necrosis factor-α |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagB8QF8RRpCzISJ6QUO4nthFufKkKLEC2IW-THmK5IE9TdvXDqb-iNv8cvYSbJLuTEhWvsRM68R-P5hrGXPgQlQiFTjxltiiG1SJ10RaqqjEbleKciNSefnpn3X8qjY4LJ2Yz6ojthAzzwQDjU6tw5FDovXSyiL5yDUmgrRDAhZqP1FXqdTA02WNO9raGGiSlY9ToiAanOkGV7pS7LIpt4oR6sfxJhTu9H_uVwTu6ze2OkyPeHEz5gt6B9yO7Mxlr4I3Yzo7t0X5u5TWf9vA0I_G0bkcNDNyK3beCEvYEfOVvCJT-EpuFH40CU5cASPm_5fvPjAuaXcPXr-ucCN_QVmzf8Q0fq0gA__9OixT92-KCL_N1nuZdzak1ooeEH6BG_2QCP2aeT4_PD03ScsJD6wohl6nREH5kbGVTpS2M0COusd0FVMQeL6UoOAtAoYMrtY1DRAIZTzoKOyngp8ydsq-1aeMq4rUwlHeRB-YygRR1IfKkqHEakvrAmYa_WFK-_D0AaNSYgxJ66Z09N7KkH9iTsgHiy2UgY2P0DlIx6lIz6X5KRsN01R-tRMRd1pvsxSSoTCXuxWUaVojqJbaFb0R5CR9VSVwkzE0mYHGi60s4venDuqrehYvt__MEOu0tEoeJVJnfZ1vJqBc_Y7UVYPe_F_TcBQwrR priority: 102 providerName: Directory of Open Access Journals |
Title | Microglia-Mediated Inflammation and Neural Stem Cell Differentiation in Alzheimer’s Disease: Possible Therapeutic Role of KV1.3 Channel Blockade |
URI | https://www.proquest.com/docview/2653023520 https://search.proquest.com/docview/2661486169 https://pubmed.ncbi.nlm.nih.gov/PMC9070300 https://doaj.org/article/103bb225c1bf4fc4bbe806a00d7df262 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9RADB6xPSAuiKdYKNUgcULKbiavSbi121ZFaFFFC-IWzcPTRmSTah8XTvwGbvw9fgn2JCnNlWvmoZHtGdux_Zmxt8baNLSJCAx6tAGa1GGghU6CtIioVY7RqaPi5LML-elbfnxCMDnpUAvjk_aNrmZNvZo11bXPrbxZmfmQJzY_Xy4KL6fhfMImaBsOLnr3_GaUstWFL9H7KuYOaUchhiia5VmeJ9S-JqZeOYJgRu7oIg_ZP7Izx1mSd9TO6SP2sLcX-WF3rsfsHjRP2P1lHxF_yn4tKaPuqq5UsPRdN8DyD41DPnc1iVw1lhMCB25ysYUVX0Bd8-O-Lcq2YwyvGn5Y_7iGagXrPz9_b3CCj9u85-ctXZoa-OW_Qi3-ucUPreMfv4pZzKlAoYGaH6Fe_K4sPGNfTk8uF2dB32chMIkMt4HOHGrKWAqb5iaXMoNQaWW0TQsXg0KnJYYQkOToeBtnUycBjSqtIHOpNELEz9le0zbwgnFVyEJoiG1qIgIY1SBwUZFotEtNouSUvRsoXt50cBoluiHEqdJzqiROlR2npuyIeHI7kZCw_Yd2fVX28oCrY63xUTJCu8SZRGvIw0yFoZXWRRlusj9wtOyv56aMMt8sKY3CKXtzO4wXi6IlqoF2R3MIIzUTWTFlciQJowONR1BiPUR3L6Ev_3vlK_aAKEFxq0jss73tegev2WRjdwf-t8GBF_q_FmALiA |
link.rule.ids | 230,315,729,782,786,866,887,2106,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZokYAL74qFAkbihJRdOy8n3Nptq63arSq6IG6Rn21ENqn2ceHEb-DG3-OXMOMkpXvtNX7I8TdjezQz3xDyURuTMBPzQINFG8CTmgWKqzhI8hBL5WiVOExOnlyIs-_ZwSHS5CR9LowP2teqHNbVfFiXVz628nquR32c2Oh8Os69nLLRFrkP-spYb6S3B3CKQVutAxPsr3zkYPfQyRCGwyzNshgL2ERYLYcj0cit28iT9m-8NDfjJG9dPEdP7rjkp-Rx99Kke23zM3LP1s_Jg2nnS39Bfk8xFu-yKmUw9fU6rKHHtQMJabMZqawNRe4OmORiZed0bKuKHnQFVVYtpLSs6V7188qWc7v4--vPEjp4j89net6gulWWzv6neNEvDXxoHD35xocRxdSG2lZ0H27UH9LYl-Tr0eFsPAm6Cg2BjgVbBSp1cMdGgpsk05kQqWVSSa1MkrvISjB3Isss_DmY7NqZxAkLzzElbeoSoTmPdsh23dT2FaEyFzlXNjKJDpGaVFkOg_JYAb46lmJAPvVIFdctEUcBBgwiXHiEC0S4aBEekH3E8qYjcmj7D83isuhggdGRUnCcaa5c7HSslM1YKhkzwrgwhUl2e0koOsVeFmHqyywlIRuQDzfNoJLoZ5G1bdbYB9lVU57mAyI2JGhjQZstIDie3LsTlNd3HvmePJzMpqfF6fHZyRvyCHcFvV8h3yXbq8XaviVbS7N-51XmHykAIA4 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF7RIlVceCMCBRaJE5KTXb_W5tYmjVqVVBEtiJu1z9bCsaM8Lpz4Ddz4e_wSZtZOaK5w9T603pnZmdHMfEPIO21MwkzMAw0ebQAmNQsUV3GQ5CG2ytEqcVicfHopLr5moxOEydm2-vJJ-1qV_bqa9evyxudWzmd6sMkTG0wnw9zzKRvMjRvskbsgsyzcOOrtI5xi4lYbxAQfLB84uEEMNIRhP0uzLMYmNhF2zOEINnJLI3ng_h1rczdX8pbyGT_4j2M_JPc7i5MetVMekTu2fkwOJl1M_Qn5OcGcvOuqlMHE9-2whp7VDjilrWqksjYUMTxgk8uVndGhrSo66hqrrFrS0rKmR9X3G1vO7OL3j19LmOAjPx_otEGxqyy9-lvqRT818KFx9PwL70cUSxxqW9Fj0KzfpLFPyefxydXwNOg6NQQ6FmwVqNSBro0EN0mmMyFSy6SSWpkkd5GV4PZElln4e3DdtTOJExbMMiVt6hKhOY-ekf26qe1zQmUucq5sZBIdIkSpshwW5bECy1bHUvTI-w21inkLyFGAI4NULjyVC6Ry0VK5R46RntuJiKXtPzSL66IjDayOlIJnTXPlYqdjpWzGUsmYEcaFKWxyuOGGohPwZRGmvt1SErIeebsdBtHEeIusbbPGOYiymvI07xGxw0U7B9odAebxIN8ds7z455VvyMF0NC4-nl2cvyT38FIwCBbyQ7K_WqztK7K3NOvXXmr-AAv7Io4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microglia-Mediated+Inflammation+and+Neural+Stem+Cell+Differentiation+in+Alzheimer%27s+Disease%3A+Possible+Therapeutic+Role+of+KV1.3+Channel+Blockade&rft.jtitle=Frontiers+in+cellular+neuroscience&rft.au=Revuelta%2C+Miren&rft.au=Urrutia%2C+Janire&rft.au=Villarroel%2C+Alvaro&rft.au=Casis%2C+Oscar&rft.date=2022-04-21&rft.issn=1662-5102&rft.eissn=1662-5102&rft.volume=16&rft.spage=868842&rft.epage=868842&rft_id=info:doi/10.3389%2Ffncel.2022.868842&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5102&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5102&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5102&client=summon |