Experimental demonstration of a laser proton accelerator with accurate beam control through image-relaying transport
A compact laser plasma accelerator (CLAPA) that can stably produce and transport proton ions with different energies less than 10 MeV,<1%energy spread, several to tens of pC charge, is demonstrated. The high current proton beam with continuous energy spectrum and a large divergence angle is gener...
Saved in:
Published in: | Physical review. Accelerators and beams Vol. 22; no. 6; p. 061302 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
College Park
American Physical Society
01-06-2019
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | A compact laser plasma accelerator (CLAPA) that can stably produce and transport proton ions with different energies less than 10 MeV,<1%energy spread, several to tens of pC charge, is demonstrated. The high current proton beam with continuous energy spectrum and a large divergence angle is generated by using a high contrast laser and micron thickness targets, which later is collected, analyzed and refocused by an image-relaying beam line using a combination of quadrupole and bending electromagnets. It eliminates the inherent defects of the laser-driven beams, realizes precise manipulation of the proton beams with reliability, availability, maintainability and inspectability (RAMI), and takes the first step towards applications of this new generation of accelerator. With the development of high-rep rate Petawatt (PW) laser technology, we can now envision a new generation of accelerator for many applications in the near future soon. |
---|---|
AbstractList | A compact laser plasma accelerator (CLAPA) that can stably produce and transport proton ions with different energies less than 10 MeV, <1% energy spread, several to tens of pC charge, is demonstrated. The high current proton beam with continuous energy spectrum and a large divergence angle is generated by using a high contrast laser and micron thickness targets, which later is collected, analyzed and refocused by an image-relaying beam line using a combination of quadrupole and bending electromagnets. It eliminates the inherent defects of the laser-driven beams, realizes precise manipulation of the proton beams with reliability, availability, maintainability and inspectability (RAMI), and takes the first step towards applications of this new generation of accelerator. With the development of high-rep rate Petawatt (PW) laser technology, we can now envision a new generation of accelerator for many applications in the near future soon. A compact laser plasma accelerator (CLAPA) that can stably produce and transport proton ions with different energies less than 10 MeV,<1%energy spread, several to tens of pC charge, is demonstrated. The high current proton beam with continuous energy spectrum and a large divergence angle is generated by using a high contrast laser and micron thickness targets, which later is collected, analyzed and refocused by an image-relaying beam line using a combination of quadrupole and bending electromagnets. It eliminates the inherent defects of the laser-driven beams, realizes precise manipulation of the proton beams with reliability, availability, maintainability and inspectability (RAMI), and takes the first step towards applications of this new generation of accelerator. With the development of high-rep rate Petawatt (PW) laser technology, we can now envision a new generation of accelerator for many applications in the near future soon. |
ArticleNumber | 061302 |
Author | Liao, Q. Zhu, J. G. Ma, W. J. Li, D. Y. Wang, D. H. Wang, J. J. Xu, X. H. Li, C. C. Zhu, K. Lu, H. Y. Shou, Y. R. Tajima, T. He, X. T. Zhao, Y. Y. Yang, T. Geng, Y. X. Wang, P. J. Wu, M. J. Chen, C. E. Lin, C. Yan, X. Q. |
Author_xml | – sequence: 1 givenname: J. G. orcidid: 0000-0003-3899-2060 surname: Zhu fullname: Zhu, J. G. – sequence: 2 givenname: M. J. surname: Wu fullname: Wu, M. J. – sequence: 3 givenname: Q. surname: Liao fullname: Liao, Q. – sequence: 4 givenname: Y. X. surname: Geng fullname: Geng, Y. X. – sequence: 5 givenname: K. surname: Zhu fullname: Zhu, K. – sequence: 6 givenname: C. C. surname: Li fullname: Li, C. C. – sequence: 7 givenname: X. H. surname: Xu fullname: Xu, X. H. – sequence: 8 givenname: D. Y. surname: Li fullname: Li, D. Y. – sequence: 9 givenname: Y. R. surname: Shou fullname: Shou, Y. R. – sequence: 10 givenname: T. surname: Yang fullname: Yang, T. – sequence: 11 givenname: P. J. surname: Wang fullname: Wang, P. J. – sequence: 12 givenname: D. H. surname: Wang fullname: Wang, D. H. – sequence: 13 givenname: J. J. surname: Wang fullname: Wang, J. J. – sequence: 14 givenname: C. E. surname: Chen fullname: Chen, C. E. – sequence: 15 givenname: X. T. surname: He fullname: He, X. T. – sequence: 16 givenname: Y. Y. surname: Zhao fullname: Zhao, Y. Y. – sequence: 17 givenname: W. J. surname: Ma fullname: Ma, W. J. – sequence: 18 givenname: H. Y. surname: Lu fullname: Lu, H. Y. – sequence: 19 givenname: T. surname: Tajima fullname: Tajima, T. – sequence: 20 givenname: C. surname: Lin fullname: Lin, C. – sequence: 21 givenname: X. Q. surname: Yan fullname: Yan, X. Q. |
BookMark | eNplUV1rFDEUDVLBWvsfAn2eNZlMJgk-1VK1UKiIPoebzM3uLLPJmmTV_fdmXRGhL_fj3Mu5H-c1uYgpIiE3nK04Z-Lt582xfMEft97j8h5hV1Z9v2IjF6x_QS77YTSd0Vpf_Be_ItelbBljfGRGMX1J6v2vPeZ5h7HCQifcpVhqhjqnSFOgQBcomOk-p9oQOM3CVk6Z_pzr5gQcWorUtQWoT7HmtNC6yemw3tB5B2vsMi5wnOOaNt5Y9inXN-RlgKXg9V9_Rb59uP9696l7fPr4cHf72PlBsdopJtA3o0yQY1BCBRkGzrVDrTRqPkzTMHohQbhJjMIJZpgLoMHxIKZgxBV5OPNOCbZ2386EfLQJZvsHSHltIdfZL2idMwE1Y2oc1eA4aKm9FyAm1xsWDDaumzNXe8X3A5Zqt-mQY1vf9lJyqaQcdet6d-7yOZWSMfybypk9qWafqWb73p5VE78BZXKUpg |
CitedBy_id | crossref_primary_10_7498_aps_70_20202115 crossref_primary_10_1360_TB_2022_0380 crossref_primary_10_7498_aps_71_20220599 crossref_primary_10_1103_PhysRevAccelBeams_23_121304 crossref_primary_10_1016_j_nima_2022_167196 crossref_primary_10_1017_hpl_2023_50 crossref_primary_10_1063_5_0135323 crossref_primary_10_1103_PhysRevAccelBeams_27_052801 crossref_primary_10_1360_TB_2022_1099 crossref_primary_10_1007_s41365_023_01324_x crossref_primary_10_1103_PhysRevAccelBeams_24_031301 crossref_primary_10_1088_1674_1056_abfc3c crossref_primary_10_1103_PhysRevAccelBeams_23_031302 crossref_primary_10_1038_s41598_020_65775_7 crossref_primary_10_1016_j_rinp_2021_104779 crossref_primary_10_1063_5_0039364 crossref_primary_10_1088_1361_6560_acf025 crossref_primary_10_1088_1674_1056_acf493 crossref_primary_10_1103_PhysRevAccelBeams_26_114601 crossref_primary_10_1103_PhysRevAccelBeams_27_041303 crossref_primary_10_1088_1674_1056_ac3735 crossref_primary_10_1007_s41614_020_0043_z crossref_primary_10_1088_1741_4326_ac8ca0 crossref_primary_10_3389_fphy_2021_624963 crossref_primary_10_1016_j_nima_2019_163249 crossref_primary_10_1038_s41598_020_77086_y crossref_primary_10_1155_2022_4286598 crossref_primary_10_1088_1748_0221_17_06_T06001 crossref_primary_10_1063_5_0062601 crossref_primary_10_1360_TB_2022_1042 crossref_primary_10_1103_PhysRevAccelBeams_23_111302 crossref_primary_10_3390_photonics10020132 crossref_primary_10_1017_hpl_2021_54 crossref_primary_10_1016_j_nima_2024_169488 crossref_primary_10_1360_SSPMA_2022_0433 |
Cites_doi | 10.1103/PhysRevAccelBeams.19.124802 10.1088/1367-2630/10/3/033034 10.1103/PhysRevLett.101.055004 10.1088/1674-1137/41/9/097001 10.1103/PhysRevLett.92.175003 10.1016/j.mre.2017.09.002 10.1126/science.1124412 10.1103/PhysRevSTAB.14.031304 10.1103/PhysRevLett.106.014801 10.1038/nphys2130 10.1038/s41467-018-03063-9 10.1103/PhysRevLett.94.165003 10.1103/PhysRevLett.116.205002 10.1103/RevModPhys.85.751 10.1063/1.4958654 10.1103/PhysRevAccelBeams.20.032801 10.1103/PhysRevLett.91.125004 10.1103/PhysRevSTAB.16.041302 10.1088/1361-6560/aa7124 10.1038/nature04492 10.1103/PhysRevLett.107.045003 10.1103/PhysRevLett.109.185006 10.1063/1.3078291 10.1038/nature04400 10.1103/PhysRevLett.100.135003 10.1016/j.nima.2018.02.066 10.1016/S0168-583X(01)00771-6 10.1103/PhysRevLett.86.436 10.1016/j.mre.2017.07.001 10.1063/1.3299391 10.1016/j.nima.2018.02.026 10.1038/nphoton.2013.75 10.1088/1748-0221/11/07/T07005 10.1038/srep12459 10.1016/j.nima.2016.01.064 10.1134/S1054660X06040165 10.1103/PhysRevLett.43.267 10.1126/science.1152640 10.1038/nphys199 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PIMPY PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.1103/PhysRevAccelBeams.22.061302 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest One Academic |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2469-9888 |
ExternalDocumentID | oai_doaj_org_article_bb9fe80076674b1a858cc3a3db290f9e 10_1103_PhysRevAccelBeams_22_061302 |
GroupedDBID | 3MX 5VS AAYXX ADBBV AFGMR AFKRA AGDNE ALMA_UNASSIGNED_HOLDINGS ARAPS AUAIK BCNDV BENPR BGLVJ CCPQU CITATION EBS EJD GROUPED_DOAJ HCIFZ KQ8 M~E OK1 PIMPY ROL S7W 8FE 8FG ABUWG AZQEC DWQXO P62 PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c470t-703ec70379f56f737f5f4118be878e814dd46c35a3bd363b3090bfa8ab1f3df93 |
IEDL.DBID | DOA |
ISSN | 2469-9888 |
IngestDate | Tue Oct 22 15:14:35 EDT 2024 Thu Oct 10 18:00:05 EDT 2024 Fri Aug 23 03:43:42 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c470t-703ec70379f56f737f5f4118be878e814dd46c35a3bd363b3090bfa8ab1f3df93 |
ORCID | 0000-0003-3899-2060 |
OpenAccessLink | https://doaj.org/article/bb9fe80076674b1a858cc3a3db290f9e |
PQID | 2551575568 |
PQPubID | 5161129 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bb9fe80076674b1a858cc3a3db290f9e proquest_journals_2551575568 crossref_primary_10_1103_PhysRevAccelBeams_22_061302 |
PublicationCentury | 2000 |
PublicationDate | 20190601 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 20190601 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | College Park |
PublicationPlace_xml | – name: College Park |
PublicationTitle | Physical review. Accelerators and beams |
PublicationYear | 2019 |
Publisher | American Physical Society |
Publisher_xml | – name: American Physical Society |
References | PhysRevAccelBeams.22.061302Cc13R1 PhysRevAccelBeams.22.061302Cc14R1 PhysRevAccelBeams.22.061302Cc36R1 PhysRevAccelBeams.22.061302Cc35R1 PhysRevAccelBeams.22.061302Cc16R1 PhysRevAccelBeams.22.061302Cc38R1 PhysRevAccelBeams.22.061302Cc15R1 PhysRevAccelBeams.22.061302Cc37R1 PhysRevAccelBeams.22.061302Cc18R1 PhysRevAccelBeams.22.061302Cc17R1 PhysRevAccelBeams.22.061302Cc39R1 PhysRevAccelBeams.22.061302Cc19R1 PhysRevAccelBeams.22.061302Cc30R1 PhysRevAccelBeams.22.061302Cc32R1 PhysRevAccelBeams.22.061302Cc10R1 PhysRevAccelBeams.22.061302Cc31R1 PhysRevAccelBeams.22.061302Cc11R1 PhysRevAccelBeams.22.061302Cc34R1 PhysRevAccelBeams.22.061302Cc12R1 PhysRevAccelBeams.22.061302Cc33R1 PhysRevAccelBeams.22.061302Cc8R1 PhysRevAccelBeams.22.061302Cc9R1 PhysRevAccelBeams.22.061302Cc4R1 PhysRevAccelBeams.22.061302Cc25R1 PhysRevAccelBeams.22.061302Cc5R1 PhysRevAccelBeams.22.061302Cc24R1 PhysRevAccelBeams.22.061302Cc6R1 PhysRevAccelBeams.22.061302Cc27R1 PhysRevAccelBeams.22.061302Cc7R1 PhysRevAccelBeams.22.061302Cc26R1 PhysRevAccelBeams.22.061302Cc29R1 PhysRevAccelBeams.22.061302Cc1R1 PhysRevAccelBeams.22.061302Cc28R1 PhysRevAccelBeams.22.061302Cc2R1 PhysRevAccelBeams.22.061302Cc3R1 PhysRevAccelBeams.22.061302Cc21R1 PhysRevAccelBeams.22.061302Cc20R1 PhysRevAccelBeams.22.061302Cc23R1 PhysRevAccelBeams.22.061302Cc22R1 |
References_xml | – ident: PhysRevAccelBeams.22.061302Cc20R1 doi: 10.1103/PhysRevAccelBeams.19.124802 – ident: PhysRevAccelBeams.22.061302Cc22R1 doi: 10.1088/1367-2630/10/3/033034 – ident: PhysRevAccelBeams.22.061302Cc26R1 doi: 10.1103/PhysRevLett.101.055004 – ident: PhysRevAccelBeams.22.061302Cc38R1 doi: 10.1088/1674-1137/41/9/097001 – ident: PhysRevAccelBeams.22.061302Cc9R1 doi: 10.1103/PhysRevLett.92.175003 – ident: PhysRevAccelBeams.22.061302Cc12R1 doi: 10.1016/j.mre.2017.09.002 – ident: PhysRevAccelBeams.22.061302Cc31R1 doi: 10.1126/science.1124412 – ident: PhysRevAccelBeams.22.061302Cc28R1 doi: 10.1103/PhysRevSTAB.14.031304 – ident: PhysRevAccelBeams.22.061302Cc23R1 doi: 10.1103/PhysRevLett.106.014801 – ident: PhysRevAccelBeams.22.061302Cc24R1 doi: 10.1038/nphys2130 – ident: PhysRevAccelBeams.22.061302Cc19R1 doi: 10.1038/s41467-018-03063-9 – ident: PhysRevAccelBeams.22.061302Cc10R1 doi: 10.1103/PhysRevLett.94.165003 – ident: PhysRevAccelBeams.22.061302Cc17R1 doi: 10.1103/PhysRevLett.116.205002 – ident: PhysRevAccelBeams.22.061302Cc11R1 doi: 10.1103/RevModPhys.85.751 – ident: PhysRevAccelBeams.22.061302Cc18R1 doi: 10.1063/1.4958654 – ident: PhysRevAccelBeams.22.061302Cc27R1 doi: 10.1103/PhysRevAccelBeams.20.032801 – ident: PhysRevAccelBeams.22.061302Cc5R1 doi: 10.1103/PhysRevLett.91.125004 – ident: PhysRevAccelBeams.22.061302Cc29R1 doi: 10.1103/PhysRevSTAB.16.041302 – ident: PhysRevAccelBeams.22.061302Cc35R1 doi: 10.1088/1361-6560/aa7124 – ident: PhysRevAccelBeams.22.061302Cc21R1 doi: 10.1038/nature04492 – ident: PhysRevAccelBeams.22.061302Cc16R1 doi: 10.1103/PhysRevLett.107.045003 – ident: PhysRevAccelBeams.22.061302Cc15R1 doi: 10.1103/PhysRevLett.109.185006 – ident: PhysRevAccelBeams.22.061302Cc25R1 doi: 10.1063/1.3078291 – ident: PhysRevAccelBeams.22.061302Cc7R1 doi: 10.1038/nature04400 – ident: PhysRevAccelBeams.22.061302Cc14R1 doi: 10.1103/PhysRevLett.100.135003 – ident: PhysRevAccelBeams.22.061302Cc37R1 doi: 10.1016/j.nima.2018.02.066 – ident: PhysRevAccelBeams.22.061302Cc4R1 doi: 10.1016/S0168-583X(01)00771-6 – ident: PhysRevAccelBeams.22.061302Cc6R1 doi: 10.1103/PhysRevLett.86.436 – ident: PhysRevAccelBeams.22.061302Cc13R1 doi: 10.1016/j.mre.2017.07.001 – ident: PhysRevAccelBeams.22.061302Cc30R1 doi: 10.1063/1.3299391 – ident: PhysRevAccelBeams.22.061302Cc33R1 doi: 10.1016/j.nima.2018.02.026 – ident: PhysRevAccelBeams.22.061302Cc39R1 doi: 10.1038/nphoton.2013.75 – ident: PhysRevAccelBeams.22.061302Cc36R1 doi: 10.1088/1748-0221/11/07/T07005 – ident: PhysRevAccelBeams.22.061302Cc32R1 doi: 10.1038/srep12459 – ident: PhysRevAccelBeams.22.061302Cc34R1 doi: 10.1016/j.nima.2016.01.064 – ident: PhysRevAccelBeams.22.061302Cc2R1 doi: 10.1134/S1054660X06040165 – ident: PhysRevAccelBeams.22.061302Cc1R1 doi: 10.1103/PhysRevLett.43.267 – ident: PhysRevAccelBeams.22.061302Cc3R1 doi: 10.1126/science.1152640 – ident: PhysRevAccelBeams.22.061302Cc8R1 doi: 10.1038/nphys199 |
SSID | ssj0001609708 |
Score | 2.3407602 |
Snippet | A compact laser plasma accelerator (CLAPA) that can stably produce and transport proton ions with different energies less than 10 MeV,<1%energy spread, several... A compact laser plasma accelerator (CLAPA) that can stably produce and transport proton ions with different energies less than 10 MeV, <1% energy spread,... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 061302 |
SubjectTerms | Energy spectra Laser beams Laser plasmas Lasers Maintainability Proton accelerators Proton beams Quadrupoles Relaying Thickness |
Title | Experimental demonstration of a laser proton accelerator with accurate beam control through image-relaying transport |
URI | https://www.proquest.com/docview/2551575568 https://doaj.org/article/bb9fe80076674b1a858cc3a3db290f9e |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5aULyIT6xWCeh12-xmd5McW23x5MEHeFvymAHBVunD32-S3S2FHrx42UNgyTAzmcwkX74h5C5jueNlahO0mCU5KpcoGyFW0qQKnA-BsYnti3h6lw_jQJOzbvUVMGE1PXCtuIExCkGGC6NS5CbVspDWcs2dyRRDBTH6snKjmIqnKyVTgsl9clsj3fkgACqf4WdoLXyOQE8X_Szrh82sOVBpt6TI3L8VmONuMzkih02aSIe1eMdkB2YnZC_CNe3ilCzHG8T81ME0ZHm1LekXUk19TgxzGkgY_IgO0kC8T6fh3DUMrAJFBDVeRNqg1WnTsod-TH2MScIjl_AEii5b-vMz8jYZv94_Jk3_hMTmgi0Tv5jB-o9QWJQouMACc19QGJBCgkxz5_LS8kJz4-3FDWeKGdRSmxS5Q8XPSWf2NYMLQrWCAqVQhgf2GVQa0DIuNQeO3i7YJXmrwuq7psmoYnnBeLWl-SrLqlrzXTIK6l7_Eriu44D3gKrxgOovD-iSXmusqlmAfgqfCfpMtCjl5X_McUUOfKakaoxYj3SW8xVck92FW91Ex_sFlM3h5g |
link.rule.ids | 315,782,786,866,2106,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+demonstration+of+a+laser+proton+accelerator+with+accurate+beam+control+through+image-relaying+transport&rft.jtitle=Physical+review.+Accelerators+and+beams&rft.au=Zhu%2C+J+G&rft.au=Wu%2C+M+J&rft.au=Liao%2C+Q&rft.au=Geng%2C+Y+X&rft.date=2019-06-01&rft.pub=American+Physical+Society&rft.eissn=2469-9888&rft.volume=22&rft.issue=6&rft_id=info:doi/10.1103%2FPhysRevAccelBeams.22.061302 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2469-9888&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2469-9888&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2469-9888&client=summon |