Experimental demonstration of a laser proton accelerator with accurate beam control through image-relaying transport

A compact laser plasma accelerator (CLAPA) that can stably produce and transport proton ions with different energies less than 10 MeV,<1%energy spread, several to tens of pC charge, is demonstrated. The high current proton beam with continuous energy spectrum and a large divergence angle is gener...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. Accelerators and beams Vol. 22; no. 6; p. 061302
Main Authors: Zhu, J. G., Wu, M. J., Liao, Q., Geng, Y. X., Zhu, K., Li, C. C., Xu, X. H., Li, D. Y., Shou, Y. R., Yang, T., Wang, P. J., Wang, D. H., Wang, J. J., Chen, C. E., He, X. T., Zhao, Y. Y., Ma, W. J., Lu, H. Y., Tajima, T., Lin, C., Yan, X. Q.
Format: Journal Article
Language:English
Published: College Park American Physical Society 01-06-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A compact laser plasma accelerator (CLAPA) that can stably produce and transport proton ions with different energies less than 10 MeV,<1%energy spread, several to tens of pC charge, is demonstrated. The high current proton beam with continuous energy spectrum and a large divergence angle is generated by using a high contrast laser and micron thickness targets, which later is collected, analyzed and refocused by an image-relaying beam line using a combination of quadrupole and bending electromagnets. It eliminates the inherent defects of the laser-driven beams, realizes precise manipulation of the proton beams with reliability, availability, maintainability and inspectability (RAMI), and takes the first step towards applications of this new generation of accelerator. With the development of high-rep rate Petawatt (PW) laser technology, we can now envision a new generation of accelerator for many applications in the near future soon.
AbstractList A compact laser plasma accelerator (CLAPA) that can stably produce and transport proton ions with different energies less than 10 MeV, <1% energy spread, several to tens of pC charge, is demonstrated. The high current proton beam with continuous energy spectrum and a large divergence angle is generated by using a high contrast laser and micron thickness targets, which later is collected, analyzed and refocused by an image-relaying beam line using a combination of quadrupole and bending electromagnets. It eliminates the inherent defects of the laser-driven beams, realizes precise manipulation of the proton beams with reliability, availability, maintainability and inspectability (RAMI), and takes the first step towards applications of this new generation of accelerator. With the development of high-rep rate Petawatt (PW) laser technology, we can now envision a new generation of accelerator for many applications in the near future soon.
A compact laser plasma accelerator (CLAPA) that can stably produce and transport proton ions with different energies less than 10 MeV,<1%energy spread, several to tens of pC charge, is demonstrated. The high current proton beam with continuous energy spectrum and a large divergence angle is generated by using a high contrast laser and micron thickness targets, which later is collected, analyzed and refocused by an image-relaying beam line using a combination of quadrupole and bending electromagnets. It eliminates the inherent defects of the laser-driven beams, realizes precise manipulation of the proton beams with reliability, availability, maintainability and inspectability (RAMI), and takes the first step towards applications of this new generation of accelerator. With the development of high-rep rate Petawatt (PW) laser technology, we can now envision a new generation of accelerator for many applications in the near future soon.
ArticleNumber 061302
Author Liao, Q.
Zhu, J. G.
Ma, W. J.
Li, D. Y.
Wang, D. H.
Wang, J. J.
Xu, X. H.
Li, C. C.
Zhu, K.
Lu, H. Y.
Shou, Y. R.
Tajima, T.
He, X. T.
Zhao, Y. Y.
Yang, T.
Geng, Y. X.
Wang, P. J.
Wu, M. J.
Chen, C. E.
Lin, C.
Yan, X. Q.
Author_xml – sequence: 1
  givenname: J. G.
  orcidid: 0000-0003-3899-2060
  surname: Zhu
  fullname: Zhu, J. G.
– sequence: 2
  givenname: M. J.
  surname: Wu
  fullname: Wu, M. J.
– sequence: 3
  givenname: Q.
  surname: Liao
  fullname: Liao, Q.
– sequence: 4
  givenname: Y. X.
  surname: Geng
  fullname: Geng, Y. X.
– sequence: 5
  givenname: K.
  surname: Zhu
  fullname: Zhu, K.
– sequence: 6
  givenname: C. C.
  surname: Li
  fullname: Li, C. C.
– sequence: 7
  givenname: X. H.
  surname: Xu
  fullname: Xu, X. H.
– sequence: 8
  givenname: D. Y.
  surname: Li
  fullname: Li, D. Y.
– sequence: 9
  givenname: Y. R.
  surname: Shou
  fullname: Shou, Y. R.
– sequence: 10
  givenname: T.
  surname: Yang
  fullname: Yang, T.
– sequence: 11
  givenname: P. J.
  surname: Wang
  fullname: Wang, P. J.
– sequence: 12
  givenname: D. H.
  surname: Wang
  fullname: Wang, D. H.
– sequence: 13
  givenname: J. J.
  surname: Wang
  fullname: Wang, J. J.
– sequence: 14
  givenname: C. E.
  surname: Chen
  fullname: Chen, C. E.
– sequence: 15
  givenname: X. T.
  surname: He
  fullname: He, X. T.
– sequence: 16
  givenname: Y. Y.
  surname: Zhao
  fullname: Zhao, Y. Y.
– sequence: 17
  givenname: W. J.
  surname: Ma
  fullname: Ma, W. J.
– sequence: 18
  givenname: H. Y.
  surname: Lu
  fullname: Lu, H. Y.
– sequence: 19
  givenname: T.
  surname: Tajima
  fullname: Tajima, T.
– sequence: 20
  givenname: C.
  surname: Lin
  fullname: Lin, C.
– sequence: 21
  givenname: X. Q.
  surname: Yan
  fullname: Yan, X. Q.
BookMark eNplUV1rFDEUDVLBWvsfAn2eNZlMJgk-1VK1UKiIPoebzM3uLLPJmmTV_fdmXRGhL_fj3Mu5H-c1uYgpIiE3nK04Z-Lt582xfMEft97j8h5hV1Z9v2IjF6x_QS77YTSd0Vpf_Be_ItelbBljfGRGMX1J6v2vPeZ5h7HCQifcpVhqhjqnSFOgQBcomOk-p9oQOM3CVk6Z_pzr5gQcWorUtQWoT7HmtNC6yemw3tB5B2vsMi5wnOOaNt5Y9inXN-RlgKXg9V9_Rb59uP9696l7fPr4cHf72PlBsdopJtA3o0yQY1BCBRkGzrVDrTRqPkzTMHohQbhJjMIJZpgLoMHxIKZgxBV5OPNOCbZ2386EfLQJZvsHSHltIdfZL2idMwE1Y2oc1eA4aKm9FyAm1xsWDDaumzNXe8X3A5Zqt-mQY1vf9lJyqaQcdet6d-7yOZWSMfybypk9qWafqWb73p5VE78BZXKUpg
CitedBy_id crossref_primary_10_7498_aps_70_20202115
crossref_primary_10_1360_TB_2022_0380
crossref_primary_10_7498_aps_71_20220599
crossref_primary_10_1103_PhysRevAccelBeams_23_121304
crossref_primary_10_1016_j_nima_2022_167196
crossref_primary_10_1017_hpl_2023_50
crossref_primary_10_1063_5_0135323
crossref_primary_10_1103_PhysRevAccelBeams_27_052801
crossref_primary_10_1360_TB_2022_1099
crossref_primary_10_1007_s41365_023_01324_x
crossref_primary_10_1103_PhysRevAccelBeams_24_031301
crossref_primary_10_1088_1674_1056_abfc3c
crossref_primary_10_1103_PhysRevAccelBeams_23_031302
crossref_primary_10_1038_s41598_020_65775_7
crossref_primary_10_1016_j_rinp_2021_104779
crossref_primary_10_1063_5_0039364
crossref_primary_10_1088_1361_6560_acf025
crossref_primary_10_1088_1674_1056_acf493
crossref_primary_10_1103_PhysRevAccelBeams_26_114601
crossref_primary_10_1103_PhysRevAccelBeams_27_041303
crossref_primary_10_1088_1674_1056_ac3735
crossref_primary_10_1007_s41614_020_0043_z
crossref_primary_10_1088_1741_4326_ac8ca0
crossref_primary_10_3389_fphy_2021_624963
crossref_primary_10_1016_j_nima_2019_163249
crossref_primary_10_1038_s41598_020_77086_y
crossref_primary_10_1155_2022_4286598
crossref_primary_10_1088_1748_0221_17_06_T06001
crossref_primary_10_1063_5_0062601
crossref_primary_10_1360_TB_2022_1042
crossref_primary_10_1103_PhysRevAccelBeams_23_111302
crossref_primary_10_3390_photonics10020132
crossref_primary_10_1017_hpl_2021_54
crossref_primary_10_1016_j_nima_2024_169488
crossref_primary_10_1360_SSPMA_2022_0433
Cites_doi 10.1103/PhysRevAccelBeams.19.124802
10.1088/1367-2630/10/3/033034
10.1103/PhysRevLett.101.055004
10.1088/1674-1137/41/9/097001
10.1103/PhysRevLett.92.175003
10.1016/j.mre.2017.09.002
10.1126/science.1124412
10.1103/PhysRevSTAB.14.031304
10.1103/PhysRevLett.106.014801
10.1038/nphys2130
10.1038/s41467-018-03063-9
10.1103/PhysRevLett.94.165003
10.1103/PhysRevLett.116.205002
10.1103/RevModPhys.85.751
10.1063/1.4958654
10.1103/PhysRevAccelBeams.20.032801
10.1103/PhysRevLett.91.125004
10.1103/PhysRevSTAB.16.041302
10.1088/1361-6560/aa7124
10.1038/nature04492
10.1103/PhysRevLett.107.045003
10.1103/PhysRevLett.109.185006
10.1063/1.3078291
10.1038/nature04400
10.1103/PhysRevLett.100.135003
10.1016/j.nima.2018.02.066
10.1016/S0168-583X(01)00771-6
10.1103/PhysRevLett.86.436
10.1016/j.mre.2017.07.001
10.1063/1.3299391
10.1016/j.nima.2018.02.026
10.1038/nphoton.2013.75
10.1088/1748-0221/11/07/T07005
10.1038/srep12459
10.1016/j.nima.2016.01.064
10.1134/S1054660X06040165
10.1103/PhysRevLett.43.267
10.1126/science.1152640
10.1038/nphys199
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1103/PhysRevAccelBeams.22.061302
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Academic
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2469-9888
ExternalDocumentID oai_doaj_org_article_bb9fe80076674b1a858cc3a3db290f9e
10_1103_PhysRevAccelBeams_22_061302
GroupedDBID 3MX
5VS
AAYXX
ADBBV
AFGMR
AFKRA
AGDNE
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AUAIK
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
EBS
EJD
GROUPED_DOAJ
HCIFZ
KQ8
M~E
OK1
PIMPY
ROL
S7W
8FE
8FG
ABUWG
AZQEC
DWQXO
P62
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c470t-703ec70379f56f737f5f4118be878e814dd46c35a3bd363b3090bfa8ab1f3df93
IEDL.DBID DOA
ISSN 2469-9888
IngestDate Tue Oct 22 15:14:35 EDT 2024
Thu Oct 10 18:00:05 EDT 2024
Fri Aug 23 03:43:42 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-703ec70379f56f737f5f4118be878e814dd46c35a3bd363b3090bfa8ab1f3df93
ORCID 0000-0003-3899-2060
OpenAccessLink https://doaj.org/article/bb9fe80076674b1a858cc3a3db290f9e
PQID 2551575568
PQPubID 5161129
ParticipantIDs doaj_primary_oai_doaj_org_article_bb9fe80076674b1a858cc3a3db290f9e
proquest_journals_2551575568
crossref_primary_10_1103_PhysRevAccelBeams_22_061302
PublicationCentury 2000
PublicationDate 20190601
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 20190601
  day: 01
PublicationDecade 2010
PublicationPlace College Park
PublicationPlace_xml – name: College Park
PublicationTitle Physical review. Accelerators and beams
PublicationYear 2019
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References PhysRevAccelBeams.22.061302Cc13R1
PhysRevAccelBeams.22.061302Cc14R1
PhysRevAccelBeams.22.061302Cc36R1
PhysRevAccelBeams.22.061302Cc35R1
PhysRevAccelBeams.22.061302Cc16R1
PhysRevAccelBeams.22.061302Cc38R1
PhysRevAccelBeams.22.061302Cc15R1
PhysRevAccelBeams.22.061302Cc37R1
PhysRevAccelBeams.22.061302Cc18R1
PhysRevAccelBeams.22.061302Cc17R1
PhysRevAccelBeams.22.061302Cc39R1
PhysRevAccelBeams.22.061302Cc19R1
PhysRevAccelBeams.22.061302Cc30R1
PhysRevAccelBeams.22.061302Cc32R1
PhysRevAccelBeams.22.061302Cc10R1
PhysRevAccelBeams.22.061302Cc31R1
PhysRevAccelBeams.22.061302Cc11R1
PhysRevAccelBeams.22.061302Cc34R1
PhysRevAccelBeams.22.061302Cc12R1
PhysRevAccelBeams.22.061302Cc33R1
PhysRevAccelBeams.22.061302Cc8R1
PhysRevAccelBeams.22.061302Cc9R1
PhysRevAccelBeams.22.061302Cc4R1
PhysRevAccelBeams.22.061302Cc25R1
PhysRevAccelBeams.22.061302Cc5R1
PhysRevAccelBeams.22.061302Cc24R1
PhysRevAccelBeams.22.061302Cc6R1
PhysRevAccelBeams.22.061302Cc27R1
PhysRevAccelBeams.22.061302Cc7R1
PhysRevAccelBeams.22.061302Cc26R1
PhysRevAccelBeams.22.061302Cc29R1
PhysRevAccelBeams.22.061302Cc1R1
PhysRevAccelBeams.22.061302Cc28R1
PhysRevAccelBeams.22.061302Cc2R1
PhysRevAccelBeams.22.061302Cc3R1
PhysRevAccelBeams.22.061302Cc21R1
PhysRevAccelBeams.22.061302Cc20R1
PhysRevAccelBeams.22.061302Cc23R1
PhysRevAccelBeams.22.061302Cc22R1
References_xml – ident: PhysRevAccelBeams.22.061302Cc20R1
  doi: 10.1103/PhysRevAccelBeams.19.124802
– ident: PhysRevAccelBeams.22.061302Cc22R1
  doi: 10.1088/1367-2630/10/3/033034
– ident: PhysRevAccelBeams.22.061302Cc26R1
  doi: 10.1103/PhysRevLett.101.055004
– ident: PhysRevAccelBeams.22.061302Cc38R1
  doi: 10.1088/1674-1137/41/9/097001
– ident: PhysRevAccelBeams.22.061302Cc9R1
  doi: 10.1103/PhysRevLett.92.175003
– ident: PhysRevAccelBeams.22.061302Cc12R1
  doi: 10.1016/j.mre.2017.09.002
– ident: PhysRevAccelBeams.22.061302Cc31R1
  doi: 10.1126/science.1124412
– ident: PhysRevAccelBeams.22.061302Cc28R1
  doi: 10.1103/PhysRevSTAB.14.031304
– ident: PhysRevAccelBeams.22.061302Cc23R1
  doi: 10.1103/PhysRevLett.106.014801
– ident: PhysRevAccelBeams.22.061302Cc24R1
  doi: 10.1038/nphys2130
– ident: PhysRevAccelBeams.22.061302Cc19R1
  doi: 10.1038/s41467-018-03063-9
– ident: PhysRevAccelBeams.22.061302Cc10R1
  doi: 10.1103/PhysRevLett.94.165003
– ident: PhysRevAccelBeams.22.061302Cc17R1
  doi: 10.1103/PhysRevLett.116.205002
– ident: PhysRevAccelBeams.22.061302Cc11R1
  doi: 10.1103/RevModPhys.85.751
– ident: PhysRevAccelBeams.22.061302Cc18R1
  doi: 10.1063/1.4958654
– ident: PhysRevAccelBeams.22.061302Cc27R1
  doi: 10.1103/PhysRevAccelBeams.20.032801
– ident: PhysRevAccelBeams.22.061302Cc5R1
  doi: 10.1103/PhysRevLett.91.125004
– ident: PhysRevAccelBeams.22.061302Cc29R1
  doi: 10.1103/PhysRevSTAB.16.041302
– ident: PhysRevAccelBeams.22.061302Cc35R1
  doi: 10.1088/1361-6560/aa7124
– ident: PhysRevAccelBeams.22.061302Cc21R1
  doi: 10.1038/nature04492
– ident: PhysRevAccelBeams.22.061302Cc16R1
  doi: 10.1103/PhysRevLett.107.045003
– ident: PhysRevAccelBeams.22.061302Cc15R1
  doi: 10.1103/PhysRevLett.109.185006
– ident: PhysRevAccelBeams.22.061302Cc25R1
  doi: 10.1063/1.3078291
– ident: PhysRevAccelBeams.22.061302Cc7R1
  doi: 10.1038/nature04400
– ident: PhysRevAccelBeams.22.061302Cc14R1
  doi: 10.1103/PhysRevLett.100.135003
– ident: PhysRevAccelBeams.22.061302Cc37R1
  doi: 10.1016/j.nima.2018.02.066
– ident: PhysRevAccelBeams.22.061302Cc4R1
  doi: 10.1016/S0168-583X(01)00771-6
– ident: PhysRevAccelBeams.22.061302Cc6R1
  doi: 10.1103/PhysRevLett.86.436
– ident: PhysRevAccelBeams.22.061302Cc13R1
  doi: 10.1016/j.mre.2017.07.001
– ident: PhysRevAccelBeams.22.061302Cc30R1
  doi: 10.1063/1.3299391
– ident: PhysRevAccelBeams.22.061302Cc33R1
  doi: 10.1016/j.nima.2018.02.026
– ident: PhysRevAccelBeams.22.061302Cc39R1
  doi: 10.1038/nphoton.2013.75
– ident: PhysRevAccelBeams.22.061302Cc36R1
  doi: 10.1088/1748-0221/11/07/T07005
– ident: PhysRevAccelBeams.22.061302Cc32R1
  doi: 10.1038/srep12459
– ident: PhysRevAccelBeams.22.061302Cc34R1
  doi: 10.1016/j.nima.2016.01.064
– ident: PhysRevAccelBeams.22.061302Cc2R1
  doi: 10.1134/S1054660X06040165
– ident: PhysRevAccelBeams.22.061302Cc1R1
  doi: 10.1103/PhysRevLett.43.267
– ident: PhysRevAccelBeams.22.061302Cc3R1
  doi: 10.1126/science.1152640
– ident: PhysRevAccelBeams.22.061302Cc8R1
  doi: 10.1038/nphys199
SSID ssj0001609708
Score 2.3407602
Snippet A compact laser plasma accelerator (CLAPA) that can stably produce and transport proton ions with different energies less than 10 MeV,<1%energy spread, several...
A compact laser plasma accelerator (CLAPA) that can stably produce and transport proton ions with different energies less than 10 MeV, <1% energy spread,...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 061302
SubjectTerms Energy spectra
Laser beams
Laser plasmas
Lasers
Maintainability
Proton accelerators
Proton beams
Quadrupoles
Relaying
Thickness
Title Experimental demonstration of a laser proton accelerator with accurate beam control through image-relaying transport
URI https://www.proquest.com/docview/2551575568
https://doaj.org/article/bb9fe80076674b1a858cc3a3db290f9e
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5aULyIT6xWCeh12-xmd5McW23x5MEHeFvymAHBVunD32-S3S2FHrx42UNgyTAzmcwkX74h5C5jueNlahO0mCU5KpcoGyFW0qQKnA-BsYnti3h6lw_jQJOzbvUVMGE1PXCtuIExCkGGC6NS5CbVspDWcs2dyRRDBTH6snKjmIqnKyVTgsl9clsj3fkgACqf4WdoLXyOQE8X_Szrh82sOVBpt6TI3L8VmONuMzkih02aSIe1eMdkB2YnZC_CNe3ilCzHG8T81ME0ZHm1LekXUk19TgxzGkgY_IgO0kC8T6fh3DUMrAJFBDVeRNqg1WnTsod-TH2MScIjl_AEii5b-vMz8jYZv94_Jk3_hMTmgi0Tv5jB-o9QWJQouMACc19QGJBCgkxz5_LS8kJz4-3FDWeKGdRSmxS5Q8XPSWf2NYMLQrWCAqVQhgf2GVQa0DIuNQeO3i7YJXmrwuq7psmoYnnBeLWl-SrLqlrzXTIK6l7_Eriu44D3gKrxgOovD-iSXmusqlmAfgqfCfpMtCjl5X_McUUOfKakaoxYj3SW8xVck92FW91Ex_sFlM3h5g
link.rule.ids 315,782,786,866,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+demonstration+of+a+laser+proton+accelerator+with+accurate+beam+control+through+image-relaying+transport&rft.jtitle=Physical+review.+Accelerators+and+beams&rft.au=Zhu%2C+J+G&rft.au=Wu%2C+M+J&rft.au=Liao%2C+Q&rft.au=Geng%2C+Y+X&rft.date=2019-06-01&rft.pub=American+Physical+Society&rft.eissn=2469-9888&rft.volume=22&rft.issue=6&rft_id=info:doi/10.1103%2FPhysRevAccelBeams.22.061302
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2469-9888&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2469-9888&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2469-9888&client=summon