Kyasanur Forest Disease Classification Framework Using Novel Extremal Optimization Tuned Neural Network in Fog Computing Environment

Kyasanur Forest Disease (KFD) is a life-threatening tick-borne viral infectious disease endemic to South Asia and has been taking so many lives every year in the past decade. But recently, this disease has been witnessed in other regions to a large extent and can become an epidemic very soon. In thi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of medical systems Vol. 42; no. 10; pp. 187 - 16
Main Authors: Majumdar, Abhishek, Debnath, Tapas, Sood, Sandeep K., Baishnab, Krishna Lal
Format: Journal Article
Language:English
Published: New York Springer US 01-10-2018
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Kyasanur Forest Disease (KFD) is a life-threatening tick-borne viral infectious disease endemic to South Asia and has been taking so many lives every year in the past decade. But recently, this disease has been witnessed in other regions to a large extent and can become an epidemic very soon. In this paper, a new fog computing based e-Healthcare framework has been proposed to monitor the KFD infected patients in an early phase of infection and control the disease outbreak. For ensuring high prediction rate, a novel Extremal Optimization tuned Neural Network (EO-NN) classification algorithm has been developed using hybridization of the extremal optimization with the feed-forward neural network. Additionally, a location based alert system has also been suggested to provide the global positioning system (GPS)-based location information of each KFD infected user and the risk-prone zones as early as possible to prevent the outbreak. Furthermore, a comparative study of proposed EO-NN with state of art classification algorithms has been carried out and it can be concluded that EO-NN outperforms others with an average accuracy of 91.56%, a sensitivity of 91.53% and a specificity of 97.13% respectively in classification and accurate identification of risk-prone areas.
AbstractList Kyasanur Forest Disease (KFD) is a life-threatening tick-borne viral infectious disease endemic to South Asia and has been taking so many lives every year in the past decade. But recently, this disease has been witnessed in other regions to a large extent and can become an epidemic very soon. In this paper, a new fog computing based e-Healthcare framework has been proposed to monitor the KFD infected patients in an early phase of infection and control the disease outbreak. For ensuring high prediction rate, a novel Extremal Optimization tuned Neural Network (EO-NN) classification algorithm has been developed using hybridization of the extremal optimization with the feed-forward neural network. Additionally, a location based alert system has also been suggested to provide the global positioning system (GPS)-based location information of each KFD infected user and the risk-prone zones as early as possible to prevent the outbreak. Furthermore, a comparative study of proposed EO-NN with state of art classification algorithms has been carried out and it can be concluded that EO-NN outperforms others with an average accuracy of 91.56%, a sensitivity of 91.53% and a specificity of 97.13% respectively in classification and accurate identification of risk-prone areas.
ArticleNumber 187
Author Majumdar, Abhishek
Sood, Sandeep K.
Baishnab, Krishna Lal
Debnath, Tapas
Author_xml – sequence: 1
  givenname: Abhishek
  surname: Majumdar
  fullname: Majumdar, Abhishek
  email: abhishek.nits@ieee.org
  organization: Department of Electronics and Communication Engineering, National Institute of Technology Silchar
– sequence: 2
  givenname: Tapas
  surname: Debnath
  fullname: Debnath, Tapas
  organization: Department of Mechanical Engineering, National Institute of Technology Silchar
– sequence: 3
  givenname: Sandeep K.
  surname: Sood
  fullname: Sood, Sandeep K.
  organization: Guru Nanak Dev University
– sequence: 4
  givenname: Krishna Lal
  surname: Baishnab
  fullname: Baishnab, Krishna Lal
  organization: Department of Electronics and Communication Engineering, National Institute of Technology Silchar
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30173290$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtvEzEUhS1URNPAD2CDLLFhM2CPM35skFBIAFGlm1ZiZ3mc6-AyYwd7JlDW_HAcppSHxMqL851z7_U5QychBkDoMSXPKSHiRaZEUV4RKitKFrRi99CMNoJVXKoPJ2hG6EJWTaPkKTrL-ZoQojgXD9ApI1SwWpEZ-v7-xmQTxoTXMUEe8GufwWTAy87k7J23ZvAx4HUyPXyJ6RO-yj7s8CYeoMOrr0OC3nT4Yj_43n-b2MsxwBZvYExF2cDw0-ZLRtzhZez343BMWIWDTzH0EIaH6L4zXYZHt-8cXa1Xl8u31fnFm3fLV-eVXQgyVNxy4EY6EM4q23IrjGKOWMaKLLaNcZy2qnaupcxR60RLhdyqmjV1KwAaNkcvp9z92PawtWV0WVHvk-9NutHReP23EvxHvYsHLYiUrATN0bPbgBQ_j-W7dO-zha4zAeKYdU2UKkWoWhX06T_odRxTKOcdKcmErBtZKDpRNsWcE7i7ZSjRx4711LEuHetjx5oVz5M_r7hz_Cq1APUE5CKFHaTfo_-f-gNWKLdx
CitedBy_id crossref_primary_10_1007_s13369_021_05411_2
crossref_primary_10_3233_JIFS_169957
crossref_primary_10_1109_ACCESS_2024_3372388
crossref_primary_10_1111_exsy_12796
crossref_primary_10_1007_s11704_021_0163_9
crossref_primary_10_26782_jmcms_2020_07_00006
crossref_primary_10_3390_s23031639
crossref_primary_10_1007_s00607_020_00877_8
crossref_primary_10_1007_s12652_020_01694_9
crossref_primary_10_1109_ACCESS_2020_3045970
crossref_primary_10_1002_rmv_2205
crossref_primary_10_1007_s11356_021_13823_8
crossref_primary_10_1016_j_iot_2022_100514
crossref_primary_10_1007_s10796_020_10016_5
Cites_doi 10.1016/j.ttbdis.2016.06.002
10.1109/IEMBS.2010.5628061
10.1016/j.cmpb.2011.08.003
10.1017/S0266462317000113
10.14257/astl.2016.122.32
10.1016/j.jjcc.2011.11.005
10.1016/j.jcv.2015.02.019
10.1016/j.antiviral.2012.10.005
10.1086/502460
10.1016/j.ttbdis.2016.09.010
10.1016/j.jinf.2004.11.012
10.3201/eid1909.121884
10.1016/j.jocs.2015.11.001
10.1007/978-1-4615-1043-7_3
10.1109/ICCPCT.2016.7530265
10.1007/s11227-015-1474-0
10.1080/17517575.2016.1277558
10.1016/j.compind.2017.05.006
10.1007/s12250-018-0019-0
10.1186/s40249-015-0044-2
10.1006/bbrc.2001.5610
10.1016/j.eswa.2005.09.024
10.1016/j.procs.2015.04.076
10.3201/eid1502.080979
10.1002/rmv.495
10.1109/TITB.2011.2171978
10.1016/j.eswa.2009.03.021
10.1016/j.eswa.2009.09.045
10.1109/6294.819936
10.1016/j.procs.2016.04.016
10.1016/j.cmpb.2013.09.013
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Journal of Medical Systems is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Journal of Medical Systems is a copyright of Springer, (2018). All Rights Reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7QF
7QO
7QQ
7RV
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
88C
88E
88I
8AL
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
K9.
KB0
KR7
L7M
LK8
L~C
L~D
M0N
M0S
M0T
M1P
M2P
M7P
NAPCQ
P5Z
P62
P64
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1007/s10916-018-1041-3
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
ProQuest Nursing & Allied Health Database
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
ProQuest_Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
Health Management Database (Proquest)
PML(ProQuest Medical Library)
ProQuest Science Journals
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Biological Science Collection
ProQuest Medical Library (Alumni)
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Aluminium Industry Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest Nursing & Allied Health Source (Alumni)
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Health Management
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Materials Research Database

Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1573-689X
EndPage 16
ExternalDocumentID 10_1007_s10916_018_1041_3
30173290
Genre Journal Article
GroupedDBID ---
-53
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.GJ
.VR
04C
06C
06D
0R~
0VY
199
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3SX
3V.
4.4
406
408
409
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
77K
78A
7RV
7X7
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AAKSU
AANXM
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBYP
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIHN
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACREN
ACTTH
ACUDM
ACVWB
ACWMK
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFAFS
AFEXP
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGKHE
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
AQUVI
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
KPH
LAK
LK8
LLZTM
M0N
M0T
M1P
M2P
M4Y
M7P
MA-
MK0
N2Q
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z87
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
~A9
~EX
AACDK
AAJBT
AASML
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
ALIPV
CGR
CUY
CVF
ECM
EIF
H13
NPM
AAEOY
AAYXX
AJOOF
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8AL
8BQ
8FD
8FK
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c470t-6c6e6a8fe7fc9cb6c7a93f0c334707d5af61b92ffb13f1cf7b178d92352b7ee53
IEDL.DBID AEJHL
ISSN 0148-5598
IngestDate Tue Sep 17 21:25:57 EDT 2024
Fri Oct 25 07:40:08 EDT 2024
Thu Oct 10 21:58:06 EDT 2024
Thu Nov 21 20:52:59 EST 2024
Wed Oct 16 00:46:04 EDT 2024
Sat Dec 16 12:05:32 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Fog computing
e-Healthcare
Neural network
Extremal optimization
Language English
License This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-6c6e6a8fe7fc9cb6c7a93f0c334707d5af61b92ffb13f1cf7b178d92352b7ee53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7088392
PMID 30173290
PQID 2098378258
PQPubID 54050
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7088392
proquest_miscellaneous_2099041929
proquest_journals_2098378258
crossref_primary_10_1007_s10916_018_1041_3
pubmed_primary_30173290
springer_journals_10_1007_s10916_018_1041_3
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Journal of medical systems
PublicationTitleAbbrev J Med Syst
PublicationTitleAlternate J Med Syst
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Thomas, J. and Princy, R.T., March. Human heart disease prediction system using data mining techniques. In Circuit, Power and Computing Technologies (ICCPCT), 2016 International Conference on. IEEE. pp. 1–5, 2016.
AlshamraniBSOsmanAHInvestigation of hepatitis disease diagnosis using different types of neural network algorithmsInternational Journal of Computer Science and Network Security (IJCSNS).2017172242
Google Maps. (2018). Google Maps. [Online]. Available: https://www.google.co.in/maps/place/Cachar,+Assam/@24.7737965,92.6532688,75953m/data=!3m1!1e3!4m5!3m4!1s0x374e4a7895c9586b:0x921d35c0a735d9e8!8m2!3d24.7821253!4d92.8577105. [Accessed 18 May 2018].
Šter, B., and Dobnikar, A., Neural networks in medical diagnosis: Comparison with other methods. In International Conference on Engineering Applications of Neural Networks. pp. 427-30, 1996.
MussoMGalatiVStellaMCCaponeAA case of Alkhumra virus infectionJ. Clin. Virol.20156612141:STN:280:DC%2BC2MjjsFKgsw%3D%3D10.1016/j.jcv.2015.02.01925866328
Parthiban, L., and Subramanian, R., Intelligent heart disease prediction system using CANFIS and genetic algorithm. Int. J. Biol. Biomed. Med. Sci. 3(3):157–160, 2008.
MadaniTAAlkhumra virus infection, a new viral hemorrhagic fever in Saudi ArabiaJ. Infect.2005512919710.1016/j.jinf.2004.11.01216038757
Guru, N., Dahiya, A., and Rajpal, N., Decision support system for heart disease diagnosis using neural network. Delhi Bus. Rev. 8(1):99–101, 2007.
WuDWarwickKMaZBurgessJGPanSAzizTZPrediction of Parkinson’s disease tremor onset using radial basis function neural networksExpert Syst. Appl.20103742923292810.1016/j.eswa.2009.09.045
PattnaikPKyasanur forest disease: An epidemiological view in IndiaRev. Med. Virol.20061631511651:CAS:528:DC%2BD28XmsVSmur8%3D10.1002/rmv.49516710839
SartakhtiJSZangooeiMHMozafariKHepatitis disease diagnosis using a novel hybrid method based on support vector machine and simulated annealing (SVM-SA)Comput. Methods Prog. Biomed.2012108257057910.1016/j.cmpb.2011.08.003
SandhuRGillHKSoodSKSmart monitoring and controlling of pandemic influenza a (H1N1) using social network analysis and cloud computingJ. Comput. Sci.201612112210.1016/j.jocs.2015.11.001
TandaleBVBalakrishnanAYadavPDMarjaNMouryaDTNew focus of Kyasanur Forest disease virus activity in a tribal area in Kerala, India, 2014Infect. Dis. Poverty2015411210.1186/s40249-015-0044-2257507304351674
SundharakumarKBDhivyaSMohanavalliSChanderRVCloud based fuzzy healthcare systemProcedia Comp. Sci.20155014314810.1016/j.procs.2015.04.076
CharrelRNZakiAMAttouiHFakeehMBilloirFYousefAIde ChesseRDe MiccoPGouldEAde LamballerieXComplete coding sequence of the Alkhurma virus, a tick-borne flavivirus causing severe hemorrhagic fever in humans in Saudi ArabiaBiochem. Biophys. Res. Commun.200128724554611:CAS:528:DC%2BD3MXms12ru7g%3D10.1006/bbrc.2001.561011554750
KaurPDChanaICloud based intelligent system for delivering health care as a serviceComput. Methods Prog. Biomed.2014113134635910.1016/j.cmpb.2013.09.013
MouryaDTYadavPDSpread of Kyasanur Forest disease, Bandipur Tiger Reserve, India, 2012–2013Emerg. Infect. Dis.2013199154010.3201/eid1909.121884239779463810911
WangJZhangHFuSWangHNiDNasciRTangQLiangGIsolation of Kyasanur forest disease virus from febrile patient, Yunnan, ChinaEmerg. Infect. Dis.20091523261:CAS:528:DC%2BD1MXjt1ertb4%3D10.3201/eid1502.080979191932862657630
HuangCLWangCJA GA-based feature selection and parameters optimization for support vector machinesExpert Syst. Appl.200631223124010.1016/j.eswa.2005.09.024
SareenSSoodSKGuptaSKSecure internet of things-based cloud framework to control zika virus outbreakInt. J. Technol. Assess. Health Care2017331111810.1017/S026646231700011328434408
Kyasanur Forest Disease - India (09): (Goa), ProMED-mail. [Online]. Available: http://www.promedmail.org/direct.php?id=3306895. [Accessed 04 April 2018].
Shanker, M., Application of neural network classifiers to disease diagnosis. The Journal of the Industrial Mathematics Society 45(1):51–62, 1995. Accessed 05 April 2018.
ObenshainMKApplication of data mining techniques to healthcare dataInfect. Control Hosp. Epidemiol.200425869069510.1086/50246015357163
Boettcher, S., and Percus, A. G., Extremal optimization: an evolutionary local-search algorithm. In: Computational Modeling and Problem Solving in the Networked World. Boston: Springer, 21: 61-77.
HanJPeiJKamberMData mining: Concepts and techniques2011New YorkElsevier
DangareCSApteSSImproved study of heart disease prediction system using data mining classification techniquesInt. J. Comput. Appl.201247104448
Sareen, S., Gupta, S. K., and Sood, S. K., An intelligent and secure system for predicting and preventing Zika virus outbreak using fog computing. Enterprise Inf. Syst. 11(9):1436–1456, 2017.
SandhuRSoodSKKaurGAn intelligent system for predicting and preventing MERS-CoV infection outbreakJ. Supercomput.20167283033305610.1007/s11227-015-1474-0
SoodSKMahajanIWearable IoT sensor based healthcare system for identifying and controlling chikungunya virusComput. Ind.201791334410.1016/j.compind.2017.05.006
Shi, J., Hu, Z., Deng, F., and Shen, S., Tick-borne viruses. Virol. Sin. 1-23, 2018.
Sivanandam, S. N., and Deepa, S. N., Introduction to neural networks using Matlab 6.0. Tata McGraw-Hill Education, 2006.
AtkovOYGorokhovaSGSboevAGGenerozovEVMuraseyevaEVMoroshkinaSYCherniyNNCoronary heart disease diagnosis by artificial neural networks including genetic polymorphisms and clinical parametersJ. Cardiol.201259219019410.1016/j.jjcc.2011.11.00522218324
Doukas, C., Pliakas, T., Maglogiannis, I., Mobile healthcare information management utilizing Cloud Computing and Android OS. In Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE. p 1037–1040, 2010.
RaoVSHKumarMNA new intelligence-based approach for computer-aided diagnosis of dengue feverIEEE Trans. Inf. Technol. Biomed.201216111211810.1109/TITB.2011.217197822010159
Hwang, S., Clarite, D. S., Elijorde, F. I., Gerardo, B. D., and Byun, Y., A web-based analysis for dengue tracking and prediction using artificial neural network. SERSC: ASTL 122:160–164, 2016.
Usama, F., Data mining and knowledge discovery in databases: implications for scientific databases. In Proceedings of the 9th International Conference on Scientific and Statistical Database Management (SSDBM’97), Olympia, WA. pp. 2-11, 1997.
PerveenSShahbazMGuergachiAKeshavjeeKPerformance analysis of data mining classification techniques to predict diabetesProcedia Comp. Sci.20168211512110.1016/j.procs.2016.04.016
HolbrookMRKyasanur forest diseaseAntivir. Res.20129633533621:CAS:528:DC%2BC38XhslCktLrP10.1016/j.antiviral.2012.10.00523110991
Cook, B. W., Nikiforuk, A. M., Cutts, T. A., Kobasa, D., and Theriault, S. S., Development of a subgenomic clone system for Kyasanur Forest disease virus. Ticks. Tick. Borne. Dis. 7(5):1047–1051, 2016.
Kyasanur Forest Disease - India (10): (MH), ProMED-mail. [Online]. Available: http://www.promedmail.org/post/20170517.5041642. [Accessed 04 April 2018].
Kleissner, C., Data mining for the enterprise. In Thirty-First Hawaii International Conference on System Sciences. 7:295–304, 1998.
Kyasanur Forest Disease (KFD) Virus Ecology. [Online]. Available: https://www.cdc.gov/vhf/kyasanur/resources/virus-ecology.html. [Accessed 02 June 2018].
Thuraisingham, B., A primer for understanding and applying data mining. IT Prof IEEE 1(1):28–31, 2000.
DogantekinEDogantekinAAvciDAutomatic hepatitis diagnosis system based on linear discriminant analysis and adaptive network based on fuzzy inference systemExpert Syst. Appl.2009368112821128610.1016/j.eswa.2009.03.021
Sadanandane, C., Elango, A., Marja, N., Sasidharan, P. V., Raju, K. H. K., and Jambulingam, P., An outbreak of Kyasanur forest disease in the Wayanad and Malappuram districts of Kerala, India. Ticks Tick Borne Dis. 8(1):25–30, 2017.
1041_CR30
SK Sood (1041_CR29) 2017; 91
BV Tandale (1041_CR8) 2015; 4
S Sareen (1041_CR28) 2017; 33
MK Obenshain (1041_CR32) 2004; 25
S Perveen (1041_CR21) 2016; 82
OY Atkov (1041_CR44) 2012; 59
R Sandhu (1041_CR23) 2016; 12
VSH Rao (1041_CR19) 2012; 16
J Han (1041_CR33) 2011
DT Mourya (1041_CR6) 2013; 19
1041_CR18
1041_CR17
1041_CR9
1041_CR36
1041_CR35
D Wu (1041_CR43) 2010; 37
1041_CR16
1041_CR15
1041_CR5
1041_CR10
1041_CR4
1041_CR31
P Pattnaik (1041_CR3) 2006; 16
PD Kaur (1041_CR20) 2014; 113
1041_CR34
1041_CR2
1041_CR1
JS Sartakhti (1041_CR39) 2012; 108
J Wang (1041_CR11) 2009; 15
M Musso (1041_CR14) 2015; 66
R Sandhu (1041_CR26) 2016; 72
E Dogantekin (1041_CR40) 2009; 36
MR Holbrook (1041_CR7) 2012; 96
RN Charrel (1041_CR12) 2001; 287
CS Dangare (1041_CR37) 2012; 47
CL Huang (1041_CR38) 2006; 31
KB Sundharakumar (1041_CR22) 2015; 50
TA Madani (1041_CR13) 2005; 51
BS Alshamrani (1041_CR41) 2017; 17
1041_CR25
1041_CR24
1041_CR27
1041_CR42
1041_CR45
References_xml – ident: 1041_CR4
  doi: 10.1016/j.ttbdis.2016.06.002
– ident: 1041_CR18
  doi: 10.1109/IEMBS.2010.5628061
– volume: 108
  start-page: 570
  issue: 2
  year: 2012
  ident: 1041_CR39
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2011.08.003
  contributor:
    fullname: JS Sartakhti
– volume: 33
  start-page: 11
  issue: 1
  year: 2017
  ident: 1041_CR28
  publication-title: Int. J. Technol. Assess. Health Care
  doi: 10.1017/S0266462317000113
  contributor:
    fullname: S Sareen
– ident: 1041_CR24
  doi: 10.14257/astl.2016.122.32
– volume: 59
  start-page: 190
  issue: 2
  year: 2012
  ident: 1041_CR44
  publication-title: J. Cardiol.
  doi: 10.1016/j.jjcc.2011.11.005
  contributor:
    fullname: OY Atkov
– volume: 66
  start-page: 12
  year: 2015
  ident: 1041_CR14
  publication-title: J. Clin. Virol.
  doi: 10.1016/j.jcv.2015.02.019
  contributor:
    fullname: M Musso
– volume: 96
  start-page: 353
  issue: 3
  year: 2012
  ident: 1041_CR7
  publication-title: Antivir. Res.
  doi: 10.1016/j.antiviral.2012.10.005
  contributor:
    fullname: MR Holbrook
– volume: 25
  start-page: 690
  issue: 8
  year: 2004
  ident: 1041_CR32
  publication-title: Infect. Control Hosp. Epidemiol.
  doi: 10.1086/502460
  contributor:
    fullname: MK Obenshain
– volume-title: Data mining: Concepts and techniques
  year: 2011
  ident: 1041_CR33
  contributor:
    fullname: J Han
– ident: 1041_CR5
  doi: 10.1016/j.ttbdis.2016.09.010
– volume: 51
  start-page: 91
  issue: 2
  year: 2005
  ident: 1041_CR13
  publication-title: J. Infect.
  doi: 10.1016/j.jinf.2004.11.012
  contributor:
    fullname: TA Madani
– ident: 1041_CR36
– ident: 1041_CR34
– volume: 19
  start-page: 1540
  issue: 9
  year: 2013
  ident: 1041_CR6
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid1909.121884
  contributor:
    fullname: DT Mourya
– volume: 12
  start-page: 11
  year: 2016
  ident: 1041_CR23
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2015.11.001
  contributor:
    fullname: R Sandhu
– ident: 1041_CR16
  doi: 10.1007/978-1-4615-1043-7_3
– ident: 1041_CR25
  doi: 10.1109/ICCPCT.2016.7530265
– ident: 1041_CR2
– volume: 72
  start-page: 3033
  issue: 8
  year: 2016
  ident: 1041_CR26
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-015-1474-0
  contributor:
    fullname: R Sandhu
– ident: 1041_CR42
– ident: 1041_CR27
  doi: 10.1080/17517575.2016.1277558
– volume: 91
  start-page: 33
  year: 2017
  ident: 1041_CR29
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2017.05.006
  contributor:
    fullname: SK Sood
– ident: 1041_CR1
  doi: 10.1007/s12250-018-0019-0
– volume: 4
  start-page: 12
  issue: 1
  year: 2015
  ident: 1041_CR8
  publication-title: Infect. Dis. Poverty
  doi: 10.1186/s40249-015-0044-2
  contributor:
    fullname: BV Tandale
– volume: 287
  start-page: 455
  issue: 2
  year: 2001
  ident: 1041_CR12
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.2001.5610
  contributor:
    fullname: RN Charrel
– volume: 31
  start-page: 231
  issue: 2
  year: 2006
  ident: 1041_CR38
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2005.09.024
  contributor:
    fullname: CL Huang
– volume: 47
  start-page: 44
  issue: 10
  year: 2012
  ident: 1041_CR37
  publication-title: Int. J. Comput. Appl.
  contributor:
    fullname: CS Dangare
– volume: 50
  start-page: 143
  year: 2015
  ident: 1041_CR22
  publication-title: Procedia Comp. Sci.
  doi: 10.1016/j.procs.2015.04.076
  contributor:
    fullname: KB Sundharakumar
– volume: 15
  start-page: 326
  issue: 2
  year: 2009
  ident: 1041_CR11
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid1502.080979
  contributor:
    fullname: J Wang
– ident: 1041_CR15
– ident: 1041_CR31
– ident: 1041_CR17
– volume: 16
  start-page: 151
  issue: 3
  year: 2006
  ident: 1041_CR3
  publication-title: Rev. Med. Virol.
  doi: 10.1002/rmv.495
  contributor:
    fullname: P Pattnaik
– volume: 16
  start-page: 112
  issue: 1
  year: 2012
  ident: 1041_CR19
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2011.2171978
  contributor:
    fullname: VSH Rao
– volume: 36
  start-page: 11282
  issue: 8
  year: 2009
  ident: 1041_CR40
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.03.021
  contributor:
    fullname: E Dogantekin
– ident: 1041_CR35
– volume: 17
  start-page: 242
  issue: 2
  year: 2017
  ident: 1041_CR41
  publication-title: International Journal of Computer Science and Network Security (IJCSNS).
  contributor:
    fullname: BS Alshamrani
– volume: 37
  start-page: 2923
  issue: 4
  year: 2010
  ident: 1041_CR43
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.09.045
  contributor:
    fullname: D Wu
– ident: 1041_CR10
– ident: 1041_CR30
  doi: 10.1109/6294.819936
– volume: 82
  start-page: 115
  year: 2016
  ident: 1041_CR21
  publication-title: Procedia Comp. Sci.
  doi: 10.1016/j.procs.2016.04.016
  contributor:
    fullname: S Perveen
– ident: 1041_CR45
– ident: 1041_CR9
– volume: 113
  start-page: 346
  issue: 1
  year: 2014
  ident: 1041_CR20
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2013.09.013
  contributor:
    fullname: PD Kaur
SSID ssj0009667
Score 2.352407
Snippet Kyasanur Forest Disease (KFD) is a life-threatening tick-borne viral infectious disease endemic to South Asia and has been taking so many lives every year in...
SourceID pubmedcentral
proquest
crossref
pubmed
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 187
SubjectTerms Algorithms
Bayes Theorem
Classification
Cloud computing
Comparative studies
Disease control
Disease Outbreaks
Epidemics
Global positioning systems
GPS
Health care
Health Informatics
Health risks
Health Sciences
Humans
Hybridization
Infectious diseases
Information systems
Kyasanur Forest Disease - diagnosis
Medicine
Medicine & Public Health
Mobile & Wireless Health
Neural networks
Neural Networks, Computer
Optimization
Outbreaks
Pest outbreaks
Plant diseases
Satellite navigation systems
Statistics for Life Sciences
Title Kyasanur Forest Disease Classification Framework Using Novel Extremal Optimization Tuned Neural Network in Fog Computing Environment
URI https://link.springer.com/article/10.1007/s10916-018-1041-3
https://www.ncbi.nlm.nih.gov/pubmed/30173290
https://www.proquest.com/docview/2098378258
https://search.proquest.com/docview/2099041929
https://pubmed.ncbi.nlm.nih.gov/PMC7088392
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71ISEkVEp5BQoyEieQkWMndnwsNKstjwWJInGLnMSGCpqtdjdVufPDGcfJLtvCAU45jOU49nj8xTPzDcBTo51IRKKpqaWkiWaMGjxlqUf3ilfOlB2ZzvijmnzODnNPk8OXVxfNtxeDR7Iz1L_luiGSwT9fz0aaxFRswjYePSnq9vZB_nr8dkW1K2VIkk4y6unHB1_mnzpZP42uQMyrkZKX3KXdKTS6-T_j34WdHnOSg6Akt2DDNntw7V3vVd-DG-HujoSUpNvw880PMzdNOyO-cOd8QQ6DF4d0FTR9bFG3nGQ0BHaRLvCATKbn9jvJLxYze4rve4_W6LRP8yTHLdpz4qlAUDIJsefkBPuYfiGhsoTvIV-l3d2BT6P8-NWY9tUaaJUotqCyklaazFnlKl2VslJGC8cqIVCs6tQ4GZeaO1fGwsWVU2WsshrxZcpLZW0q7sJWM23sfSBGKiUSVtaILZPUoR20ukwZNyI2iD9YBM-GVSvOAilHsaJf9vNc4DwXfp4LEcH-sK5Fvz_nBWfaM-nzNIvgyVKMO8u7S0xjp23XRjPvJNcR3AtqsHwbmkUluMaRqDUFWTbwrN3rkubka8ferdCuIyiN4PmgJ6th_fUjHvxT64dwnQdFQ33bh63FrLWPYHNet4_7zYLP0dHk5YdftdMRYg
link.rule.ids 230,315,782,786,887,27933,27934,41073,42142,48344,48347,48357,49649,49652,49662,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RVgIkxKO8AgWMxAlkyYkdOz5WdJet2i4HFolb5CQ2VKJZtLtBcOeHM7aTXZbCAc5j-Tkef8nMfAPwwmjHBReamkZKKjRj1OArSz26V1ntTBXIdCbv1PRDcTTyNDl8yIUJ0e6DSzJY6l-S3RDK4KevpyMVKeU7sCe0FKjKe4fHszfjDdeulDFLWhTU848Pzsw_dbL9HF3CmJdDJX_zl4ZnaHzrvxZwG272qJMcRjW5A1dsuw9Xz3q_-j7ciH_vSExKugs_Tr6bpWm7BfGlO5crchT9OCTU0PTRReFAyXgI7SIh9IBM51_tZzL6tlrYCxzvLdqjiz7Rk8w6tOjEk4GgZBqjz8k59jH_SGJtCd_DaJN4dw_ej0ez1xPa12ugtVBsRWUtrTSFs8rVuq5krYzmjtWco1g1uXEyrXTmXJVyl9ZOVakqGkSYeVYpa3N-H3bbeWsfAjFSKS5Y1SC6FLlDS2h1lbPM8NQgAmEJvByOrfwSaTnKDQGz3-cS97n0-1zyBA6Ggy37G7osM6Y9l36WFwk8X4vxbnmHiWntvAttNPNucp3Ag6gH69HQMCqeaZyJ2tKQdQPP270tac8_Bf5uhZYdYWkCrwY92Uzrr4t49E-tn8G1yezstDw9np48hutZVDrUvQPYXS06-wR2lk33tL85PwFzghPA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3RVqqQEIVCIbSAkTiBrDpxYsenqmKzWmhZkCgSt8hJbKhEs9VuguDOD-84TnZZCgfEeSx_jscvmZk3AM-1sjzmsaK6EoLGijGq8ZWlDt3LqLS66Mh0Jh_k9FM6yhxNztGQC9NFuw8uSZ_T4Fia6ubwsrKHvyS-IazBz2BHTRqHlG_AVowfMqjoW8fZm8npindXCJ8xHafUcZEPjs0_dbL-NF3Dm9fDJn_znXZP0njnvxdzB273aJQce_W5CzdMvQvbb3t_-y7c8n_1iE9Wugc_T37oha7bOXElPRcNGXn_Dulqa7qoo-6gyXgI-SJdSAKZzr6ZryT73szNBY73Du3URZ8ASs5atPTEkYSgZOqj0sk59jH7THzNCddDtkrIuw8fx9nZqwnt6zjQMpasoaIURujUGmlLVRailFpxy0rOUSyrRFsRFiqytgi5DUsri1CmFSLPJCqkMQnfg816VpuHQLSQksesqBB1xolFC2lUkbBI81AjMmEBvBiOML_0dB35ipjZ7XOO-5y7fc55AAfDIef9zV3kEVOOYz9K0gCeLcV455wjRddm1nZtFHPucxXAA68Ty9HQYEoeKZyJXNOWZQPH570uqc-_dLzeEi0-wtUAXg46s5rWXxfx6J9aP4Xt96Nxfvp6erIPNyOvc6h6B7DZzFvzGDYWVfukv0RXiRMcgw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kyasanur+Forest+Disease+Classification+Framework+Using+Novel+Extremal+Optimization+Tuned+Neural+Network+in+Fog+Computing+Environment&rft.jtitle=Journal+of+medical+systems&rft.au=Majumdar%2C+Abhishek&rft.au=Debnath%2C+Tapas&rft.au=Sood%2C+Sandeep+K.&rft.au=Baishnab%2C+Krishna+Lal&rft.date=2018-10-01&rft.pub=Springer+US&rft.issn=0148-5598&rft.eissn=1573-689X&rft.volume=42&rft.issue=10&rft_id=info:doi/10.1007%2Fs10916-018-1041-3&rft.externalDocID=10_1007_s10916_018_1041_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-5598&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-5598&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-5598&client=summon