Kyasanur Forest Disease Classification Framework Using Novel Extremal Optimization Tuned Neural Network in Fog Computing Environment
Kyasanur Forest Disease (KFD) is a life-threatening tick-borne viral infectious disease endemic to South Asia and has been taking so many lives every year in the past decade. But recently, this disease has been witnessed in other regions to a large extent and can become an epidemic very soon. In thi...
Saved in:
Published in: | Journal of medical systems Vol. 42; no. 10; pp. 187 - 16 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
Springer US
01-10-2018
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Kyasanur Forest Disease (KFD) is a life-threatening tick-borne viral infectious disease endemic to South Asia and has been taking so many lives every year in the past decade. But recently, this disease has been witnessed in other regions to a large extent and can become an epidemic very soon. In this paper, a new fog computing based e-Healthcare framework has been proposed to monitor the KFD infected patients in an early phase of infection and control the disease outbreak. For ensuring high prediction rate, a novel Extremal Optimization tuned Neural Network (EO-NN) classification algorithm has been developed using hybridization of the extremal optimization with the feed-forward neural network. Additionally, a location based alert system has also been suggested to provide the global positioning system (GPS)-based location information of each KFD infected user and the risk-prone zones as early as possible to prevent the outbreak. Furthermore, a comparative study of proposed EO-NN with state of art classification algorithms has been carried out and it can be concluded that EO-NN outperforms others with an average accuracy of 91.56%, a sensitivity of 91.53% and a specificity of 97.13% respectively in classification and accurate identification of risk-prone areas. |
---|---|
AbstractList | Kyasanur Forest Disease (KFD) is a life-threatening tick-borne viral infectious disease endemic to South Asia and has been taking so many lives every year in the past decade. But recently, this disease has been witnessed in other regions to a large extent and can become an epidemic very soon. In this paper, a new fog computing based e-Healthcare framework has been proposed to monitor the KFD infected patients in an early phase of infection and control the disease outbreak. For ensuring high prediction rate, a novel Extremal Optimization tuned Neural Network (EO-NN) classification algorithm has been developed using hybridization of the extremal optimization with the feed-forward neural network. Additionally, a location based alert system has also been suggested to provide the global positioning system (GPS)-based location information of each KFD infected user and the risk-prone zones as early as possible to prevent the outbreak. Furthermore, a comparative study of proposed EO-NN with state of art classification algorithms has been carried out and it can be concluded that EO-NN outperforms others with an average accuracy of 91.56%, a sensitivity of 91.53% and a specificity of 97.13% respectively in classification and accurate identification of risk-prone areas. |
ArticleNumber | 187 |
Author | Majumdar, Abhishek Sood, Sandeep K. Baishnab, Krishna Lal Debnath, Tapas |
Author_xml | – sequence: 1 givenname: Abhishek surname: Majumdar fullname: Majumdar, Abhishek email: abhishek.nits@ieee.org organization: Department of Electronics and Communication Engineering, National Institute of Technology Silchar – sequence: 2 givenname: Tapas surname: Debnath fullname: Debnath, Tapas organization: Department of Mechanical Engineering, National Institute of Technology Silchar – sequence: 3 givenname: Sandeep K. surname: Sood fullname: Sood, Sandeep K. organization: Guru Nanak Dev University – sequence: 4 givenname: Krishna Lal surname: Baishnab fullname: Baishnab, Krishna Lal organization: Department of Electronics and Communication Engineering, National Institute of Technology Silchar |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30173290$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtvEzEUhS1URNPAD2CDLLFhM2CPM35skFBIAFGlm1ZiZ3mc6-AyYwd7JlDW_HAcppSHxMqL851z7_U5QychBkDoMSXPKSHiRaZEUV4RKitKFrRi99CMNoJVXKoPJ2hG6EJWTaPkKTrL-ZoQojgXD9ApI1SwWpEZ-v7-xmQTxoTXMUEe8GufwWTAy87k7J23ZvAx4HUyPXyJ6RO-yj7s8CYeoMOrr0OC3nT4Yj_43n-b2MsxwBZvYExF2cDw0-ZLRtzhZez343BMWIWDTzH0EIaH6L4zXYZHt-8cXa1Xl8u31fnFm3fLV-eVXQgyVNxy4EY6EM4q23IrjGKOWMaKLLaNcZy2qnaupcxR60RLhdyqmjV1KwAaNkcvp9z92PawtWV0WVHvk-9NutHReP23EvxHvYsHLYiUrATN0bPbgBQ_j-W7dO-zha4zAeKYdU2UKkWoWhX06T_odRxTKOcdKcmErBtZKDpRNsWcE7i7ZSjRx4711LEuHetjx5oVz5M_r7hz_Cq1APUE5CKFHaTfo_-f-gNWKLdx |
CitedBy_id | crossref_primary_10_1007_s13369_021_05411_2 crossref_primary_10_3233_JIFS_169957 crossref_primary_10_1109_ACCESS_2024_3372388 crossref_primary_10_1111_exsy_12796 crossref_primary_10_1007_s11704_021_0163_9 crossref_primary_10_26782_jmcms_2020_07_00006 crossref_primary_10_3390_s23031639 crossref_primary_10_1007_s00607_020_00877_8 crossref_primary_10_1007_s12652_020_01694_9 crossref_primary_10_1109_ACCESS_2020_3045970 crossref_primary_10_1002_rmv_2205 crossref_primary_10_1007_s11356_021_13823_8 crossref_primary_10_1016_j_iot_2022_100514 crossref_primary_10_1007_s10796_020_10016_5 |
Cites_doi | 10.1016/j.ttbdis.2016.06.002 10.1109/IEMBS.2010.5628061 10.1016/j.cmpb.2011.08.003 10.1017/S0266462317000113 10.14257/astl.2016.122.32 10.1016/j.jjcc.2011.11.005 10.1016/j.jcv.2015.02.019 10.1016/j.antiviral.2012.10.005 10.1086/502460 10.1016/j.ttbdis.2016.09.010 10.1016/j.jinf.2004.11.012 10.3201/eid1909.121884 10.1016/j.jocs.2015.11.001 10.1007/978-1-4615-1043-7_3 10.1109/ICCPCT.2016.7530265 10.1007/s11227-015-1474-0 10.1080/17517575.2016.1277558 10.1016/j.compind.2017.05.006 10.1007/s12250-018-0019-0 10.1186/s40249-015-0044-2 10.1006/bbrc.2001.5610 10.1016/j.eswa.2005.09.024 10.1016/j.procs.2015.04.076 10.3201/eid1502.080979 10.1002/rmv.495 10.1109/TITB.2011.2171978 10.1016/j.eswa.2009.03.021 10.1016/j.eswa.2009.09.045 10.1109/6294.819936 10.1016/j.procs.2016.04.016 10.1016/j.cmpb.2013.09.013 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2018 Journal of Medical Systems is a copyright of Springer, (2018). All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018 – notice: Journal of Medical Systems is a copyright of Springer, (2018). All Rights Reserved. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7QF 7QO 7QQ 7RV 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7X7 7XB 88C 88E 88I 8AL 8AO 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K7- K9. KB0 KR7 L7M LK8 L~C L~D M0N M0S M0T M1P M2P M7P NAPCQ P5Z P62 P64 PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1007/s10916-018-1041-3 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts ProQuest Nursing & Allied Health Database Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts ProQuest_Health & Medical Collection ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection (Proquest) (PQ_SDU_P3) Materials Research Database ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni Edition) Health Management Database (Proquest) PML(ProQuest Medical Library) ProQuest Science Journals Biological Science Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Materials Research Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Biological Science Collection ProQuest Medical Library (Alumni) ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Aluminium Industry Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) ProQuest Nursing & Allied Health Source (Alumni) Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Aerospace Database Copper Technical Reference Library Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Computing ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Health Management ProQuest Nursing & Allied Health Source ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Public Health |
EISSN | 1573-689X |
EndPage | 16 |
ExternalDocumentID | 10_1007_s10916_018_1041_3 30173290 |
Genre | Journal Article |
GroupedDBID | --- -53 -5D -5G -BR -EM -Y2 -~C .86 .GJ .VR 04C 06C 06D 0R~ 0VY 199 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3SX 3V. 4.4 406 408 409 40E 53G 5GY 5QI 5RE 5VS 67Z 6NX 77K 78A 7RV 7X7 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AAKSU AANXM AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAWTL AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBYP ACGFO ACGFS ACGOD ACHSB ACHXU ACIGE ACIHN ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACREN ACTTH ACUDM ACVWB ACWMK ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFAFS AFEXP AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGKHE AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG AQUVI ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIHBH EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GRRUI GXS HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW KPH LAK LK8 LLZTM M0N M0T M1P M2P M4Y M7P MA- MK0 N2Q NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZ9 SZN T13 T16 TEORI TN5 TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK8 WOW YLTOR Z45 Z7R Z7U Z7X Z7Y Z7Z Z81 Z82 Z83 Z87 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ~A9 ~EX AACDK AAJBT AASML AAYZH ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU ALIPV CGR CUY CVF ECM EIF H13 NPM AAEOY AAYXX AJOOF CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7XB 8AL 8BQ 8FD 8FK F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c470t-6c6e6a8fe7fc9cb6c7a93f0c334707d5af61b92ffb13f1cf7b178d92352b7ee53 |
IEDL.DBID | AEJHL |
ISSN | 0148-5598 |
IngestDate | Tue Sep 17 21:25:57 EDT 2024 Fri Oct 25 07:40:08 EDT 2024 Thu Oct 10 21:58:06 EDT 2024 Thu Nov 21 20:52:59 EST 2024 Wed Oct 16 00:46:04 EDT 2024 Sat Dec 16 12:05:32 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Fog computing e-Healthcare Neural network Extremal optimization |
Language | English |
License | This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c470t-6c6e6a8fe7fc9cb6c7a93f0c334707d5af61b92ffb13f1cf7b178d92352b7ee53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7088392 |
PMID | 30173290 |
PQID | 2098378258 |
PQPubID | 54050 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7088392 proquest_miscellaneous_2099041929 proquest_journals_2098378258 crossref_primary_10_1007_s10916_018_1041_3 pubmed_primary_30173290 springer_journals_10_1007_s10916_018_1041_3 |
PublicationCentury | 2000 |
PublicationDate | 2018-10-01 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Journal of medical systems |
PublicationTitleAbbrev | J Med Syst |
PublicationTitleAlternate | J Med Syst |
PublicationYear | 2018 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Thomas, J. and Princy, R.T., March. Human heart disease prediction system using data mining techniques. In Circuit, Power and Computing Technologies (ICCPCT), 2016 International Conference on. IEEE. pp. 1–5, 2016. AlshamraniBSOsmanAHInvestigation of hepatitis disease diagnosis using different types of neural network algorithmsInternational Journal of Computer Science and Network Security (IJCSNS).2017172242 Google Maps. (2018). Google Maps. [Online]. Available: https://www.google.co.in/maps/place/Cachar,+Assam/@24.7737965,92.6532688,75953m/data=!3m1!1e3!4m5!3m4!1s0x374e4a7895c9586b:0x921d35c0a735d9e8!8m2!3d24.7821253!4d92.8577105. [Accessed 18 May 2018]. Šter, B., and Dobnikar, A., Neural networks in medical diagnosis: Comparison with other methods. In International Conference on Engineering Applications of Neural Networks. pp. 427-30, 1996. MussoMGalatiVStellaMCCaponeAA case of Alkhumra virus infectionJ. Clin. Virol.20156612141:STN:280:DC%2BC2MjjsFKgsw%3D%3D10.1016/j.jcv.2015.02.01925866328 Parthiban, L., and Subramanian, R., Intelligent heart disease prediction system using CANFIS and genetic algorithm. Int. J. Biol. Biomed. Med. Sci. 3(3):157–160, 2008. MadaniTAAlkhumra virus infection, a new viral hemorrhagic fever in Saudi ArabiaJ. Infect.2005512919710.1016/j.jinf.2004.11.01216038757 Guru, N., Dahiya, A., and Rajpal, N., Decision support system for heart disease diagnosis using neural network. Delhi Bus. Rev. 8(1):99–101, 2007. WuDWarwickKMaZBurgessJGPanSAzizTZPrediction of Parkinson’s disease tremor onset using radial basis function neural networksExpert Syst. Appl.20103742923292810.1016/j.eswa.2009.09.045 PattnaikPKyasanur forest disease: An epidemiological view in IndiaRev. Med. Virol.20061631511651:CAS:528:DC%2BD28XmsVSmur8%3D10.1002/rmv.49516710839 SartakhtiJSZangooeiMHMozafariKHepatitis disease diagnosis using a novel hybrid method based on support vector machine and simulated annealing (SVM-SA)Comput. Methods Prog. Biomed.2012108257057910.1016/j.cmpb.2011.08.003 SandhuRGillHKSoodSKSmart monitoring and controlling of pandemic influenza a (H1N1) using social network analysis and cloud computingJ. Comput. Sci.201612112210.1016/j.jocs.2015.11.001 TandaleBVBalakrishnanAYadavPDMarjaNMouryaDTNew focus of Kyasanur Forest disease virus activity in a tribal area in Kerala, India, 2014Infect. Dis. Poverty2015411210.1186/s40249-015-0044-2257507304351674 SundharakumarKBDhivyaSMohanavalliSChanderRVCloud based fuzzy healthcare systemProcedia Comp. Sci.20155014314810.1016/j.procs.2015.04.076 CharrelRNZakiAMAttouiHFakeehMBilloirFYousefAIde ChesseRDe MiccoPGouldEAde LamballerieXComplete coding sequence of the Alkhurma virus, a tick-borne flavivirus causing severe hemorrhagic fever in humans in Saudi ArabiaBiochem. Biophys. Res. Commun.200128724554611:CAS:528:DC%2BD3MXms12ru7g%3D10.1006/bbrc.2001.561011554750 KaurPDChanaICloud based intelligent system for delivering health care as a serviceComput. Methods Prog. Biomed.2014113134635910.1016/j.cmpb.2013.09.013 MouryaDTYadavPDSpread of Kyasanur Forest disease, Bandipur Tiger Reserve, India, 2012–2013Emerg. Infect. Dis.2013199154010.3201/eid1909.121884239779463810911 WangJZhangHFuSWangHNiDNasciRTangQLiangGIsolation of Kyasanur forest disease virus from febrile patient, Yunnan, ChinaEmerg. Infect. Dis.20091523261:CAS:528:DC%2BD1MXjt1ertb4%3D10.3201/eid1502.080979191932862657630 HuangCLWangCJA GA-based feature selection and parameters optimization for support vector machinesExpert Syst. Appl.200631223124010.1016/j.eswa.2005.09.024 SareenSSoodSKGuptaSKSecure internet of things-based cloud framework to control zika virus outbreakInt. J. Technol. Assess. Health Care2017331111810.1017/S026646231700011328434408 Kyasanur Forest Disease - India (09): (Goa), ProMED-mail. [Online]. Available: http://www.promedmail.org/direct.php?id=3306895. [Accessed 04 April 2018]. Shanker, M., Application of neural network classifiers to disease diagnosis. The Journal of the Industrial Mathematics Society 45(1):51–62, 1995. Accessed 05 April 2018. ObenshainMKApplication of data mining techniques to healthcare dataInfect. Control Hosp. Epidemiol.200425869069510.1086/50246015357163 Boettcher, S., and Percus, A. G., Extremal optimization: an evolutionary local-search algorithm. In: Computational Modeling and Problem Solving in the Networked World. Boston: Springer, 21: 61-77. HanJPeiJKamberMData mining: Concepts and techniques2011New YorkElsevier DangareCSApteSSImproved study of heart disease prediction system using data mining classification techniquesInt. J. Comput. Appl.201247104448 Sareen, S., Gupta, S. K., and Sood, S. K., An intelligent and secure system for predicting and preventing Zika virus outbreak using fog computing. Enterprise Inf. Syst. 11(9):1436–1456, 2017. SandhuRSoodSKKaurGAn intelligent system for predicting and preventing MERS-CoV infection outbreakJ. Supercomput.20167283033305610.1007/s11227-015-1474-0 SoodSKMahajanIWearable IoT sensor based healthcare system for identifying and controlling chikungunya virusComput. Ind.201791334410.1016/j.compind.2017.05.006 Shi, J., Hu, Z., Deng, F., and Shen, S., Tick-borne viruses. Virol. Sin. 1-23, 2018. Sivanandam, S. N., and Deepa, S. N., Introduction to neural networks using Matlab 6.0. Tata McGraw-Hill Education, 2006. AtkovOYGorokhovaSGSboevAGGenerozovEVMuraseyevaEVMoroshkinaSYCherniyNNCoronary heart disease diagnosis by artificial neural networks including genetic polymorphisms and clinical parametersJ. Cardiol.201259219019410.1016/j.jjcc.2011.11.00522218324 Doukas, C., Pliakas, T., Maglogiannis, I., Mobile healthcare information management utilizing Cloud Computing and Android OS. In Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE. p 1037–1040, 2010. RaoVSHKumarMNA new intelligence-based approach for computer-aided diagnosis of dengue feverIEEE Trans. Inf. Technol. Biomed.201216111211810.1109/TITB.2011.217197822010159 Hwang, S., Clarite, D. S., Elijorde, F. I., Gerardo, B. D., and Byun, Y., A web-based analysis for dengue tracking and prediction using artificial neural network. SERSC: ASTL 122:160–164, 2016. Usama, F., Data mining and knowledge discovery in databases: implications for scientific databases. In Proceedings of the 9th International Conference on Scientific and Statistical Database Management (SSDBM’97), Olympia, WA. pp. 2-11, 1997. PerveenSShahbazMGuergachiAKeshavjeeKPerformance analysis of data mining classification techniques to predict diabetesProcedia Comp. Sci.20168211512110.1016/j.procs.2016.04.016 HolbrookMRKyasanur forest diseaseAntivir. Res.20129633533621:CAS:528:DC%2BC38XhslCktLrP10.1016/j.antiviral.2012.10.00523110991 Cook, B. W., Nikiforuk, A. M., Cutts, T. A., Kobasa, D., and Theriault, S. S., Development of a subgenomic clone system for Kyasanur Forest disease virus. Ticks. Tick. Borne. Dis. 7(5):1047–1051, 2016. Kyasanur Forest Disease - India (10): (MH), ProMED-mail. [Online]. Available: http://www.promedmail.org/post/20170517.5041642. [Accessed 04 April 2018]. Kleissner, C., Data mining for the enterprise. In Thirty-First Hawaii International Conference on System Sciences. 7:295–304, 1998. Kyasanur Forest Disease (KFD) Virus Ecology. [Online]. Available: https://www.cdc.gov/vhf/kyasanur/resources/virus-ecology.html. [Accessed 02 June 2018]. Thuraisingham, B., A primer for understanding and applying data mining. IT Prof IEEE 1(1):28–31, 2000. DogantekinEDogantekinAAvciDAutomatic hepatitis diagnosis system based on linear discriminant analysis and adaptive network based on fuzzy inference systemExpert Syst. Appl.2009368112821128610.1016/j.eswa.2009.03.021 Sadanandane, C., Elango, A., Marja, N., Sasidharan, P. V., Raju, K. H. K., and Jambulingam, P., An outbreak of Kyasanur forest disease in the Wayanad and Malappuram districts of Kerala, India. Ticks Tick Borne Dis. 8(1):25–30, 2017. 1041_CR30 SK Sood (1041_CR29) 2017; 91 BV Tandale (1041_CR8) 2015; 4 S Sareen (1041_CR28) 2017; 33 MK Obenshain (1041_CR32) 2004; 25 S Perveen (1041_CR21) 2016; 82 OY Atkov (1041_CR44) 2012; 59 R Sandhu (1041_CR23) 2016; 12 VSH Rao (1041_CR19) 2012; 16 J Han (1041_CR33) 2011 DT Mourya (1041_CR6) 2013; 19 1041_CR18 1041_CR17 1041_CR9 1041_CR36 1041_CR35 D Wu (1041_CR43) 2010; 37 1041_CR16 1041_CR15 1041_CR5 1041_CR10 1041_CR4 1041_CR31 P Pattnaik (1041_CR3) 2006; 16 PD Kaur (1041_CR20) 2014; 113 1041_CR34 1041_CR2 1041_CR1 JS Sartakhti (1041_CR39) 2012; 108 J Wang (1041_CR11) 2009; 15 M Musso (1041_CR14) 2015; 66 R Sandhu (1041_CR26) 2016; 72 E Dogantekin (1041_CR40) 2009; 36 MR Holbrook (1041_CR7) 2012; 96 RN Charrel (1041_CR12) 2001; 287 CS Dangare (1041_CR37) 2012; 47 CL Huang (1041_CR38) 2006; 31 KB Sundharakumar (1041_CR22) 2015; 50 TA Madani (1041_CR13) 2005; 51 BS Alshamrani (1041_CR41) 2017; 17 1041_CR25 1041_CR24 1041_CR27 1041_CR42 1041_CR45 |
References_xml | – ident: 1041_CR4 doi: 10.1016/j.ttbdis.2016.06.002 – ident: 1041_CR18 doi: 10.1109/IEMBS.2010.5628061 – volume: 108 start-page: 570 issue: 2 year: 2012 ident: 1041_CR39 publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2011.08.003 contributor: fullname: JS Sartakhti – volume: 33 start-page: 11 issue: 1 year: 2017 ident: 1041_CR28 publication-title: Int. J. Technol. Assess. Health Care doi: 10.1017/S0266462317000113 contributor: fullname: S Sareen – ident: 1041_CR24 doi: 10.14257/astl.2016.122.32 – volume: 59 start-page: 190 issue: 2 year: 2012 ident: 1041_CR44 publication-title: J. Cardiol. doi: 10.1016/j.jjcc.2011.11.005 contributor: fullname: OY Atkov – volume: 66 start-page: 12 year: 2015 ident: 1041_CR14 publication-title: J. Clin. Virol. doi: 10.1016/j.jcv.2015.02.019 contributor: fullname: M Musso – volume: 96 start-page: 353 issue: 3 year: 2012 ident: 1041_CR7 publication-title: Antivir. Res. doi: 10.1016/j.antiviral.2012.10.005 contributor: fullname: MR Holbrook – volume: 25 start-page: 690 issue: 8 year: 2004 ident: 1041_CR32 publication-title: Infect. Control Hosp. Epidemiol. doi: 10.1086/502460 contributor: fullname: MK Obenshain – volume-title: Data mining: Concepts and techniques year: 2011 ident: 1041_CR33 contributor: fullname: J Han – ident: 1041_CR5 doi: 10.1016/j.ttbdis.2016.09.010 – volume: 51 start-page: 91 issue: 2 year: 2005 ident: 1041_CR13 publication-title: J. Infect. doi: 10.1016/j.jinf.2004.11.012 contributor: fullname: TA Madani – ident: 1041_CR36 – ident: 1041_CR34 – volume: 19 start-page: 1540 issue: 9 year: 2013 ident: 1041_CR6 publication-title: Emerg. Infect. Dis. doi: 10.3201/eid1909.121884 contributor: fullname: DT Mourya – volume: 12 start-page: 11 year: 2016 ident: 1041_CR23 publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2015.11.001 contributor: fullname: R Sandhu – ident: 1041_CR16 doi: 10.1007/978-1-4615-1043-7_3 – ident: 1041_CR25 doi: 10.1109/ICCPCT.2016.7530265 – ident: 1041_CR2 – volume: 72 start-page: 3033 issue: 8 year: 2016 ident: 1041_CR26 publication-title: J. Supercomput. doi: 10.1007/s11227-015-1474-0 contributor: fullname: R Sandhu – ident: 1041_CR42 – ident: 1041_CR27 doi: 10.1080/17517575.2016.1277558 – volume: 91 start-page: 33 year: 2017 ident: 1041_CR29 publication-title: Comput. Ind. doi: 10.1016/j.compind.2017.05.006 contributor: fullname: SK Sood – ident: 1041_CR1 doi: 10.1007/s12250-018-0019-0 – volume: 4 start-page: 12 issue: 1 year: 2015 ident: 1041_CR8 publication-title: Infect. Dis. Poverty doi: 10.1186/s40249-015-0044-2 contributor: fullname: BV Tandale – volume: 287 start-page: 455 issue: 2 year: 2001 ident: 1041_CR12 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.2001.5610 contributor: fullname: RN Charrel – volume: 31 start-page: 231 issue: 2 year: 2006 ident: 1041_CR38 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2005.09.024 contributor: fullname: CL Huang – volume: 47 start-page: 44 issue: 10 year: 2012 ident: 1041_CR37 publication-title: Int. J. Comput. Appl. contributor: fullname: CS Dangare – volume: 50 start-page: 143 year: 2015 ident: 1041_CR22 publication-title: Procedia Comp. Sci. doi: 10.1016/j.procs.2015.04.076 contributor: fullname: KB Sundharakumar – volume: 15 start-page: 326 issue: 2 year: 2009 ident: 1041_CR11 publication-title: Emerg. Infect. Dis. doi: 10.3201/eid1502.080979 contributor: fullname: J Wang – ident: 1041_CR15 – ident: 1041_CR31 – ident: 1041_CR17 – volume: 16 start-page: 151 issue: 3 year: 2006 ident: 1041_CR3 publication-title: Rev. Med. Virol. doi: 10.1002/rmv.495 contributor: fullname: P Pattnaik – volume: 16 start-page: 112 issue: 1 year: 2012 ident: 1041_CR19 publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2011.2171978 contributor: fullname: VSH Rao – volume: 36 start-page: 11282 issue: 8 year: 2009 ident: 1041_CR40 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.03.021 contributor: fullname: E Dogantekin – ident: 1041_CR35 – volume: 17 start-page: 242 issue: 2 year: 2017 ident: 1041_CR41 publication-title: International Journal of Computer Science and Network Security (IJCSNS). contributor: fullname: BS Alshamrani – volume: 37 start-page: 2923 issue: 4 year: 2010 ident: 1041_CR43 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.09.045 contributor: fullname: D Wu – ident: 1041_CR10 – ident: 1041_CR30 doi: 10.1109/6294.819936 – volume: 82 start-page: 115 year: 2016 ident: 1041_CR21 publication-title: Procedia Comp. Sci. doi: 10.1016/j.procs.2016.04.016 contributor: fullname: S Perveen – ident: 1041_CR45 – ident: 1041_CR9 – volume: 113 start-page: 346 issue: 1 year: 2014 ident: 1041_CR20 publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2013.09.013 contributor: fullname: PD Kaur |
SSID | ssj0009667 |
Score | 2.352407 |
Snippet | Kyasanur Forest Disease (KFD) is a life-threatening tick-borne viral infectious disease endemic to South Asia and has been taking so many lives every year in... |
SourceID | pubmedcentral proquest crossref pubmed springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 187 |
SubjectTerms | Algorithms Bayes Theorem Classification Cloud computing Comparative studies Disease control Disease Outbreaks Epidemics Global positioning systems GPS Health care Health Informatics Health risks Health Sciences Humans Hybridization Infectious diseases Information systems Kyasanur Forest Disease - diagnosis Medicine Medicine & Public Health Mobile & Wireless Health Neural networks Neural Networks, Computer Optimization Outbreaks Pest outbreaks Plant diseases Satellite navigation systems Statistics for Life Sciences |
Title | Kyasanur Forest Disease Classification Framework Using Novel Extremal Optimization Tuned Neural Network in Fog Computing Environment |
URI | https://link.springer.com/article/10.1007/s10916-018-1041-3 https://www.ncbi.nlm.nih.gov/pubmed/30173290 https://www.proquest.com/docview/2098378258 https://search.proquest.com/docview/2099041929 https://pubmed.ncbi.nlm.nih.gov/PMC7088392 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71ISEkVEp5BQoyEieQkWMndnwsNKstjwWJInGLnMSGCpqtdjdVufPDGcfJLtvCAU45jOU49nj8xTPzDcBTo51IRKKpqaWkiWaMGjxlqUf3ilfOlB2ZzvijmnzODnNPk8OXVxfNtxeDR7Iz1L_luiGSwT9fz0aaxFRswjYePSnq9vZB_nr8dkW1K2VIkk4y6unHB1_mnzpZP42uQMyrkZKX3KXdKTS6-T_j34WdHnOSg6Akt2DDNntw7V3vVd-DG-HujoSUpNvw880PMzdNOyO-cOd8QQ6DF4d0FTR9bFG3nGQ0BHaRLvCATKbn9jvJLxYze4rve4_W6LRP8yTHLdpz4qlAUDIJsefkBPuYfiGhsoTvIV-l3d2BT6P8-NWY9tUaaJUotqCyklaazFnlKl2VslJGC8cqIVCs6tQ4GZeaO1fGwsWVU2WsshrxZcpLZW0q7sJWM23sfSBGKiUSVtaILZPUoR20ukwZNyI2iD9YBM-GVSvOAilHsaJf9vNc4DwXfp4LEcH-sK5Fvz_nBWfaM-nzNIvgyVKMO8u7S0xjp23XRjPvJNcR3AtqsHwbmkUluMaRqDUFWTbwrN3rkubka8ferdCuIyiN4PmgJ6th_fUjHvxT64dwnQdFQ33bh63FrLWPYHNet4_7zYLP0dHk5YdftdMRYg |
link.rule.ids | 230,315,782,786,887,27933,27934,41073,42142,48344,48347,48357,49649,49652,49662,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RVgIkxKO8AgWMxAlkyYkdOz5WdJet2i4HFolb5CQ2VKJZtLtBcOeHM7aTXZbCAc5j-Tkef8nMfAPwwmjHBReamkZKKjRj1OArSz26V1ntTBXIdCbv1PRDcTTyNDl8yIUJ0e6DSzJY6l-S3RDK4KevpyMVKeU7sCe0FKjKe4fHszfjDdeulDFLWhTU848Pzsw_dbL9HF3CmJdDJX_zl4ZnaHzrvxZwG272qJMcRjW5A1dsuw9Xz3q_-j7ciH_vSExKugs_Tr6bpWm7BfGlO5crchT9OCTU0PTRReFAyXgI7SIh9IBM51_tZzL6tlrYCxzvLdqjiz7Rk8w6tOjEk4GgZBqjz8k59jH_SGJtCd_DaJN4dw_ej0ez1xPa12ugtVBsRWUtrTSFs8rVuq5krYzmjtWco1g1uXEyrXTmXJVyl9ZOVakqGkSYeVYpa3N-H3bbeWsfAjFSKS5Y1SC6FLlDS2h1lbPM8NQgAmEJvByOrfwSaTnKDQGz3-cS97n0-1zyBA6Ggy37G7osM6Y9l36WFwk8X4vxbnmHiWntvAttNPNucp3Ag6gH69HQMCqeaZyJ2tKQdQPP270tac8_Bf5uhZYdYWkCrwY92Uzrr4t49E-tn8G1yezstDw9np48hutZVDrUvQPYXS06-wR2lk33tL85PwFzghPA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3RVqqQEIVCIbSAkTiBrDpxYsenqmKzWmhZkCgSt8hJbKhEs9VuguDOD-84TnZZCgfEeSx_jscvmZk3AM-1sjzmsaK6EoLGijGq8ZWlDt3LqLS66Mh0Jh_k9FM6yhxNztGQC9NFuw8uSZ_T4Fia6ubwsrKHvyS-IazBz2BHTRqHlG_AVowfMqjoW8fZm8npindXCJ8xHafUcZEPjs0_dbL-NF3Dm9fDJn_znXZP0njnvxdzB273aJQce_W5CzdMvQvbb3t_-y7c8n_1iE9Wugc_T37oha7bOXElPRcNGXn_Dulqa7qoo-6gyXgI-SJdSAKZzr6ZryT73szNBY73Du3URZ8ASs5atPTEkYSgZOqj0sk59jH7THzNCddDtkrIuw8fx9nZqwnt6zjQMpasoaIURujUGmlLVRailFpxy0rOUSyrRFsRFiqytgi5DUsri1CmFSLPJCqkMQnfg816VpuHQLSQksesqBB1xolFC2lUkbBI81AjMmEBvBiOML_0dB35ipjZ7XOO-5y7fc55AAfDIef9zV3kEVOOYz9K0gCeLcV455wjRddm1nZtFHPucxXAA68Ty9HQYEoeKZyJXNOWZQPH570uqc-_dLzeEi0-wtUAXg46s5rWXxfx6J9aP4Xt96Nxfvp6erIPNyOvc6h6B7DZzFvzGDYWVfukv0RXiRMcgw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kyasanur+Forest+Disease+Classification+Framework+Using+Novel+Extremal+Optimization+Tuned+Neural+Network+in+Fog+Computing+Environment&rft.jtitle=Journal+of+medical+systems&rft.au=Majumdar%2C+Abhishek&rft.au=Debnath%2C+Tapas&rft.au=Sood%2C+Sandeep+K.&rft.au=Baishnab%2C+Krishna+Lal&rft.date=2018-10-01&rft.pub=Springer+US&rft.issn=0148-5598&rft.eissn=1573-689X&rft.volume=42&rft.issue=10&rft_id=info:doi/10.1007%2Fs10916-018-1041-3&rft.externalDocID=10_1007_s10916_018_1041_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-5598&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-5598&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-5598&client=summon |