Revisiting the adhesion mechanism of mussel-inspired chemistry
Mussel-inspired chemistry has become an ideal platform to engineer a myriad of functional materials, but fully understanding the underlying adhesion mechanism is still missing. Particularly, one of the most pivotal questions is whether catechol still plays a dominant role in molecular-scale adhesion...
Saved in:
Published in: | Chemical science (Cambridge) Vol. 13; no. 6; pp. 1698 - 175 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Royal Society of Chemistry
09-02-2022
The Royal Society of Chemistry |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Mussel-inspired chemistry has become an ideal platform to engineer a myriad of functional materials, but fully understanding the underlying adhesion mechanism is still missing. Particularly, one of the most pivotal questions is whether catechol still plays a dominant role in molecular-scale adhesion like that in mussel adhesive proteins. Herein, for the first time, we reveal an unexplored adhesion mechanism of mussel-inspired chemistry that is strongly dictated by 5,6-dihydroxyindole (DHI) moieties, amending the conventional viewpoint of catechol-dominated adhesion. We demonstrate that polydopamine (PDA) delivers an unprecedented adhesion of 71.62 mN m
−1
, which surpasses that of many mussel-inspired derivatives and is even 121-fold higher than that of polycatechol. Such a robust adhesion mainly stems from a high yield of DHI moieties through a delicate synergy of leading oxidation and subsidiary cyclization within self-polymerization, allowing for governing mussel-inspired adhesion by the substituent chemistry and self-polymerization manner. The adhesion mechanisms revealed in this work offer a useful paradigm for the exploitation of functional mussel-inspired materials.
A 5,6-dihydroxyindole (DHI)-dominated mechanism in the interfacial adhesion of mussel-inspired chemistry is first proposed and demonstrated by the fusion of
in situ
force measurements with molecular-scale simulations. |
---|---|
AbstractList | Mussel-inspired chemistry has become an ideal platform to engineer a myriad of functional materials, but fully understanding the underlying adhesion mechanism is still missing. Particularly, one of the most pivotal questions is whether catechol still plays a dominant role in molecular-scale adhesion like that in mussel adhesive proteins. Herein, for the first time, we reveal an unexplored adhesion mechanism of mussel-inspired chemistry that is strongly dictated by 5,6-dihydroxyindole (DHI) moieties, amending the conventional viewpoint of catechol-dominated adhesion. We demonstrate that polydopamine (PDA) delivers an unprecedented adhesion of 71.62 mN m
, which surpasses that of many mussel-inspired derivatives and is even 121-fold higher than that of polycatechol. Such a robust adhesion mainly stems from a high yield of DHI moieties through a delicate synergy of leading oxidation and subsidiary cyclization within self-polymerization, allowing for governing mussel-inspired adhesion by the substituent chemistry and self-polymerization manner. The adhesion mechanisms revealed in this work offer a useful paradigm for the exploitation of functional mussel-inspired materials. Mussel-inspired chemistry has become an ideal platform to engineer a myriad of functional materials, but fully understanding the underlying adhesion mechanism is still missing. Particularly, one of the most pivotal questions is whether catechol still plays a dominant role in molecular-scale adhesion like that in mussel adhesive proteins. Herein, for the first time, we reveal an unexplored adhesion mechanism of mussel-inspired chemistry that is strongly dictated by 5,6-dihydroxyindole (DHI) moieties, amending the conventional viewpoint of catechol-dominated adhesion. We demonstrate that polydopamine (PDA) delivers an unprecedented adhesion of 71.62 mN m −1 , which surpasses that of many mussel-inspired derivatives and is even 121-fold higher than that of polycatechol. Such a robust adhesion mainly stems from a high yield of DHI moieties through a delicate synergy of leading oxidation and subsidiary cyclization within self-polymerization, allowing for governing mussel-inspired adhesion by the substituent chemistry and self-polymerization manner. The adhesion mechanisms revealed in this work offer a useful paradigm for the exploitation of functional mussel-inspired materials. Mussel-inspired chemistry has become an ideal platform to engineer a myriad of functional materials, but fully understanding the underlying adhesion mechanism is still missing. Particularly, one of the most pivotal questions is whether catechol still plays a dominant role in molecular-scale adhesion like that in mussel adhesive proteins. Herein, for the first time, we reveal an unexplored adhesion mechanism of mussel-inspired chemistry that is strongly dictated by 5,6-dihydroxyindole (DHI) moieties, amending the conventional viewpoint of catechol-dominated adhesion. We demonstrate that polydopamine (PDA) delivers an unprecedented adhesion of 71.62 mN m −1 , which surpasses that of many mussel-inspired derivatives and is even 121-fold higher than that of polycatechol. Such a robust adhesion mainly stems from a high yield of DHI moieties through a delicate synergy of leading oxidation and subsidiary cyclization within self-polymerization, allowing for governing mussel-inspired adhesion by the substituent chemistry and self-polymerization manner. The adhesion mechanisms revealed in this work offer a useful paradigm for the exploitation of functional mussel-inspired materials. A 5,6-dihydroxyindole (DHI)-dominated mechanism in the interfacial adhesion of mussel-inspired chemistry is first proposed and demonstrated by the fusion of in situ force measurements with molecular-scale simulations. Mussel-inspired chemistry has become an ideal platform to engineer a myriad of functional materials, but fully understanding the underlying adhesion mechanism is still missing. Particularly, one of the most pivotal questions is whether catechol still plays a dominant role in molecular-scale adhesion like that in mussel adhesive proteins. Herein, for the first time, we reveal an unexplored adhesion mechanism of mussel-inspired chemistry that is strongly dictated by 5,6-dihydroxyindole (DHI) moieties, amending the conventional viewpoint of catechol-dominated adhesion. We demonstrate that polydopamine (PDA) delivers an unprecedented adhesion of 71.62 mN m-1, which surpasses that of many mussel-inspired derivatives and is even 121-fold higher than that of polycatechol. Such a robust adhesion mainly stems from a high yield of DHI moieties through a delicate synergy of leading oxidation and subsidiary cyclization within self-polymerization, allowing for governing mussel-inspired adhesion by the substituent chemistry and self-polymerization manner. The adhesion mechanisms revealed in this work offer a useful paradigm for the exploitation of functional mussel-inspired materials.Mussel-inspired chemistry has become an ideal platform to engineer a myriad of functional materials, but fully understanding the underlying adhesion mechanism is still missing. Particularly, one of the most pivotal questions is whether catechol still plays a dominant role in molecular-scale adhesion like that in mussel adhesive proteins. Herein, for the first time, we reveal an unexplored adhesion mechanism of mussel-inspired chemistry that is strongly dictated by 5,6-dihydroxyindole (DHI) moieties, amending the conventional viewpoint of catechol-dominated adhesion. We demonstrate that polydopamine (PDA) delivers an unprecedented adhesion of 71.62 mN m-1, which surpasses that of many mussel-inspired derivatives and is even 121-fold higher than that of polycatechol. Such a robust adhesion mainly stems from a high yield of DHI moieties through a delicate synergy of leading oxidation and subsidiary cyclization within self-polymerization, allowing for governing mussel-inspired adhesion by the substituent chemistry and self-polymerization manner. The adhesion mechanisms revealed in this work offer a useful paradigm for the exploitation of functional mussel-inspired materials. Mussel-inspired chemistry has become an ideal platform to engineer a myriad of functional materials, but fully understanding the underlying adhesion mechanism is still missing. Particularly, one of the most pivotal questions is whether catechol still plays a dominant role in molecular-scale adhesion like that in mussel adhesive proteins. Herein, for the first time, we reveal an unexplored adhesion mechanism of mussel-inspired chemistry that is strongly dictated by 5,6-dihydroxyindole (DHI) moieties, amending the conventional viewpoint of catechol-dominated adhesion. We demonstrate that polydopamine (PDA) delivers an unprecedented adhesion of 71.62 mN m−1, which surpasses that of many mussel-inspired derivatives and is even 121-fold higher than that of polycatechol. Such a robust adhesion mainly stems from a high yield of DHI moieties through a delicate synergy of leading oxidation and subsidiary cyclization within self-polymerization, allowing for governing mussel-inspired adhesion by the substituent chemistry and self-polymerization manner. The adhesion mechanisms revealed in this work offer a useful paradigm for the exploitation of functional mussel-inspired materials. |
Author | Xu, Zhi-Kang Zhang, Chao Wang, Zuankai Zeng, Hongbo Xiang, Li Zhang, Jiawen Liu, Chang |
AuthorAffiliation | Department of Polymer Science and Engineering Jiangsu Key Laboratory of Construction Materials Southeast University University of Alberta School of Materials Science and Engineering Department of Chemical and Materials Engineering City University of Hong Kong Department of Mechanical Engineering Zhejiang University |
AuthorAffiliation_xml | – name: Department of Chemical and Materials Engineering – name: University of Alberta – name: Department of Mechanical Engineering – name: Southeast University – name: School of Materials Science and Engineering – name: City University of Hong Kong – name: Department of Polymer Science and Engineering – name: Jiangsu Key Laboratory of Construction Materials – name: Zhejiang University |
Author_xml | – sequence: 1 givenname: Chao surname: Zhang fullname: Zhang, Chao – sequence: 2 givenname: Li surname: Xiang fullname: Xiang, Li – sequence: 3 givenname: Jiawen surname: Zhang fullname: Zhang, Jiawen – sequence: 4 givenname: Chang surname: Liu fullname: Liu, Chang – sequence: 5 givenname: Zuankai surname: Wang fullname: Wang, Zuankai – sequence: 6 givenname: Hongbo surname: Zeng fullname: Zeng, Hongbo – sequence: 7 givenname: Zhi-Kang surname: Xu fullname: Xu, Zhi-Kang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35282627$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkc1LHTEUxUOx1I-66b5loBsRRvPxkkw2gryqFQTB6jpkkjtvIjPJazIj-N839enrx93cC-fH4R7OPtoJMQBCnwg-IZipU0eyxZwTunqH9ihekFpwpna2N8W76DDnR1yGMcKp_IB2GacNFVTuobM7ePLZTz6sqqmHyrgeso-hGsH2Jvg8VrGrxjlnGGof8toncJXtYfR5Ss8f0fvODBkOX_cBeri8uF9-r29ur66X5ze1XQg11YCpk0QaSYljlFNoqLK0bWzHO946BaSTwhLuJFaNaVsjWtwSzEXnjGCKsQN0tvFdz-0IzkKYkhn0OvnRpGcdjdf_KsH3ehWfdNNQiRdNMTh6NUjx5wx50iWAhWEwAeKcNRWsUQsiKC7o1__QxzinUOIVigpFuJS8UMcbyqaYc4Ju-wzB-ncz-hv5sXxp5qrAX_5-f4u-9VCAzxsgZbtV_1TLfgEud5TF |
CitedBy_id | crossref_primary_10_1002_smtd_202400223 crossref_primary_10_1002_EXP_20220167 crossref_primary_10_1016_j_carbon_2024_119169 crossref_primary_10_1016_j_compositesa_2023_107779 crossref_primary_10_1016_j_memsci_2022_120829 crossref_primary_10_1016_j_colsurfb_2022_112914 crossref_primary_10_1016_j_jece_2023_111400 crossref_primary_10_1016_j_aca_2024_342340 crossref_primary_10_1016_j_jcis_2023_01_146 crossref_primary_10_1016_j_surfin_2024_103921 crossref_primary_10_1039_D3MH01812A crossref_primary_10_1007_s10118_024_3108_6 crossref_primary_10_1016_j_cej_2024_149460 crossref_primary_10_1007_s40684_024_00635_7 crossref_primary_10_1016_j_copbio_2023_103013 crossref_primary_10_1016_j_molliq_2024_124690 crossref_primary_10_1016_j_seppur_2024_126602 crossref_primary_10_1039_D3TB00590A crossref_primary_10_1002_admi_202300208 crossref_primary_10_1021_acsami_4c05753 crossref_primary_10_1016_j_progpolymsci_2024_101815 crossref_primary_10_1039_D2NH00232A crossref_primary_10_1002_adfm_202201430 crossref_primary_10_1016_j_cej_2023_147357 crossref_primary_10_3390_catal14060375 crossref_primary_10_1016_j_cej_2024_151434 crossref_primary_10_1016_j_jece_2023_111655 crossref_primary_10_1002_adfm_202301593 crossref_primary_10_1002_adfm_202303254 crossref_primary_10_1016_j_mtbio_2023_100592 crossref_primary_10_1021_acs_langmuir_3c01585 crossref_primary_10_1039_D2CC05102H crossref_primary_10_1126_science_adl2002 crossref_primary_10_1021_acsami_3c00769 crossref_primary_10_1515_ntrev_2024_0026 crossref_primary_10_1021_acsami_2c14614 crossref_primary_10_1021_acsomega_3c07972 crossref_primary_10_1016_j_carbpol_2023_121293 crossref_primary_10_1021_acs_langmuir_3c02818 crossref_primary_10_1002_admt_202300393 crossref_primary_10_1021_acsami_3c05236 crossref_primary_10_1039_D3EM00191A crossref_primary_10_1016_j_compositesa_2023_107794 crossref_primary_10_1002_adfm_202305154 crossref_primary_10_1039_D3TB02105J crossref_primary_10_1016_j_biopha_2023_115846 crossref_primary_10_1021_acsapm_4c00362 crossref_primary_10_1080_02773813_2023_2213205 crossref_primary_10_3389_fcimb_2023_1142029 crossref_primary_10_1021_acsami_4c08603 crossref_primary_10_1002_app_55766 crossref_primary_10_1016_j_seppur_2023_123753 crossref_primary_10_1016_j_ceramint_2023_09_213 crossref_primary_10_1021_acs_iecr_2c03645 crossref_primary_10_1016_j_ijbiomac_2024_131448 crossref_primary_10_1021_acssuschemeng_2c05753 crossref_primary_10_1016_j_actbio_2022_08_069 crossref_primary_10_1021_acsaenm_2c00242 crossref_primary_10_1002_marc_202300484 crossref_primary_10_1016_j_cej_2023_141905 crossref_primary_10_1016_j_cej_2024_153385 crossref_primary_10_1002_marc_202200946 crossref_primary_10_1002_adsu_202400142 crossref_primary_10_1016_j_jcis_2022_07_167 crossref_primary_10_1016_j_nantod_2023_102105 crossref_primary_10_6023_A23060266 crossref_primary_10_1002_adfm_202312465 crossref_primary_10_1039_D3PY00147D crossref_primary_10_1016_j_apsusc_2024_159947 |
Cites_doi | 10.1002/anie.201301646 10.1039/c2sm25173f 10.1038/nchem.2720 10.1016/j.matt.2019.05.002 10.1038/ncomms9663 10.1073/pnas.0605552103 10.1021/acsami.7b09662 10.1126/science.1147241 10.1002/anie.201510319 10.1021/cr400407a 10.1039/C8RA04472D 10.1126/science.aab0556 10.1073/pnas.0607852104 10.1021/acsnano.0c09577 10.1126/science.aah6362 10.1002/adma.201403709 10.1039/C6SC04692D 10.1002/pola.28368 10.1073/pnas.1007416107 10.1021/la204831b 10.1021/acsami.7b09774 10.1021/ar500273y 10.1002/anie.201501748 10.1126/science.212.4498.1038 10.1002/adfm.201703852 10.1021/la4029782 10.1016/j.jcis.2012.07.030 10.1002/anie.201601881 10.1021/acs.langmuir.9b02022 10.1039/D0SC02262D 10.1002/anie.202005946 10.1021/jacs.9b11552 10.1002/anie.201510724 10.1016/j.colsurfb.2008.11.011 10.1002/anie.201807804 10.1021/acs.chemmater.6b01587 10.1021/la4020288 10.1039/c0py00215a 10.1021/acsnano.8b06321 10.1039/C9CS00849G 10.1002/adfm.201200177 10.1002/macp.201400366 10.1021/jacs.6b03453 10.1126/science.8378771 10.1002/adma.201100303 10.1002/adma.201202343 10.1021/am302439g 10.1038/s41467-017-02387-2 10.1021/ja309590f 10.1021/acs.langmuir.5b00105 10.1002/adfm.201202127 10.1021/acsami.7b11092 10.1002/aenm.201602068 10.1021/acs.langmuir.9b00392 10.1002/anie.201811763 10.1002/adfm.201201156 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2022 This journal is © The Royal Society of Chemistry 2022 The Royal Society of Chemistry |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2022 – notice: This journal is © The Royal Society of Chemistry 2022 The Royal Society of Chemistry |
DBID | NPM AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1039/d1sc05512g |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2041-6539 |
EndPage | 175 |
ExternalDocumentID | 10_1039_D1SC05512G 35282627 d1sc05512g |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: 21534009 – fundername: ; grantid: Unassigned |
GroupedDBID | 0-7 0R 705 7~J AAGNR AAIWI AAPBV ABGFH ACGFS ACIWK ADBBV ADMRA AENEX AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI AOIJS AUDPV AZFZN BCNDV BLAPV BSQNT C6K CKLOX D0L EE0 EF- F5P GROUPED_DOAJ HYE HZ H~N JG O-G O9- OK1 R7C R7D RCNCU ROYLF RPM RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH SMJ -JG 0R~ 53G AAEMU AAFWJ AAJAE AARTK AAXHV ABEMK ABPDG ABXOH AEFDR AESAV AFLYV AGEGJ AGRSR AHGCF AKBGW APEMP H13 HZ~ NPM PGMZT RAOCF RNS AAYXX AFPKN CITATION 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c469t-e02d717a721d3252e829c2b8cf5f5bd9e1f76c15d7098abba6b0b1056fda63933 |
IEDL.DBID | RPM |
ISSN | 2041-6520 |
IngestDate | Tue Sep 17 21:17:56 EDT 2024 Sat Oct 26 04:19:05 EDT 2024 Thu Oct 10 20:01:06 EDT 2024 Fri Aug 23 01:58:33 EDT 2024 Sat Nov 02 12:30:34 EDT 2024 Thu Feb 10 04:27:53 EST 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | This journal is © The Royal Society of Chemistry. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-e02d717a721d3252e829c2b8cf5f5bd9e1f76c15d7098abba6b0b1056fda63933 |
Notes | 10.1039/d1sc05512g Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The four authors contributed equally to this work. |
ORCID | 0000-0003-1154-2502 0000-0002-2261-7162 0000-0002-3510-1122 0000-0002-1432-5979 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8827048/ |
PMID | 35282627 |
PQID | 2626915775 |
PQPubID | 2047492 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8827048 rsc_primary_d1sc05512g proquest_journals_2626915775 crossref_primary_10_1039_D1SC05512G pubmed_primary_35282627 proquest_miscellaneous_2638941620 |
PublicationCentury | 2000 |
PublicationDate | 20220209 |
PublicationDateYYYYMMDD | 2022-02-09 |
PublicationDate_xml | – month: 2 year: 2022 text: 20220209 day: 9 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Chemical science (Cambridge) |
PublicationTitleAlternate | Chem Sci |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Maier (D1SC05512G/cit38/1) 2015; 349 Sedó (D1SC05512G/cit17/1) 2013; 25 Rapp (D1SC05512G/cit30/1) 2016; 138 Kang (D1SC05512G/cit16/1) 2012; 22 Utzig (D1SC05512G/cit21/1) 2016; 55 Zhang (D1SC05512G/cit12/1) 2021; 15 Hong (D1SC05512G/cit42/1) 2012; 22 Wang (D1SC05512G/cit9/1) 2019; 1 Kim (D1SC05512G/cit51/1) 2013; 5 Delparastan (D1SC05512G/cit23/1) 2019; 58 Liao (D1SC05512G/cit11/1) 2017; 27 Zhang (D1SC05512G/cit6/1) 2018; 12 Zeng (D1SC05512G/cit26/1) 2010; 107 Qu (D1SC05512G/cit8/1) 2017; 7 Alfieri (D1SC05512G/cit47/1) 2018; 10 Liu (D1SC05512G/cit13/1) 2014; 114 Li (D1SC05512G/cit29/1) 2017; 357 Kim (D1SC05512G/cit5/1) 2015; 54 Dreyer (D1SC05512G/cit31/1) 2012; 28 Hong (D1SC05512G/cit34/1) 2013; 52 Du (D1SC05512G/cit56/1) 2014; 26 Ahn (D1SC05512G/cit2/1) 2015; 6 Della Vecchia (D1SC05512G/cit45/1) 2013; 23 Hwang (D1SC05512G/cit39/1) 2012; 8 Ni (D1SC05512G/cit44/1) 2020; 11 Zhang (D1SC05512G/cit20/1) 2020; 142 Liebscher (D1SC05512G/cit32/1) 2013; 29 Lin (D1SC05512G/cit1/1) 2007; 104 Wei (D1SC05512G/cit27/1) 2013; 135 Zhang (D1SC05512G/cit14/1) 2016; 55 Ponzio (D1SC05512G/cit55/1) 2016; 28 Kord Forooshani (D1SC05512G/cit41/1) 2017; 55 Lyu (D1SC05512G/cit43/1) 2019; 35 Lee (D1SC05512G/cit22/1) 2006; 103 Ryou (D1SC05512G/cit7/1) 2011; 23 Kumpf (D1SC05512G/cit49/1) 1993; 261 Cui (D1SC05512G/cit52/1) 2014; 215 Zhang (D1SC05512G/cit10/1) 2020; 49 Klosterman (D1SC05512G/cit53/1) 2015; 31 Ball (D1SC05512G/cit54/1) 2012; 386 Lyu (D1SC05512G/cit46/1) 2018; 8 Ball (D1SC05512G/cit48/1) 2013; 29 Zhang (D1SC05512G/cit24/1) 2017; 9 Gebbie (D1SC05512G/cit37/1) 2017; 9 Waite (D1SC05512G/cit3/1) 1981; 212 Rahim (D1SC05512G/cit18/1) 2019; 58 Lim (D1SC05512G/cit25/1) 2016; 55 Tiu (D1SC05512G/cit28/1) 2020; 59 d'Ischia (D1SC05512G/cit36/1) 2014; 47 Zhu (D1SC05512G/cit35/1) 2009; 69 Xiang (D1SC05512G/cit40/1) 2019; 35 Chen (D1SC05512G/cit33/1) 2017; 8 Lee (D1SC05512G/cit4/1) 2007; 318 Wei (D1SC05512G/cit50/1) 2010; 1 Zhao (D1SC05512G/cit19/1) 2017; 8 Zhang (D1SC05512G/cit15/1) 2017; 9 |
References_xml | – volume: 52 start-page: 9187 year: 2013 ident: D1SC05512G/cit34/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201301646 contributor: fullname: Hong – volume: 8 start-page: 5640 year: 2012 ident: D1SC05512G/cit39/1 publication-title: Soft Matter doi: 10.1039/c2sm25173f contributor: fullname: Hwang – volume: 9 start-page: 473 year: 2017 ident: D1SC05512G/cit37/1 publication-title: Nat. Chem. doi: 10.1038/nchem.2720 contributor: fullname: Gebbie – volume: 1 start-page: 115 year: 2019 ident: D1SC05512G/cit9/1 publication-title: Matter doi: 10.1016/j.matt.2019.05.002 contributor: fullname: Wang – volume: 6 start-page: 8663 year: 2015 ident: D1SC05512G/cit2/1 publication-title: Nat. Commun. doi: 10.1038/ncomms9663 contributor: fullname: Ahn – volume: 103 start-page: 12999 year: 2006 ident: D1SC05512G/cit22/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0605552103 contributor: fullname: Lee – volume: 10 start-page: 7670 year: 2018 ident: D1SC05512G/cit47/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b09662 contributor: fullname: Alfieri – volume: 318 start-page: 426 year: 2007 ident: D1SC05512G/cit4/1 publication-title: Science doi: 10.1126/science.1147241 contributor: fullname: Lee – volume: 55 start-page: 3342 year: 2016 ident: D1SC05512G/cit25/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201510319 contributor: fullname: Lim – volume: 114 start-page: 5057 year: 2014 ident: D1SC05512G/cit13/1 publication-title: Chem. Rev. doi: 10.1021/cr400407a contributor: fullname: Liu – volume: 8 start-page: 27695 year: 2018 ident: D1SC05512G/cit46/1 publication-title: RSC Adv. doi: 10.1039/C8RA04472D contributor: fullname: Lyu – volume: 349 start-page: 628 year: 2015 ident: D1SC05512G/cit38/1 publication-title: Science doi: 10.1126/science.aab0556 contributor: fullname: Maier – volume: 104 start-page: 3782 year: 2007 ident: D1SC05512G/cit1/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0607852104 contributor: fullname: Lin – volume: 15 start-page: 1785 year: 2021 ident: D1SC05512G/cit12/1 publication-title: ACS Nano doi: 10.1021/acsnano.0c09577 contributor: fullname: Zhang – volume: 357 start-page: 378 year: 2017 ident: D1SC05512G/cit29/1 publication-title: Science doi: 10.1126/science.aah6362 contributor: fullname: Li – volume: 26 start-page: 8029 year: 2014 ident: D1SC05512G/cit56/1 publication-title: Adv. Mater. doi: 10.1002/adma.201403709 contributor: fullname: Du – volume: 8 start-page: 1631 year: 2017 ident: D1SC05512G/cit33/1 publication-title: Chem. Sci. doi: 10.1039/C6SC04692D contributor: fullname: Chen – volume: 55 start-page: 9 year: 2017 ident: D1SC05512G/cit41/1 publication-title: J. Polym. Sci., Part A: Polym. Chem. doi: 10.1002/pola.28368 contributor: fullname: Kord Forooshani – volume: 107 start-page: 12850 year: 2010 ident: D1SC05512G/cit26/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1007416107 contributor: fullname: Zeng – volume: 28 start-page: 6428 year: 2012 ident: D1SC05512G/cit31/1 publication-title: Langmuir doi: 10.1021/la204831b contributor: fullname: Dreyer – volume: 9 start-page: 30943 year: 2017 ident: D1SC05512G/cit24/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b09774 contributor: fullname: Zhang – volume: 47 start-page: 3541 year: 2014 ident: D1SC05512G/cit36/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar500273y contributor: fullname: d'Ischia – volume: 54 start-page: 7318 year: 2015 ident: D1SC05512G/cit5/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201501748 contributor: fullname: Kim – volume: 212 start-page: 1038 year: 1981 ident: D1SC05512G/cit3/1 publication-title: Science doi: 10.1126/science.212.4498.1038 contributor: fullname: Waite – volume: 27 start-page: 1703852 year: 2017 ident: D1SC05512G/cit11/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201703852 contributor: fullname: Liao – volume: 29 start-page: 12754 year: 2013 ident: D1SC05512G/cit48/1 publication-title: Langmuir doi: 10.1021/la4029782 contributor: fullname: Ball – volume: 386 start-page: 366 year: 2012 ident: D1SC05512G/cit54/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2012.07.030 contributor: fullname: Ball – volume: 55 start-page: 9524 year: 2016 ident: D1SC05512G/cit21/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201601881 contributor: fullname: Utzig – volume: 35 start-page: 15639 year: 2019 ident: D1SC05512G/cit40/1 publication-title: Langmuir doi: 10.1021/acs.langmuir.9b02022 contributor: fullname: Xiang – volume: 11 start-page: 7836 year: 2020 ident: D1SC05512G/cit44/1 publication-title: Chem. Sci. doi: 10.1039/D0SC02262D contributor: fullname: Ni – volume: 59 start-page: 16616 year: 2020 ident: D1SC05512G/cit28/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202005946 contributor: fullname: Tiu – volume: 142 start-page: 1710 year: 2020 ident: D1SC05512G/cit20/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b11552 contributor: fullname: Zhang – volume: 55 start-page: 3054 year: 2016 ident: D1SC05512G/cit14/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201510724 contributor: fullname: Zhang – volume: 69 start-page: 152 year: 2009 ident: D1SC05512G/cit35/1 publication-title: Colloids Surf., B doi: 10.1016/j.colsurfb.2008.11.011 contributor: fullname: Zhu – volume: 58 start-page: 1904 year: 2019 ident: D1SC05512G/cit18/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201807804 contributor: fullname: Rahim – volume: 28 start-page: 4697 year: 2016 ident: D1SC05512G/cit55/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b01587 contributor: fullname: Ponzio – volume: 29 start-page: 10539 year: 2013 ident: D1SC05512G/cit32/1 publication-title: Langmuir doi: 10.1021/la4020288 contributor: fullname: Liebscher – volume: 1 start-page: 1430 year: 2010 ident: D1SC05512G/cit50/1 publication-title: Polym. Chem. doi: 10.1039/c0py00215a contributor: fullname: Wei – volume: 12 start-page: 12347 year: 2018 ident: D1SC05512G/cit6/1 publication-title: ACS Nano doi: 10.1021/acsnano.8b06321 contributor: fullname: Zhang – volume: 49 start-page: 3605 year: 2020 ident: D1SC05512G/cit10/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00849G contributor: fullname: Zhang – volume: 22 start-page: 2949 year: 2012 ident: D1SC05512G/cit16/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200177 contributor: fullname: Kang – volume: 215 start-page: 2403 year: 2014 ident: D1SC05512G/cit52/1 publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.201400366 contributor: fullname: Cui – volume: 138 start-page: 9013 year: 2016 ident: D1SC05512G/cit30/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b03453 contributor: fullname: Rapp – volume: 261 start-page: 1708 year: 1993 ident: D1SC05512G/cit49/1 publication-title: Science doi: 10.1126/science.8378771 contributor: fullname: Kumpf – volume: 23 start-page: 3066 year: 2011 ident: D1SC05512G/cit7/1 publication-title: Adv. Mater. doi: 10.1002/adma.201100303 contributor: fullname: Ryou – volume: 25 start-page: 653 year: 2013 ident: D1SC05512G/cit17/1 publication-title: Adv. Mater. doi: 10.1002/adma.201202343 contributor: fullname: Sedó – volume: 5 start-page: 233 year: 2013 ident: D1SC05512G/cit51/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am302439g contributor: fullname: Kim – volume: 8 start-page: 2218 year: 2017 ident: D1SC05512G/cit19/1 publication-title: Nat. Commun. doi: 10.1038/s41467-017-02387-2 contributor: fullname: Zhao – volume: 135 start-page: 377 year: 2013 ident: D1SC05512G/cit27/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja309590f contributor: fullname: Wei – volume: 31 start-page: 3451 year: 2015 ident: D1SC05512G/cit53/1 publication-title: Langmuir doi: 10.1021/acs.langmuir.5b00105 contributor: fullname: Klosterman – volume: 23 start-page: 1331 year: 2013 ident: D1SC05512G/cit45/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201202127 contributor: fullname: Della Vecchia – volume: 9 start-page: 34356 year: 2017 ident: D1SC05512G/cit15/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b11092 contributor: fullname: Zhang – volume: 7 start-page: 1602068 year: 2017 ident: D1SC05512G/cit8/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602068 contributor: fullname: Qu – volume: 35 start-page: 5191 year: 2019 ident: D1SC05512G/cit43/1 publication-title: Langmuir doi: 10.1021/acs.langmuir.9b00392 contributor: fullname: Lyu – volume: 58 start-page: 1077 year: 2019 ident: D1SC05512G/cit23/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201811763 contributor: fullname: Delparastan – volume: 22 start-page: 4711 year: 2012 ident: D1SC05512G/cit42/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201201156 contributor: fullname: Hong |
SSID | ssj0000331527 |
Score | 2.6375992 |
Snippet | Mussel-inspired chemistry has become an ideal platform to engineer a myriad of functional materials, but fully understanding the underlying adhesion mechanism... |
SourceID | pubmedcentral proquest crossref pubmed rsc |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1698 |
SubjectTerms | Adhesion Catechol Chemistry Functional materials Oxidation Polymerization |
Title | Revisiting the adhesion mechanism of mussel-inspired chemistry |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35282627 https://www.proquest.com/docview/2626915775 https://www.proquest.com/docview/2638941620 https://pubmed.ncbi.nlm.nih.gov/PMC8827048 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5190C5VEBLCVCUqlzNOk6cxBcktLwuraoCErfIz7ISySKy-_879sYLiFvPHjnJzCT-JjPzDcCxVLySrtREy0KSQhhFBDoKkcIpqlSNKMH3O1_fVL_u6_MLT5PDYy9MKNrXanbSPbYn3ewh1FY-tXoS68Qmv39OERVWnm92BCPEhq9C9PD5zfNhVCujRUZKzmikJc3FxGS9pogS2N9N2PDMJqz0A2Ven0nvgOb7esnRcxwPEo6hyy34NODH9Gx1n9vwwXY78HEax7Z9htM_oV_cVzOnCO5SaR6s_yOWttY3-c76Np27tF32vX0ks84n2q1JddzgC9xdXtxOr8kwJIFojGwXxFJmMCSTGMmZnHFmayY0U7V23HFlhM1cVeqMm4qKWiolS7QBgqrSGYnoJM93YdzNO7sHqaul1lQJh2FGgdspg-hBSiVkSW3BiwR-RDU1TysujCbksHPRnGc306DXqwQOowab4X3oG9RyKTJeVTyB7-tlfDCfnpCdnS-9DIInxIeMJvB1pfD1ZaKlEqjemGIt4Fmy366g8wS27MFZEthFo63lX_xg_7-3PIBN5pshfA23OITx4nlpv8GoN8ujENofBcf8B9x651M |
link.rule.ids | 230,315,729,782,786,866,887,27935,27936,53803,53805 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6xVCpc-qYNhTZVezXrOHESXyqh5bFVAVWFSr1FfpaVSBYR9v8z9sZbEDfOtmzZ3zj-Jp75BuCbVLySrtREy0KSQhhFBBoKkcIpqlSNLMHnO0_Pq7O_9cGhl8nhMRcmBO1rNdvrrtq9bnYZYiuvWz2OcWLjX6cTZIWV15sdwTM8rzS_56SHD3CeD8VaGS0yUnJGozBpLsYm6zVFnsD-bcJzr23CSl9S5v6t9IhqPo6YHN3EAiHhIjp6-cQlvIIXA_NM95fNr2HNdm9gYxILvr2F779DprmPg06RFqbSXFr_Ly1trU8PnvVtOndpu-h7e0VmnX-itybVcYB38Ofo8GIyJUN5BaLRJ74lljKDzpxEH9DkjDNbM6GZqrXjjisjbOaqUmfcVFTUUilZInpIx0pnJPKaPN-C9W7e2Q-QulpqTZVw6KAUOJwyyDukVEKW1Ba8SOBr3N7meqmi0YTX71w0B9n5JOBxnMBO3PlmOEl9g-iUIuNVxRP4smrGhfmHDdnZ-cL3QdqFzJLRBN4vgVpNExFOoHoA4aqD19d-2IKYBZ3tAaMEthDsVf__9rP95CE_w8b04vSkOflx9vMjbDKfUuEjwcUOrN_eLOwujHqz-BTM-g47yPvu |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6xrVR6gfIoBFpIBVd3HSdO4gsS2u1S1IcqChK3yE-6UpNdNd3_z9ibhFa90bNHtuzPjr-JZ74B-CwVL6TLNdEykyQTRhGBG4VI4RRVqkSW4POdjy-L89_l9MjL5AylvkLQvlbzw-a6PmzmVyG2clnrcR8nNr44myArLLze7NK48Qg28cxSfsdRDx_hNO0KtjKaJSTnjPbipKkYm6TVFLkC-7MNW17fhOW-rMzdm-kB3XwYNTm66YuEhMto9vwR09iBZx0Djb-uTV7AE9u8hKeTvvDbK_jyI2Sc-3joGOlhLM2V9f_U4tr6NOF5W8cLF9ertrXXZN74p3prYt138Bp-zY5-To5JV2aBaPSNb4mlzKBTJ9EXNCnjzJZMaKZK7bjjygibuCLXCTcFFaVUSuaIItKy3BmJ_CZNd2GjWTT2LcSulFpTJRw6Khl2pwzyDymVkDm1Gc8i-NQvcbVcq2lU4RU8FdU0uZwETL5FsNevftWdqLZChHKR8KLgERwMzTgx_8AhG7tYeRukX8gwGY3gzRqsYZge5QiKezAOBl5n-34L4hb0tjucIthFwAf7f3vo3X93-RG2Lqaz6vT7-cl72GY-s8IHhIs92Li9Wdl9GLVm9SHs7L81tf5u |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revisiting+the+adhesion+mechanism+of+mussel-inspired+chemistry&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Zhang%2C+Chao&rft.au=Xiang%2C+Li&rft.au=Zhang%2C+Jiawen&rft.au=Liu%2C+Chang&rft.date=2022-02-09&rft.issn=2041-6520&rft.volume=13&rft.issue=6&rft.spage=1698&rft_id=info:doi/10.1039%2Fd1sc05512g&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |