Investigation of Avian Influenza H5N6 Virus-like Particles as a Broad-Spectrum Vaccine Candidate against H5Nx Viruses
Highly pathogenic avian influenza (HPAI) clade 2.3.4.4 viruses have been reported to be the source of infections in several outbreaks in the past decades. In a previous study, we screened out a broad-spectrum virus strain, H5N6-Sichuan subtype, by using a lentiviral pseudovirus system. In this proje...
Saved in:
Published in: | Viruses Vol. 14; no. 5; p. 925 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
MDPI AG
28-04-2022
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Highly pathogenic avian influenza (HPAI) clade 2.3.4.4 viruses have been reported to be the source of infections in several outbreaks in the past decades. In a previous study, we screened out a broad-spectrum virus strain, H5N6-Sichuan subtype, by using a lentiviral pseudovirus system. In this project, we aimed to investigate the potential of H5N6 virus-like particles (VLPs) serving as a broad-spectrum vaccine candidate against H5Nx viruses. We cloned the full-length M1 gene and H5, N6 genes derived from the H5N6-Sichuan into pFASTBac vector and generated the VLPs using the baculovirus-insect cell system. H5N6 VLPs were purified by sucrose gradient centrifugation, and the presence of H5, N6 and M1 proteins was verified by Western blot and SDS-PAGE. The hemagglutination titer of H5N6 VLPs after purification reached 5120 and the particle structure remained as viewed by electron microscopy. The H5N6 VLPs and 293T mammalian cell-expressed H5+N6 proteins were sent for mice immunization. Antisera against the H5+N6 protein showed 80 to 320 neutralizing antibody titers to various H5Nx pseudoviruses. In contrast, H5N6 VLPs not only elicited higher neutralizing antibody titers, ranging from 640 to 1280, but also induced higher IL-2, IL-4, IL-5, IFN-γ and TNF production, thus indicating that H5N6 VLPs may be a potential vaccine candidate for broad-spectrum H5Nx avian influenza vaccines. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1999-4915 1999-4915 |
DOI: | 10.3390/v14050925 |