Predicting enzymatic reactions with a molecular transformer
The use of enzymes for organic synthesis allows for simplified, more economical and selective synthetic routes not accessible to conventional reagents. However, predicting whether a particular molecule might undergo a specific enzyme transformation is very difficult. Here we used multi-task transfer...
Saved in:
Published in: | Chemical science (Cambridge) Vol. 12; no. 25; pp. 8648 - 8659 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Royal Society of Chemistry
01-07-2021
The Royal Society of Chemistry |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The use of enzymes for organic synthesis allows for simplified, more economical and selective synthetic routes not accessible to conventional reagents. However, predicting whether a particular molecule might undergo a specific enzyme transformation is very difficult. Here we used multi-task transfer learning to train the molecular transformer, a sequence-to-sequence machine learning model, with one million reactions from the US Patent Office (USPTO) database combined with 32 181 enzymatic transformations annotated with a text description of the enzyme. The resulting enzymatic transformer model predicts the structure and stereochemistry of enzyme-catalyzed reaction products with remarkable accuracy. One of the key novelties is that we combined the reaction SMILES language of only 405 atomic tokens with thousands of human language tokens describing the enzymes, such that our enzymatic transformer not only learned to interpret SMILES, but also the natural language as used by human experts to describe enzymes and their mutations.
The enzymatic transformer was trained with a combination of patent reactions and biotransformations and predicts the structure and stereochemistry of enzyme-catalyzed reaction products with remarkable accuracy. |
---|---|
AbstractList | The use of enzymes for organic synthesis allows for simplified, more economical and selective synthetic routes not accessible to conventional reagents. However, predicting whether a particular molecule might undergo a specific enzyme transformation is very difficult. Here we used multi-task transfer learning to train the molecular transformer, a sequence-to-sequence machine learning model, with one million reactions from the US Patent Office (USPTO) database combined with 32 181 enzymatic transformations annotated with a text description of the enzyme. The resulting enzymatic transformer model predicts the structure and stereochemistry of enzyme-catalyzed reaction products with remarkable accuracy. One of the key novelties is that we combined the reaction SMILES language of only 405 atomic tokens with thousands of human language tokens describing the enzymes, such that our enzymatic transformer not only learned to interpret SMILES, but also the natural language as used by human experts to describe enzymes and their mutations.
The enzymatic transformer was trained with a combination of patent reactions and biotransformations and predicts the structure and stereochemistry of enzyme-catalyzed reaction products with remarkable accuracy. The use of enzymes for organic synthesis allows for simplified, more economical and selective synthetic routes not accessible to conventional reagents. However, predicting whether a particular molecule might undergo a specific enzyme transformation is very difficult. Here we used multi-task transfer learning to train the molecular transformer, a sequence-to-sequence machine learning model, with one million reactions from the US Patent Office (USPTO) database combined with 32 181 enzymatic transformations annotated with a text description of the enzyme. The resulting enzymatic transformer model predicts the structure and stereochemistry of enzyme-catalyzed reaction products with remarkable accuracy. One of the key novelties is that we combined the reaction SMILES language of only 405 atomic tokens with thousands of human language tokens describing the enzymes, such that our enzymatic transformer not only learned to interpret SMILES, but also the natural language as used by human experts to describe enzymes and their mutations. |
Author | Kreutter, David Reymond, Jean-Louis Schwaller, Philippe |
AuthorAffiliation | University of Bern Department of Chemistry, Biochemistry and Pharmaceutical Sciences IBM Research Europe |
AuthorAffiliation_xml | – name: University of Bern – name: Department of Chemistry, Biochemistry and Pharmaceutical Sciences – name: IBM Research Europe |
Author_xml | – sequence: 1 givenname: David surname: Kreutter fullname: Kreutter, David – sequence: 2 givenname: Philippe surname: Schwaller fullname: Schwaller, Philippe – sequence: 3 givenname: Jean-Louis surname: Reymond fullname: Reymond, Jean-Louis |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34257863$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkc1LAzEQxYNUrFYv3pUFLyJUM8lmu0EQpH5CQUE9h2ySbVd2k5rsKvrXG63Wj7lkyPx4vJm3gXrWWYPQNuBDwJQfaQgKE5oRvYLWCU5hmDHKe8ue4D7aCuERx6IUGBmtoT5NCRvlGV1Hx7fe6Eq1lZ0mxr69NrKtVOKNjF_OhuSlameJTBpXG9XV0ietlzaUzjfGb6LVUtbBbH29A_RwcX4_vhpObi6vx6eToUoz3g4lHxVSMsg1FKTMgRNGC5ASA9YSl7nCGkqumFZFQTUzkcyBGE0Z1ilnjA7QyUJ33hWN0crYaKIWc1810r8KJyvxd2KrmZi6Z5GTNANIo8D-l4B3T50JrWiqoExdS2tcFwRhDOI9OM0juvcPfXSdt3G9SKVZnjIarz1ABwtKeReCN-XSDGDxEYs4g7vxZyxnEd79bX-JfocQgZ0F4INaTn9ype9-zZPR |
CitedBy_id | crossref_primary_10_1042_BST20221542 crossref_primary_10_1021_acscentsci_3c00372 crossref_primary_10_1038_s41467_022_30970_9 crossref_primary_10_1039_D2DD00084A crossref_primary_10_1039_D3GC01931D crossref_primary_10_1063_5_0131067 crossref_primary_10_1016_j_ymben_2023_09_012 crossref_primary_10_1038_s42256_021_00418_8 crossref_primary_10_1039_D1SC06515G crossref_primary_10_1080_17425255_2021_1998454 crossref_primary_10_1021_acs_jcim_3c00577 crossref_primary_10_1021_acs_jcim_4c00004 crossref_primary_10_1016_j_sbi_2023_102542 crossref_primary_10_1039_D2QO00188H crossref_primary_10_1002_wcms_1604 crossref_primary_10_3390_molecules26185629 crossref_primary_10_1016_j_procs_2022_11_066 crossref_primary_10_1021_acs_chemmater_3c01406 crossref_primary_10_1038_s41929_024_01150_3 crossref_primary_10_1021_acs_jpca_3c04779 crossref_primary_10_1021_acscentsci_3c01275 crossref_primary_10_1042_BCJ20210535 crossref_primary_10_1021_acs_jcim_3c00643 crossref_primary_10_3390_catal13060961 crossref_primary_10_1088_2632_2153_ac3ffb crossref_primary_10_1021_jacsau_3c00607 crossref_primary_10_1039_D1SC06932B crossref_primary_10_1039_D3CS00689A crossref_primary_10_1039_D3SC01604H crossref_primary_10_1039_D2SC01588A crossref_primary_10_3390_life11111140 crossref_primary_10_1186_s13321_023_00784_y crossref_primary_10_1021_acs_jcim_1c00921 crossref_primary_10_1360_SSC_2022_0113 crossref_primary_10_1093_nar_gkab1016 crossref_primary_10_1093_database_baac062 |
Cites_doi | 10.1039/C8SC02339E 10.26434/chemrxiv.14639007.v1 10.1039/C9SC04944D 10.1038/s41467-020-19266-y 10.1021/jacs.9b02709 10.1002/bkcs.11289 10.1039/C6NJ00809G 10.1002/anie.201708408 10.1021/acs.accounts.8b00087 10.1002/anie.201510028 10.1039/C7CC05392D 10.1093/bioinformatics/bty440 10.1021/acscentsci.7b00064 10.1002/cctc.201500823 10.1021/acscatal.0c03755 10.1039/C8CY01448E 10.1021/acscentsci.7b00303 10.2533/chimia.2019.997 10.26434/chemrxiv.11659563.v1 10.1021/ci00057a005 10.1021/jo400962c 10.1021/acscentsci.6b00219 10.1038/nature25978 10.1073/pnas.1818877116 10.1080/15257770.2016.1223306 10.1021/jo802495f 10.1021/acs.chemrev.7b00203 10.3390/ijms18112373 10.1146/annurev-biochem-030409-143718 10.1039/C7CY00088J 10.1016/j.ddtec.2020.06.002 10.1021/acscentsci.9b00576 10.1177/193229681100500507 10.1039/c3gc40838h 10.1002/anie.201914768 10.1186/s13321-018-0321-8 10.1021/acs.jcim.9b00286 10.1007/978-1-4939-7015-5_11 10.1039/C6RA11025H 10.1038/s41929-020-00556-z 10.1021/acs.jcim.7b00656 10.1002/adsc.201200900 10.1038/s42256-020-00284-w 10.1002/cctc.201901592 10.1038/s41467-020-18671-7 10.1002/cbic.201800556 10.1016/j.tibtech.2007.03.002 10.1021/acschembio.6b00144 10.1021/ja211820p 10.1039/D0SC02639E 10.1186/s13321-020-0416-x 10.1021/bk-2014-1164.ch008 10.1093/nar/gkaa1025 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2021 This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2021 – notice: This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry |
DBID | NPM AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1039/d1sc02362d |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database PubMed MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2041-6539 |
EndPage | 8659 |
ExternalDocumentID | 10_1039_D1SC02362D 34257863 d1sc02362d |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: Unassigned |
GroupedDBID | 0-7 0R 705 7~J AAGNR AAIWI AAJAE AAPBV ABGFH ACGFS ACIWK ADBBV ADMRA AENEX AFVBQ AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI AOIJS AUDPV AZFZN BCNDV BLAPV BSQNT C6K CKLOX D0L EE0 EF- F5P GROUPED_DOAJ H13 HYE HZ H~N JG O-G O9- OK1 R7C R7D RCNCU RPM RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH SMJ -JG 0R~ 53G AAEMU AAFWJ AARTK AAXHV ABEMK ABPDG ABXOH AEFDR AESAV AFLYV AGEGJ AHGCF AKBGW APEMP HZ~ NPM PGMZT RAOCF RNS AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 5PM AFPKN |
ID | FETCH-LOGICAL-c469t-a97baa518d1b2f819253b1aa010da0f8c0d1f9c5dcbb3d5e518812ed350d49553 |
IEDL.DBID | RPM |
ISSN | 2041-6520 |
IngestDate | Tue Sep 17 21:10:36 EDT 2024 Sat Oct 26 05:50:12 EDT 2024 Thu Oct 10 19:02:58 EDT 2024 Thu Nov 21 22:31:59 EST 2024 Sat Nov 02 12:29:07 EDT 2024 Mon Apr 25 05:28:11 EDT 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Language | English |
License | This journal is © The Royal Society of Chemistry. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-a97baa518d1b2f819253b1aa010da0f8c0d1f9c5dcbb3d5e518812ed350d49553 |
Notes | Electronic supplementary information (ESI) available. See DOI 10.1039/d1sc02362d ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3046-6576 0000-0003-2487-1049 0000-0003-2724-2942 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8246114/ |
PMID | 34257863 |
PQID | 2546845302 |
PQPubID | 2047492 |
PageCount | 12 |
ParticipantIDs | rsc_primary_d1sc02362d crossref_primary_10_1039_D1SC02362D pubmed_primary_34257863 proquest_miscellaneous_2551578938 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8246114 proquest_journals_2546845302 |
PublicationCentury | 2000 |
PublicationDate | 2021-Jul-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-Jul-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Chemical science (Cambridge) |
PublicationTitleAlternate | Chem Sci |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Wolf (D1SC02362D-(cit37)/*[position()=1]) 2019 Faraldos (D1SC02362D-(cit54)/*[position()=1]) 2012; 134 Wu (D1SC02362D-(cit2)/*[position()=1]) 2020; 59 Arnold (D1SC02362D-(cit3)/*[position()=1]) 2018; 57 Coley (D1SC02362D-(cit6)/*[position()=1]) 2017; 3 Johansson (D1SC02362D-(cit10)/*[position()=1]) 2019; 32–33 Heath (D1SC02362D-(cit57)/*[position()=1]) 2019; 20 Landrum (D1SC02362D-(cit36)/*[position()=1]) 2020 Lawson (D1SC02362D-(cit25)/*[position()=1]) 2014; vol. 1164 Chang (D1SC02362D-(cit31)/*[position()=1]) 2021; 49 Schwaller (D1SC02362D-(cit17)/*[position()=1]) 2018; 9 Coley (D1SC02362D-(cit34)/*[position()=1]) 2019; 59 Probst (D1SC02362D-(cit62)/*[position()=1]) 2021 Qian (D1SC02362D-(cit12)/*[position()=1]) 2020 Li (D1SC02362D-(cit52)/*[position()=1]) 2016; 40 Hall (D1SC02362D-(cit53)/*[position()=1]) 2017; 7 Chao (D1SC02362D-(cit46)/*[position()=1]) 2016; 6 Coley (D1SC02362D-(cit8)/*[position()=1]) 2018; 51 Finnigan (D1SC02362D-(cit16)/*[position()=1]) 2021; 4 Mutti (D1SC02362D-(cit45)/*[position()=1]) 2012; 354 Weininger (D1SC02362D-(cit20)/*[position()=1]) 1988; 28 Khersonsky (D1SC02362D-(cit27)/*[position()=1]) 2010; 79 Kanehisa (D1SC02362D-(cit30)/*[position()=1]) 2017; 1611 Xu (D1SC02362D-(cit40)/*[position()=1]) 2019; 141 Li (D1SC02362D-(cit55)/*[position()=1]) 2018; 8 Litsa (D1SC02362D-(cit15)/*[position()=1]) 2020; 11 Schmidt (D1SC02362D-(cit56)/*[position()=1]) 2015; 7 Ankati (D1SC02362D-(cit42)/*[position()=1]) 2009; 74 Borzęcka (D1SC02362D-(cit43)/*[position()=1]) 2013; 78 Paszke (D1SC02362D-(cit39)/*[position()=1]) 2019 Kim (D1SC02362D-(cit41)/*[position()=1]) 2017; 38 Segler (D1SC02362D-(cit7)/*[position()=1]) 2018; 555 Nair (D1SC02362D-(cit9)/*[position()=1]) 2019; 73 Sennrich (D1SC02362D-(cit61)/*[position()=1]) 2016 Schwaller (D1SC02362D-(cit33)/*[position()=1]) 2021; 3 Neufeld (D1SC02362D-(cit47)/*[position()=1]) 2013; 15 Wang (D1SC02362D-(cit58)/*[position()=1]) 2017; 18 Liu (D1SC02362D-(cit5)/*[position()=1]) 2017; 3 Both (D1SC02362D-(cit48)/*[position()=1]) 2016; 55 Probst (D1SC02362D-(cit32)/*[position()=1]) 2020; 12 Namanja-Magliano (D1SC02362D-(cit51)/*[position()=1]) 2016; 11 Klein (D1SC02362D-(cit38)/*[position()=1]) 2017 Hult (D1SC02362D-(cit28)/*[position()=1]) 2007; 25 Büchsenschütz (D1SC02362D-(cit44)/*[position()=1]) 2020; 12 Cai (D1SC02362D-(cit13)/*[position()=1]) 2018; 58 Vaswani (D1SC02362D-(cit19)/*[position()=1]) 2017 Schwaller (D1SC02362D-(cit18)/*[position()=1]) 2019; 5 Pesciullesi (D1SC02362D-(cit22)/*[position()=1]) 2020; 11 Tetko (D1SC02362D-(cit11)/*[position()=1]) 2020; 11 Wang (D1SC02362D-(cit50)/*[position()=1]) 2017; 53 Ferri (D1SC02362D-(cit26)/*[position()=1]) 2011; 5 Thakkar (D1SC02362D-(cit21)/*[position()=1]) 2019; 11 Wei (D1SC02362D-(cit4)/*[position()=1]) 2016; 2 Sheldon (D1SC02362D-(cit1)/*[position()=1]) 2018; 118 Velikogne (D1SC02362D-(cit29)/*[position()=1]) 2020; 10 Hadadi (D1SC02362D-(cit14)/*[position()=1]) 2019; 116 Gligorijević (D1SC02362D-(cit59)/*[position()=1]) 2018; 34 D1SC02362D-(cit60)/*[position()=1] Probst (D1SC02362D-(cit35)/*[position()=1]) 2018; 10 Alexeev (D1SC02362D-(cit49)/*[position()=1]) 2017; 36 |
References_xml | – issn: 2017 end-page: p 67-72 publication-title: Proceedings of ACL 2017, System Demonstrations doi: Klein Kim Deng Senellart Rush – issn: 2016 end-page: p 1715-1725 publication-title: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) doi: Sennrich Haddow Birch – issn: 2014 issue: vol. 1164 end-page: p 127-148 publication-title: The Future of the History of Chemical Information doi: Lawson Swienty-Busch Géoui Evans – issn: 2019 doi: Wolf Debut Sanh Chaumond Delangue Moi Cistac Rault Louf Funtowicz Davison Shleifer von Platen Ma Jernite Plu Xu Scao Gugger Drame Lhoest Rush – issn: 2017 end-page: p 5998-6008 publication-title: Advances in neural information processing systems doi: Vaswani Shazeer Parmar Uszkoreit Jones Gomez Kaiser Polosukhin – issn: 2019 end-page: p 8024-8035 publication-title: Advances in Neural Information Processing Systems 32 doi: Paszke Gross Massa Lerer Bradbury Chanan Killeen Lin Gimelshein Antiga Desmaison Kopf Yang DeVito Raison Tejani Chilamkurthy Steiner Fang Bai Chintala – issn: 2020 publication-title: RDKit: Open-Source Cheminformatics Software doi: Landrum – issn: 2021 publication-title: Chemrxiv doi: Probst Manica Teukam Castrogiovanni Paratore Laino – issn: 2017 doi: Lowe – issn: 2020 doi: Qian Russell Simons Luo Burke Peng – issn: 2012 doi: Lowe – volume: 9 start-page: 6091 year: 2018 ident: D1SC02362D-(cit17)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C8SC02339E contributor: fullname: Schwaller – volume-title: Advances in Neural Information Processing Systems 32 year: 2019 ident: D1SC02362D-(cit39)/*[position()=1] contributor: fullname: Paszke – volume-title: Chemrxiv year: 2021 ident: D1SC02362D-(cit62)/*[position()=1] doi: 10.26434/chemrxiv.14639007.v1 contributor: fullname: Probst – volume: 11 start-page: 154 year: 2019 ident: D1SC02362D-(cit21)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C9SC04944D contributor: fullname: Thakkar – volume: 11 start-page: 5575 year: 2020 ident: D1SC02362D-(cit11)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-020-19266-y contributor: fullname: Tetko – volume: 141 start-page: 7934 year: 2019 ident: D1SC02362D-(cit40)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b02709 contributor: fullname: Xu – volume: 38 start-page: 1358 year: 2017 ident: D1SC02362D-(cit41)/*[position()=1] publication-title: Bull. Korean Chem. Soc. doi: 10.1002/bkcs.11289 contributor: fullname: Kim – volume: 40 start-page: 8928 year: 2016 ident: D1SC02362D-(cit52)/*[position()=1] publication-title: New J. Chem. doi: 10.1039/C6NJ00809G contributor: fullname: Li – volume-title: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) year: 2016 ident: D1SC02362D-(cit61)/*[position()=1] contributor: fullname: Sennrich – volume: 57 start-page: 4143 year: 2018 ident: D1SC02362D-(cit3)/*[position()=1] publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.201708408 contributor: fullname: Arnold – volume: 51 start-page: 1281 year: 2018 ident: D1SC02362D-(cit8)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00087 contributor: fullname: Coley – volume: 55 start-page: 1511 year: 2016 ident: D1SC02362D-(cit48)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201510028 contributor: fullname: Both – volume: 53 start-page: 10124 year: 2017 ident: D1SC02362D-(cit50)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C7CC05392D contributor: fullname: Wang – volume: 34 start-page: 3873 year: 2018 ident: D1SC02362D-(cit59)/*[position()=1] publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty440 contributor: fullname: Gligorijević – volume-title: RDKit: Open-Source Cheminformatics Software year: 2020 ident: D1SC02362D-(cit36)/*[position()=1] contributor: fullname: Landrum – volume: 3 start-page: 434 year: 2017 ident: D1SC02362D-(cit6)/*[position()=1] publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.7b00064 contributor: fullname: Coley – volume: 7 start-page: 3951 year: 2015 ident: D1SC02362D-(cit56)/*[position()=1] publication-title: ChemCatChem doi: 10.1002/cctc.201500823 contributor: fullname: Schmidt – volume: 10 start-page: 13377 year: 2020 ident: D1SC02362D-(cit29)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.0c03755 contributor: fullname: Velikogne – volume: 8 start-page: 4638 year: 2018 ident: D1SC02362D-(cit55)/*[position()=1] publication-title: Catal. Sci. Technol. doi: 10.1039/C8CY01448E contributor: fullname: Li – volume: 3 start-page: 1103 year: 2017 ident: D1SC02362D-(cit5)/*[position()=1] publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.7b00303 contributor: fullname: Liu – volume: 73 start-page: 997 year: 2019 ident: D1SC02362D-(cit9)/*[position()=1] publication-title: Chimia doi: 10.2533/chimia.2019.997 contributor: fullname: Nair – year: 2020 ident: D1SC02362D-(cit12)/*[position()=1] doi: 10.26434/chemrxiv.11659563.v1 contributor: fullname: Qian – volume: 28 start-page: 31 year: 1988 ident: D1SC02362D-(cit20)/*[position()=1] publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci00057a005 contributor: fullname: Weininger – volume: 78 start-page: 7312 year: 2013 ident: D1SC02362D-(cit43)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/jo400962c contributor: fullname: Borzęcka – volume: 2 start-page: 725 year: 2016 ident: D1SC02362D-(cit4)/*[position()=1] publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.6b00219 contributor: fullname: Wei – volume: 555 start-page: 604 year: 2018 ident: D1SC02362D-(cit7)/*[position()=1] publication-title: Nature doi: 10.1038/nature25978 contributor: fullname: Segler – volume: 116 start-page: 7298 year: 2019 ident: D1SC02362D-(cit14)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1818877116 contributor: fullname: Hadadi – volume: 36 start-page: 107 year: 2017 ident: D1SC02362D-(cit49)/*[position()=1] publication-title: Nucleosides, Nucleotides Nucleic Acids doi: 10.1080/15257770.2016.1223306 contributor: fullname: Alexeev – volume: 74 start-page: 1658 year: 2009 ident: D1SC02362D-(cit42)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/jo802495f contributor: fullname: Ankati – volume: 118 start-page: 801 year: 2018 ident: D1SC02362D-(cit1)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00203 contributor: fullname: Sheldon – year: 2019 ident: D1SC02362D-(cit37)/*[position()=1] contributor: fullname: Wolf – volume: 18 start-page: 2373 year: 2017 ident: D1SC02362D-(cit58)/*[position()=1] publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms18112373 contributor: fullname: Wang – volume: 79 start-page: 471 year: 2010 ident: D1SC02362D-(cit27)/*[position()=1] publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-030409-143718 contributor: fullname: Khersonsky – volume: 7 start-page: 1537 year: 2017 ident: D1SC02362D-(cit53)/*[position()=1] publication-title: Catal. Sci. Technol. doi: 10.1039/C7CY00088J contributor: fullname: Hall – volume: 32–33 start-page: 65 year: 2019 ident: D1SC02362D-(cit10)/*[position()=1] publication-title: Drug Discovery Today: Technol. doi: 10.1016/j.ddtec.2020.06.002 contributor: fullname: Johansson – volume: 5 start-page: 1572 year: 2019 ident: D1SC02362D-(cit18)/*[position()=1] publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.9b00576 contributor: fullname: Schwaller – volume: 5 start-page: 1068 year: 2011 ident: D1SC02362D-(cit26)/*[position()=1] publication-title: J. Diabetes Sci. Technol. doi: 10.1177/193229681100500507 contributor: fullname: Ferri – volume: 15 start-page: 2408 year: 2013 ident: D1SC02362D-(cit47)/*[position()=1] publication-title: Green Chem. doi: 10.1039/c3gc40838h contributor: fullname: Neufeld – volume: 59 start-page: 2 year: 2020 ident: D1SC02362D-(cit2)/*[position()=1] publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.201914768 contributor: fullname: Wu – volume: 10 start-page: 66 year: 2018 ident: D1SC02362D-(cit35)/*[position()=1] publication-title: J. Cheminf. doi: 10.1186/s13321-018-0321-8 contributor: fullname: Probst – volume: 59 start-page: 2529 year: 2019 ident: D1SC02362D-(cit34)/*[position()=1] publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.9b00286 contributor: fullname: Coley – volume: 1611 start-page: 135 year: 2017 ident: D1SC02362D-(cit30)/*[position()=1] publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-7015-5_11 contributor: fullname: Kanehisa – volume: 6 start-page: 55286 year: 2016 ident: D1SC02362D-(cit46)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA11025H contributor: fullname: Chao – volume: 4 start-page: 98 year: 2021 ident: D1SC02362D-(cit16)/*[position()=1] publication-title: Nat. Catal. doi: 10.1038/s41929-020-00556-z contributor: fullname: Finnigan – volume: 58 start-page: 1169 year: 2018 ident: D1SC02362D-(cit13)/*[position()=1] publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.7b00656 contributor: fullname: Cai – volume: 354 start-page: 3409 year: 2012 ident: D1SC02362D-(cit45)/*[position()=1] publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201200900 contributor: fullname: Mutti – volume: 3 start-page: 144 year: 2021 ident: D1SC02362D-(cit33)/*[position()=1] publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-020-00284-w contributor: fullname: Schwaller – volume: 12 start-page: 726 year: 2020 ident: D1SC02362D-(cit44)/*[position()=1] publication-title: ChemCatChem doi: 10.1002/cctc.201901592 contributor: fullname: Büchsenschütz – volume: 11 start-page: 4874 year: 2020 ident: D1SC02362D-(cit22)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-020-18671-7 contributor: fullname: Pesciullesi – volume-title: Proceedings of ACL 2017, System Demonstrations year: 2017 ident: D1SC02362D-(cit38)/*[position()=1] contributor: fullname: Klein – volume: 20 start-page: 276 year: 2019 ident: D1SC02362D-(cit57)/*[position()=1] publication-title: ChemBioChem doi: 10.1002/cbic.201800556 contributor: fullname: Heath – volume: 25 start-page: 231 year: 2007 ident: D1SC02362D-(cit28)/*[position()=1] publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2007.03.002 contributor: fullname: Hult – volume: 11 start-page: 1669 year: 2016 ident: D1SC02362D-(cit51)/*[position()=1] publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.6b00144 contributor: fullname: Namanja-Magliano – volume: 134 start-page: 5900 year: 2012 ident: D1SC02362D-(cit54)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja211820p contributor: fullname: Faraldos – volume: 11 start-page: 12777 year: 2020 ident: D1SC02362D-(cit15)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/D0SC02639E contributor: fullname: Litsa – ident: D1SC02362D-(cit60)/*[position()=1] – volume: 12 start-page: 12 year: 2020 ident: D1SC02362D-(cit32)/*[position()=1] publication-title: J. Cheminf. doi: 10.1186/s13321-020-0416-x contributor: fullname: Probst – volume: vol. 1164 volume-title: The Future of the History of Chemical Information year: 2014 ident: D1SC02362D-(cit25)/*[position()=1] doi: 10.1021/bk-2014-1164.ch008 contributor: fullname: Lawson – volume: 49 start-page: D498 year: 2021 ident: D1SC02362D-(cit31)/*[position()=1] publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa1025 contributor: fullname: Chang – volume-title: Advances in neural information processing systems year: 2017 ident: D1SC02362D-(cit19)/*[position()=1] contributor: fullname: Vaswani |
SSID | ssj0000331527 |
Score | 2.5643628 |
Snippet | The use of enzymes for organic synthesis allows for simplified, more economical and selective synthetic routes not accessible to conventional reagents.... |
SourceID | pubmedcentral proquest crossref pubmed rsc |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 8648 |
SubjectTerms | Chemistry Enzymes Machine learning Mutation Reaction products Reagents Route selection Stereochemistry Transformers |
Title | Predicting enzymatic reactions with a molecular transformer |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34257863 https://www.proquest.com/docview/2546845302 https://search.proquest.com/docview/2551578938 https://pubmed.ncbi.nlm.nih.gov/PMC8246114 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8IwGH4jHNSL8QudIpnR62BtV7bFk-EjXjQkaOJt6dciiQzC4KC_3rasKOHmuU23vH27Ps_69HkB7pVEiGPFAkaFCCLGZcAJ11QlZtjYw6kc2yK24_jlPekPjE0OdXdhrGhf8Em7-Jy2i8mH1VbOp6LjdGKd0XMvMSZoKOrUoKax4R-Kbj-_hFSlWnEYoaBLcehsSUnakagUxjQdy0PYJzZhu2R7T9oBmrt6ydrClQex29DwGI4q_Og_rt_zBPZUcQoHPVe27QweRgtz9mLUzL4qvr-sJauvoaG9wFD65serz_ypK4vrLx10VYtzeBsOXntPQVUhIRCa1i4DlsacMYoSqQOeG28zqgPNmCZZkoV5IkKJ8lRQKTgnkirjvoawkoSGUjMjShpQL2aFugSfaWIT51EXq1hEEndTlkSI6-E12-ZpSDy4czHK5msjjMweYJM066Nxzwa170HThS-rFkOZGcv9JDLliTy43TTrsJizCVao2cr00cAq1uAp8eBiHe3NY9w0eRBvzcOmg7HI3m7RmWOtsqtM8aChZ2zT_zcJrv495DUcYiNvscrdJtSXi5W6gVopVy3L61s2K38A1pTl_g |
link.rule.ids | 230,315,729,782,786,866,887,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFL24CeqL39Pq1Iq-1jZJs7b4JJuiOEVQwbeSr6LgurGPB_31JlkzHXvzOSGlOTfNPc3JuQDnSiLEsWIBo0IEMeMy4IRrqpIwbOzhVIFtEdvn5PEt7Vwbmxzq7sJY0b7gHxflZ--i_Hi32spBT4ROJxY-PbRTY4KG4rAGy3q9RtEfkm4_wIRUxVpxFKOgRXHkjElJFko0EsY2Hcs1WCE2ZFtkfldaSDUXFZO1oSsQYjeim41_vsImrFeZp381bd6CJVVuw2rbFXzbgcunoTm1MTpoX5XfX9bM1ddJpb36MPLNL1uf-T1XUNcfu6RXDXfh9eb6pX0bVLUVAqEJ8ThgWcIZoyiVGqrCuKJRDRFjmp5JFhWpiCQqMkGl4JxIqoxvG8JKEhpJzakoaUC97JdqH3ymKVFSxC2sEhFL3MpYGiOuh9c8nWcR8eDMzW0-mFpo5Pbom2R5Bz23LRgdD5pu2vNqGY1yY9afxqawkQens2Y9LeZUg5WqPzF9dEqW6LQr9WBvitLsMQ5eD5I5_GYdjLn2fIsGzJpsVwB50NBIz_r_Bs_Bv4c8gdXbl4du3r17vD-ENWxEMlb_24T6eDhRR1Abycmxjekf15P6iw |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwFHyiIJVe2AthDYJrSGwnTSJOqKUCsahSQeIWeYuoREPV5QBfj-3GgYobnP3kKB47fi8ezwCcS4EQw5J6NOLcCykTHiNMlSoxxVoeTubYmNj248eXpHOtZXIqqy9D2udscFG8DS-KwavhVo6G3Lc8Mb_30E60CBoK_ZHI_RqsqDUb4B-FuvkIE1IatuIgRF4rwoEVJyWpL9CEa-l0LBpQJ2batsjizvQr3fzNmqyNrUmI2Yy66_94jQ1YKzNQ92oesglLstiC1bY1ftuGy95Yn95oPrQri88PI-rqquTSXIGYuPrXrUvdoTXWdac2-ZXjHXjuXj-1b7zSY8HjqjCeejSNGaURSoSCLNfqaJGCilJVpgka5AkPBMpTHgnOGBGR1PptCEtBokCo2ioiTVgu3gu5By5VpVGchy0sYx4K3EppEiKmulf1OksD4sCZHd9sNJfSyMwROEmzDuq3DSAdBw7t0GflcppkWrQ_CbXBkQOnVbMaFn26QQv5PtMxKjWLVfqVOLA7R6p6jIXYgXgBwypAi2wvtijQjNh2CZIDTYV2Ff89gfb_3OUJ1HudbnZ_-3h3AA2suTKGBnwIy9PxTB5BbSJmx2ZafwHKS_0L |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+enzymatic+reactions+with+a+molecular+transformer&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Kreutter%2C+David&rft.au=Schwaller%2C+Philippe&rft.au=Reymond%2C+Jean-Louis&rft.date=2021-07-01&rft.pub=Royal+Society+of+Chemistry&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=12&rft.issue=25&rft.spage=8648&rft.epage=8659&rft_id=info:doi/10.1039%2Fd1sc02362d&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |