Device Orientation Independent Human Activity Recognition Model for Patient Monitoring Based on Triaxial Acceleration
Tracking a person’s activities is relevant in a variety of contexts, from health and group-specific assessments, such as elderly care, to fitness tracking and human–computer interaction. In a clinical context, sensor-based activity tracking could help monitor patients’ progress or deterioration duri...
Saved in:
Published in: | Applied sciences Vol. 13; no. 7; p. 4175 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-03-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Tracking a person’s activities is relevant in a variety of contexts, from health and group-specific assessments, such as elderly care, to fitness tracking and human–computer interaction. In a clinical context, sensor-based activity tracking could help monitor patients’ progress or deterioration during their hospitalization time. However, during routine hospital care, devices could face displacements in their position and orientation caused by incorrect device application, patients’ physical peculiarities, or patients’ day-to-day free movement. These aspects can significantly reduce algorithms’ performances. In this work, we investigated how shifts in orientation could impact Human Activity Recognition (HAR) classification. To reach this purpose, we propose an HAR model based on a single three-axis accelerometer that can be located anywhere on the participant’s trunk, capable of recognizing activities from multiple movement patterns, and, thanks to data augmentation, can deal with device displacement. Developed models were trained and validated using acceleration measurements acquired in fifteen participants, and tested on twenty-four participants, of which twenty were from a different study protocol for external validation. The obtained results highlight the impact of changes in device orientation on a HAR algorithm and the potential of simple wearable sensor data augmentation for tackling this challenge. When applying small rotations (<20 degrees), the error of the baseline non-augmented model steeply increased. On the contrary, even when considering rotations ranging from 0 to 180 along the frontal axis, our model reached a f1-score of 0.85±0.11 against a baseline model f1-score equal to 0.49±0.12. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app13074175 |