Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in the current COVID-19 pandemic. Worldwide this disease has infected over 2.5 million individuals with a mortality rate ranging from 5 to 10%. There are several efforts going on in the drug discovery to control the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomolecular structure & dynamics Vol. 39; no. 9; pp. 3099 - 3114
Main Authors: Joshi, Rakesh S., Jagdale, Shounak S., Bansode, Sneha B., Shankar, S. Shiva, Tellis, Meenakshi B., Pandya, Vaibhav Kumar, Chugh, Anita, Giri, Ashok P., Kulkarni, Mahesh J.
Format: Journal Article
Language:English
Published: England Taylor & Francis 13-06-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in the current COVID-19 pandemic. Worldwide this disease has infected over 2.5 million individuals with a mortality rate ranging from 5 to 10%. There are several efforts going on in the drug discovery to control the SARS-CoV-2 viral infection. The main protease (M Pro ) plays a critical role in viral replication and maturation, thus can serve as the primary drug target. To understand the structural evolution of M Pro , we have performed phylogenetic and Sequence Similarity Network analysis, that depicted divergence of Coronaviridae M Pro in five clusters specific to viral hosts. This clustering was corroborated with the comparison of M Pro structures. Furthermore, it has been observed that backbone and binding site conformations are conserved despite variation in some of the residues. These attributes can be exploited to repurpose available viral protease inhibitors against SARS-CoV-2 M Pro . In agreement with this, we performed screening of ∼7100 molecules including active ingredients present in the Ayurvedic anti-tussive medicines, anti-viral phytochemicals and synthetic anti-virals against SARS-CoV-2 M Pro as the primary target. We identified several natural molecules like δ-viniferin, myricitrin, taiwanhomoflavone A, lactucopicrin 15-oxalate, nympholide A, afzelin, biorobin, hesperidin and phyllaemblicin B that strongly binds to SARS-CoV-2 M Pro . Intrestingly, these molecules also showed strong binding with other potential targets of SARS-CoV-2 infection like viral receptor human angiotensin-converting enzyme 2 (hACE-2) and RNA dependent RNA polymerase (RdRp). We anticipate that our approach for identification of multi-target-directed ligand will provide new avenues for drug discovery against SARS-CoV-2 infection. Communicated by Ramaswamy H. Sarma
AbstractList Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in the current COVID-19 pandemic. Worldwide this disease has infected over 2.5 million individuals with a mortality rate ranging from 5 to 10%. There are several efforts going on in the drug discovery to control the SARS-CoV-2 viral infection. The main protease (M Pro ) plays a critical role in viral replication and maturation, thus can serve as the primary drug target. To understand the structural evolution of M Pro , we have performed phylogenetic and Sequence Similarity Network analysis, that depicted divergence of Coronaviridae M Pro in five clusters specific to viral hosts. This clustering was corroborated with the comparison of M Pro structures. Furthermore, it has been observed that backbone and binding site conformations are conserved despite variation in some of the residues. These attributes can be exploited to repurpose available viral protease inhibitors against SARS-CoV-2 M Pro . In agreement with this, we performed screening of ∼7100 molecules including active ingredients present in the Ayurvedic anti-tussive medicines, anti-viral phytochemicals and synthetic anti-virals against SARS-CoV-2 M Pro as the primary target. We identified several natural molecules like δ-viniferin, myricitrin, taiwanhomoflavone A, lactucopicrin 15-oxalate, nympholide A, afzelin, biorobin, hesperidin and phyllaemblicin B that strongly binds to SARS-CoV-2 M Pro . Intrestingly, these molecules also showed strong binding with other potential targets of SARS-CoV-2 infection like viral receptor human angiotensin-converting enzyme 2 (hACE-2) and RNA dependent RNA polymerase (RdRp). We anticipate that our approach for identification of multi-target-directed ligand will provide new avenues for drug discovery against SARS-CoV-2 infection. Communicated by Ramaswamy H. Sarma
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in the current COVID-19 pandemic. Worldwide this disease has infected over 2.5 million individuals with a mortality rate ranging from 5 to 10%. There are several efforts going on in the drug discovery to control the SARS-CoV-2 viral infection. The main protease (MPro) plays a critical role in viral replication and maturation, thus can serve as the primary drug target. To understand the structural evolution of MPro, we have performed phylogenetic and Sequence Similarity Network analysis, that depicted divergence of Coronaviridae MPro in five clusters specific to viral hosts. This clustering was corroborated with the comparison of MPro structures. Furthermore, it has been observed that backbone and binding site conformations are conserved despite variation in some of the residues. These attributes can be exploited to repurpose available viral protease inhibitors against SARS-CoV-2 MPro. In agreement with this, we performed screening of ∼7100 molecules including active ingredients present in the Ayurvedic anti-tussive medicines, anti-viral phytochemicals and synthetic anti-virals against SARS-CoV-2 MPro as the primary target. We identified several natural molecules like δ-viniferin, myricitrin, taiwanhomoflavone A, lactucopicrin 15-oxalate, nympholide A, afzelin, biorobin, hesperidin and phyllaemblicin B that strongly binds to SARS-CoV-2 MPro. Intrestingly, these molecules also showed strong binding with other potential targets of SARS-CoV-2 infection like viral receptor human angiotensin-converting enzyme 2 (hACE-2) and RNA dependent RNA polymerase (RdRp). We anticipate that our approach for identification of multi-target-directed ligand will provide new avenues for drug discovery against SARS-CoV-2 infection.Communicated by Ramaswamy H. Sarma.Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in the current COVID-19 pandemic. Worldwide this disease has infected over 2.5 million individuals with a mortality rate ranging from 5 to 10%. There are several efforts going on in the drug discovery to control the SARS-CoV-2 viral infection. The main protease (MPro) plays a critical role in viral replication and maturation, thus can serve as the primary drug target. To understand the structural evolution of MPro, we have performed phylogenetic and Sequence Similarity Network analysis, that depicted divergence of Coronaviridae MPro in five clusters specific to viral hosts. This clustering was corroborated with the comparison of MPro structures. Furthermore, it has been observed that backbone and binding site conformations are conserved despite variation in some of the residues. These attributes can be exploited to repurpose available viral protease inhibitors against SARS-CoV-2 MPro. In agreement with this, we performed screening of ∼7100 molecules including active ingredients present in the Ayurvedic anti-tussive medicines, anti-viral phytochemicals and synthetic anti-virals against SARS-CoV-2 MPro as the primary target. We identified several natural molecules like δ-viniferin, myricitrin, taiwanhomoflavone A, lactucopicrin 15-oxalate, nympholide A, afzelin, biorobin, hesperidin and phyllaemblicin B that strongly binds to SARS-CoV-2 MPro. Intrestingly, these molecules also showed strong binding with other potential targets of SARS-CoV-2 infection like viral receptor human angiotensin-converting enzyme 2 (hACE-2) and RNA dependent RNA polymerase (RdRp). We anticipate that our approach for identification of multi-target-directed ligand will provide new avenues for drug discovery against SARS-CoV-2 infection.Communicated by Ramaswamy H. Sarma.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in the current COVID-19 pandemic. Worldwide this disease has infected over 2.5 million individuals with a mortality rate ranging from 5 to 10%. There are several efforts going on in the drug discovery to control the SARS-CoV-2 viral infection. The main protease (M ) plays a critical role in viral replication and maturation, thus can serve as the primary drug target. To understand the structural evolution of M , we have performed phylogenetic and Sequence Similarity Network analysis, that depicted divergence of Coronaviridae M in five clusters specific to viral hosts. This clustering was corroborated with the comparison of M structures. Furthermore, it has been observed that backbone and binding site conformations are conserved despite variation in some of the residues. These attributes can be exploited to repurpose available viral protease inhibitors against SARS-CoV-2 M . In agreement with this, we performed screening of ∼7100 molecules including active ingredients present in the Ayurvedic anti-tussive medicines, anti-viral phytochemicals and synthetic anti-virals against SARS-CoV-2 M as the primary target. We identified several natural molecules like δ-viniferin, myricitrin, taiwanhomoflavone A, lactucopicrin 15-oxalate, nympholide A, afzelin, biorobin, hesperidin and phyllaemblicin B that strongly binds to SARS-CoV-2 M . Intrestingly, these molecules also showed strong binding with other potential targets of SARS-CoV-2 infection like viral receptor human angiotensin-converting enzyme 2 (hACE-2) and RNA dependent RNA polymerase (RdRp). We anticipate that our approach for identification of multi-target-directed ligand will provide new avenues for drug discovery against SARS-CoV-2 infection.Communicated by Ramaswamy H. Sarma.
Author Joshi, Rakesh S.
Shankar, S. Shiva
Pandya, Vaibhav Kumar
Kulkarni, Mahesh J.
Tellis, Meenakshi B.
Chugh, Anita
Jagdale, Shounak S.
Giri, Ashok P.
Bansode, Sneha B.
Author_xml – sequence: 1
  givenname: Rakesh S.
  surname: Joshi
  fullname: Joshi, Rakesh S.
  email: rs.joshi@ncl.res.in, mj.kulkarni@ncl.res.in, ap.giri@ncl.res.in
  organization: Academy of Scientific and Innovative Research (AcSIR)
– sequence: 2
  givenname: Shounak S.
  surname: Jagdale
  fullname: Jagdale, Shounak S.
  organization: Biochemical Sciences Division, CSIR-National Chemical Laboratory
– sequence: 3
  givenname: Sneha B.
  surname: Bansode
  fullname: Bansode, Sneha B.
  organization: Biochemical Sciences Division, CSIR-National Chemical Laboratory
– sequence: 4
  givenname: S. Shiva
  surname: Shankar
  fullname: Shankar, S. Shiva
  organization: Academy of Scientific and Innovative Research (AcSIR)
– sequence: 5
  givenname: Meenakshi B.
  surname: Tellis
  fullname: Tellis, Meenakshi B.
  organization: Department of Botany, Savitribai Phule Pune University
– sequence: 6
  givenname: Vaibhav Kumar
  surname: Pandya
  fullname: Pandya, Vaibhav Kumar
  organization: Biochemical Sciences Division, CSIR-National Chemical Laboratory
– sequence: 7
  givenname: Anita
  surname: Chugh
  fullname: Chugh, Anita
  organization: INTOX Private Limited
– sequence: 8
  givenname: Ashok P.
  surname: Giri
  fullname: Giri, Ashok P.
  email: rs.joshi@ncl.res.in, mj.kulkarni@ncl.res.in, ap.giri@ncl.res.in
  organization: Academy of Scientific and Innovative Research (AcSIR)
– sequence: 9
  givenname: Mahesh J.
  surname: Kulkarni
  fullname: Kulkarni, Mahesh J.
  email: rs.joshi@ncl.res.in, mj.kulkarni@ncl.res.in, ap.giri@ncl.res.in
  organization: Academy of Scientific and Innovative Research (AcSIR)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32329408$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhi1URLeFnwDykYuLv5LNXhDV8ilVQqLA1XLs8dYosYPtLMqJv45Xu63gwsmS55n3nZn3Ap2FGACh54xeMdrRV3QtNoxRfsUpr1_rljKxfoRWrBEdobyRZ2h1YMgBOkcXOf-glDO2Zk_QueCCbyTtVuj3W59N3ENacHR4igVC8XrA4zwUT4pOOyjE-gSmgMWD3-lgM-4XfCz5sMN3MReSJzDeeYNvr7_ckm38TjjOJc2mzEkPw4JNDBnSvoqM2gc8pWqlMzxFj50eMjw7vZfo2_t3X7cfyc3nD5-21zfEyLYrhPUtk8YCQEsFt4Z1WjZO9A4sdV1rWA9WaGtlw42lspeGMwtCd6I1jaBOXKLXR91p7kewpq5Z51JT8qNOi4raq38rwd-pXdyrNWf1mE0VeHkSSPHnDLmosV4OhkEHiHNWXGxk1zUbLivaHFGTYs4J3IMNo-oQnroPTx3CU6fwat-Lv2d86LpPqwJvjoAPLqZR_4ppsKroZYjJJR2Mz0r83-MP-3uvQg
CitedBy_id crossref_primary_10_1080_07391102_2020_1776639
crossref_primary_10_1080_07391102_2020_1809522
crossref_primary_10_1016_j_molstruc_2020_129489
crossref_primary_10_1080_07391102_2020_1763202
crossref_primary_10_3390_ijerph182413290
crossref_primary_10_1007_s11756_021_00979_4
crossref_primary_10_1080_10408398_2022_2119930
crossref_primary_10_1007_s40199_023_00461_3
crossref_primary_10_1080_07391102_2021_1901144
crossref_primary_10_1186_s12575_020_00141_5
crossref_primary_10_3390_molecules26133817
crossref_primary_10_1049_nbt2_12079
crossref_primary_10_1080_07391102_2020_1802347
crossref_primary_10_18231_j_jpmhh_2021_009
crossref_primary_10_1080_07391102_2020_1802349
crossref_primary_10_1186_s13765_023_00842_x
crossref_primary_10_1155_2021_6632623
crossref_primary_10_1016_j_phymed_2021_153802
crossref_primary_10_1080_07391102_2020_1790038
crossref_primary_10_1080_07391102_2020_1796811
crossref_primary_10_1016_j_ejpe_2021_02_005
crossref_primary_10_56717_jpp_2024_v03i01_023
crossref_primary_10_1080_07391102_2020_1813202
crossref_primary_10_1016_j_molstruc_2020_129026
crossref_primary_10_1016_j_cbi_2021_109449
crossref_primary_10_1080_07391102_2020_1792347
crossref_primary_10_1080_07391102_2020_1792344
crossref_primary_10_1007_s11030_021_10220_8
crossref_primary_10_3390_molecules26237385
crossref_primary_10_1021_acsptsci_2c00026
crossref_primary_10_1080_07391102_2020_1767691
crossref_primary_10_3390_molecules25173980
crossref_primary_10_1080_07391102_2020_1767210
crossref_primary_10_1039_D1RA02233D
crossref_primary_10_1080_07391102_2020_1767211
crossref_primary_10_1155_2021_8853056
crossref_primary_10_1080_07391102_2020_1858164
crossref_primary_10_1080_07391102_2020_1858165
crossref_primary_10_1155_2021_3613268
crossref_primary_10_1016_j_biopha_2020_111017
crossref_primary_10_2174_1573406417666210618132003
crossref_primary_10_2174_1570178619666220309160557
crossref_primary_10_14233_ajchem_2021_23100
crossref_primary_10_1155_2020_3219840
crossref_primary_10_1016_j_drudis_2020_12_005
crossref_primary_10_1016_j_gene_2024_148620
crossref_primary_10_1021_acs_jcim_1c00524
crossref_primary_10_1080_07391102_2020_1772111
crossref_primary_10_1080_07391102_2020_1772112
crossref_primary_10_1080_07391102_2020_1772110
crossref_primary_10_1070_QEL17969
crossref_primary_10_1016_j_imu_2021_100526
crossref_primary_10_1002_qua_27110
crossref_primary_10_3390_antiox9080742
crossref_primary_10_1007_s13205_022_03406_w
crossref_primary_10_1016_j_sajb_2021_03_012
crossref_primary_10_1007_s12272_022_01420_3
crossref_primary_10_1080_07391102_2023_2206287
crossref_primary_10_1007_s42250_022_00411_7
crossref_primary_10_1080_07391102_2021_1902393
crossref_primary_10_1016_j_crphar_2021_100038
crossref_primary_10_1016_j_compbiomed_2021_104492
crossref_primary_10_1016_j_cplett_2020_138193
crossref_primary_10_1080_07391102_2020_1769733
crossref_primary_10_1016_j_jmgm_2020_107730
crossref_primary_10_1016_j_algal_2021_102331
crossref_primary_10_1007_s12010_021_03608_7
crossref_primary_10_3390_su13073671
crossref_primary_10_3390_ijms222011069
crossref_primary_10_1080_07391102_2020_1772108
crossref_primary_10_1016_j_jbiotec_2021_06_024
crossref_primary_10_1080_07391102_2023_2171137
crossref_primary_10_1080_07391102_2020_1764392
crossref_primary_10_3390_molecules26123526
crossref_primary_10_5812_ijpr_131577
crossref_primary_10_1007_s00894_021_04732_1
crossref_primary_10_1016_j_crphar_2021_100057
crossref_primary_10_1093_bib_bbaa378
crossref_primary_10_2147_DDDT_S366423
crossref_primary_10_2174_2666796701999201204115545
crossref_primary_10_1016_j_molliq_2021_115636
crossref_primary_10_1186_s43094_021_00259_7
crossref_primary_10_1016_j_compbiomed_2020_104063
crossref_primary_10_1080_07391102_2020_1800514
crossref_primary_10_3389_fmolb_2022_898874
crossref_primary_10_1016_j_comtox_2022_100257
crossref_primary_10_2147_IJN_S298900
crossref_primary_10_3390_molecules25235604
crossref_primary_10_1021_acs_chemrev_1c00965
crossref_primary_10_3389_fmolb_2021_625391
crossref_primary_10_4167_jbv_2021_51_4_200
crossref_primary_10_1080_07391102_2020_1775703
crossref_primary_10_1080_07391102_2020_1775704
crossref_primary_10_1016_j_compbiolchem_2021_107599
crossref_primary_10_1016_j_phrs_2020_104929
crossref_primary_10_1515_znc_2023_0075
crossref_primary_10_1007_s42535_024_00915_2
crossref_primary_10_3390_foods9081036
crossref_primary_10_1002_bkcs_12171
crossref_primary_10_1016_j_biochi_2020_04_013
crossref_primary_10_1080_07391102_2020_1778537
crossref_primary_10_3390_microorganisms10061181
crossref_primary_10_1016_j_freeradbiomed_2020_06_032
crossref_primary_10_2217_fmb_2023_0103
crossref_primary_10_1021_jacs_1c05301
crossref_primary_10_1080_07391102_2020_1813630
crossref_primary_10_1080_23311932_2023_2226427
crossref_primary_10_1016_j_jmgm_2021_107874
crossref_primary_10_1590_1678_4324_2021200803
crossref_primary_10_3389_fphar_2022_835136
crossref_primary_10_1021_acsptsci_0c00215
crossref_primary_10_1021_acsptsci_0c00216
crossref_primary_10_1016_j_cbi_2020_109211
crossref_primary_10_2144_fsoa_2020_0079
crossref_primary_10_1080_14760584_2022_2021074
crossref_primary_10_1016_j_fct_2020_111966
crossref_primary_10_3390_ijms23148006
crossref_primary_10_1080_07391102_2020_1770127
crossref_primary_10_1080_07391102_2020_1775127
crossref_primary_10_1080_07391102_2020_1768151
crossref_primary_10_1080_07391102_2020_1775123
crossref_primary_10_3390_pharmaceutics14030530
crossref_primary_10_1080_07391102_2020_1804458
crossref_primary_10_1080_07391102_2020_1798286
crossref_primary_10_1080_07391102_2020_1815584
crossref_primary_10_1080_07391102_2021_2004236
crossref_primary_10_1021_acs_joc_3c00440
crossref_primary_10_1080_07391102_2020_1792989
crossref_primary_10_1002_ptr_6868
crossref_primary_10_1080_07391102_2020_1775129
crossref_primary_10_1007_s42250_022_00521_2
crossref_primary_10_1080_07391102_2020_1780947
crossref_primary_10_3389_fphar_2021_590509
crossref_primary_10_1080_07391102_2020_1780946
crossref_primary_10_3389_fmolb_2021_628585
crossref_primary_10_1007_s13738_023_02939_y
crossref_primary_10_1080_07391102_2020_1829501
crossref_primary_10_1080_07391102_2020_1768149
crossref_primary_10_12688_f1000research_73999_2
crossref_primary_10_3389_fchem_2021_744376
crossref_primary_10_1016_j_jhazmat_2020_124927
crossref_primary_10_1186_s43141_020_00085_z
crossref_primary_10_1080_07391102_2021_1971564
crossref_primary_10_3389_fmolb_2020_616341
crossref_primary_10_52547_hsm_1_2_89
crossref_primary_10_12688_f1000research_73999_1
crossref_primary_10_3389_fphar_2022_813391
crossref_primary_10_1021_acsomega_0c05858
crossref_primary_10_2174_1389201022666210322124348
crossref_primary_10_1002_jmv_26072
crossref_primary_10_3390_molecules26030674
crossref_primary_10_3389_fphar_2020_586993
crossref_primary_10_1039_D0MO00057D
crossref_primary_10_1111_1751_7915_13675
crossref_primary_10_1039_D0RA03774E
crossref_primary_10_1093_toxres_tfab113
crossref_primary_10_1016_j_compbiomed_2022_105468
crossref_primary_10_1080_07391102_2020_1771424
crossref_primary_10_1007_s00894_021_04703_6
crossref_primary_10_1080_07391102_2020_1797536
crossref_primary_10_2147_NDS_S294231
crossref_primary_10_1080_07391102_2020_1779818
crossref_primary_10_1016_j_chemolab_2021_104421
crossref_primary_10_1080_07391102_2020_1779819
crossref_primary_10_1080_17512433_2021_1874348
crossref_primary_10_1080_07391102_2020_1784289
crossref_primary_10_1016_j_scitotenv_2021_149719
crossref_primary_10_1080_07391102_2020_1779133
crossref_primary_10_1080_07391102_2020_1779132
crossref_primary_10_1007_s00011_022_01642_7
crossref_primary_10_1016_j_ejmech_2021_113857
crossref_primary_10_3390_plants11141862
crossref_primary_10_1155_2023_7598307
crossref_primary_10_1038_s41598_021_86712_2
crossref_primary_10_1080_07391102_2020_1841681
crossref_primary_10_1080_07391102_2020_1848630
crossref_primary_10_3390_molecules26020448
crossref_primary_10_1021_acs_jcim_0c00634
crossref_primary_10_1021_acs_jpcb_1c10489
crossref_primary_10_1016_j_compbiolchem_2022_107656
crossref_primary_10_1007_s11010_022_04654_3
crossref_primary_10_1016_j_bcp_2020_114296
crossref_primary_10_1016_j_physrep_2020_07_005
crossref_primary_10_1016_j_arabjc_2021_103243
crossref_primary_10_1016_j_micpath_2021_104933
crossref_primary_10_1016_j_imu_2020_100504
crossref_primary_10_1080_07391102_2020_1786459
crossref_primary_10_1039_D0RA07838G
crossref_primary_10_1016_j_jmgm_2021_108082
crossref_primary_10_1080_07391102_2020_1794963
crossref_primary_10_1080_07391102_2020_1794969
crossref_primary_10_1080_07391102_2020_1794972
crossref_primary_10_1038_s41598_024_58532_7
crossref_primary_10_12688_f1000research_26359_1
crossref_primary_10_1080_07391102_2020_1768902
crossref_primary_10_1007_s11224_022_01999_9
crossref_primary_10_1080_07391102_2020_1765876
crossref_primary_10_3390_immuno1010004
crossref_primary_10_1155_2021_7251119
crossref_primary_10_1155_2022_2044282
crossref_primary_10_3390_ijms22147582
crossref_primary_10_1016_j_compbiomed_2020_104102
crossref_primary_10_1080_07391102_2020_1819879
crossref_primary_10_1080_07391102_2021_1891139
crossref_primary_10_1007_s11030_021_10233_3
crossref_primary_10_1021_acs_jnatprod_3c00249
crossref_primary_10_1080_07391102_2023_2192797
crossref_primary_10_1039_D0RA04876C
Cites_doi 10.1080/07391102.2020.1752802
10.1016/j.antiviral.2020.104714
10.1248/cpb.50.1607
10.1038/d41586-020-00758-2
10.1080/07391102.2020.1753580
10.1016/j.cell.2020.02.052
10.1002/jcc.21256
10.1099/0022-1317-83-3-595
10.1016/j.phrs.2017.11.016
10.1038/s41598-016-0001-8
10.1038/srep42717
10.5582/ddt.2020.01012
10.1073/pnas.0908978107
10.1016/S0140-6736(20)30673-5
10.1371/journal.pone.0081184
10.1016/j.apsb.2020.02.008
10.1038/s41594-017-0019-z
10.1093/nar/gky1033
10.1002/jcc.20084
10.1016/j.bmcl.2012.04.081
10.1093/nar/gkq366
10.1186/s12981-017-0183-6
10.1021/jf034385r
10.1016/j.jep.2004.06.031
10.1126/science.1085658
10.1016/j.onehlt.2020.100128
10.1038/s41591-020-0820-9
10.1016/j.bcp.2012.08.012
10.1007/s00018-004-4242-5
10.1038/s41421-020-0153-3
10.1021/acs.biochem.8b00892
10.3390/v11100890
10.1080/07391102.2020.1754293
10.1093/molbev/mst197
10.1038/sj.emboj.7601368
10.1016/S0031-9422(03)00238-3
10.1002/jcc.21334
10.1128/AAC.00399-12
10.1021/jf050122g
10.1093/nar/gkt332
10.3390/nu6010391
ContentType Journal Article
Copyright 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
2020 Informa UK Limited, trading as Taylor & Francis Group 2020 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
– notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020 Informa UK Limited, trading as Taylor & Francis Group
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1080/07391102.2020.1760137
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate R. S. Joshi et al
EISSN 1538-0254
EndPage 3114
ExternalDocumentID 10_1080_07391102_2020_1760137
32329408
1760137
Genre Research Articles
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.QJ
0BK
0R~
30N
4.4
5GY
AAAVI
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBKH
ABCCY
ABFIM
ABJVF
ABLIJ
ABPEM
ABQHQ
ABTAI
ABXUL
ACGFS
ACTIO
ADCVX
ADGTB
AEGYZ
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFOLD
AFWLO
AGDLA
AGMYJ
AHDLD
AIJEM
AIRXU
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
BLEHA
CCCUG
DGEBU
DKSSO
EBS
EMOBN
E~A
E~B
F5P
FUNRP
FVPDL
GTTXZ
H13
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NX0
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SJN
SNACF
TEI
TFL
TFT
TFW
TQWBC
TTHFI
UT5
V1K
ZGOLN
~KM
~S~
07X
53G
AAGME
AAHBH
AAOAP
ABFMO
ABJNI
ABPAQ
ABTAA
ABXYU
ACBBU
ACDHJ
ACQMU
ACZPZ
ADGTR
ADOPC
AFDYB
AFFVI
AHDZW
AI.
AMATQ
APNXG
AURDB
AWYRJ
BFWEY
C0.
CGR
CUY
CVF
CWRZV
DLOXE
ECM
EIF
EJD
HGUVV
JEPSP
NPM
NUSFT
OWHGL
PCLFJ
S70
TBQAZ
TDBHL
TUROJ
VH1
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c468t-1b614cdeee6032dc18a45f3bfed0f86c1bed3add452cd04b4c21de3a836c530f3
IEDL.DBID TFW
ISSN 0739-1102
1538-0254
IngestDate Tue Sep 17 21:09:19 EDT 2024
Sat Oct 26 04:32:49 EDT 2024
Fri Nov 22 02:34:21 EST 2024
Sat Nov 02 12:26:40 EDT 2024
Tue Jun 13 19:57:35 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords COVID-19
protease inhibitor
Coronavirus
MPro
RdRp
SARS-CoV-2 virus
hACE-2
multi-target-directed ligand
Language English
License This article is made available via the PMC Open Access Subset for unrestricted re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the COVID-19 pandemic or until permissions are revoked in writing. Upon expiration of these permissions, PMC is granted a perpetual license to make this article available via PMC and Europe PMC, consistent with existing copyright protections.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c468t-1b614cdeee6032dc18a45f3bfed0f86c1bed3add452cd04b4c21de3a836c530f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Authors contributed equally
We would like to dedicate this research article to all the frontline workers who are working selflessly in extreme situations to serve society and to control the pandemic COVID-19.
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7212545
PMID 32329408
PQID 2394885924
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7212545
informaworld_taylorfrancis_310_1080_07391102_2020_1760137
proquest_miscellaneous_2394885924
pubmed_primary_32329408
crossref_primary_10_1080_07391102_2020_1760137
PublicationCentury 2000
PublicationDate 2021-06-13
PublicationDateYYYYMMDD 2021-06-13
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-13
  day: 13
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of biomolecular structure & dynamics
PublicationTitleAlternate J Biomol Struct Dyn
PublicationYear 2021
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References CIT0050
Cao B. (CIT0007) 2020
Khan R. J. (CIT0025) 2020
Fry H. (CIT0013) 2020; 579
Salata C. (CIT0038) 2020; 77
CIT0010
CIT0031
CIT0034
CIT0011
CIT0033
Li C. (CIT0030) 2016; 6
Shang J. (CIT0040) 2020
Gao Y. (CIT0014) 2020; 7498
CIT0036
CIT0035
CIT0015
CIT0037
CIT0018
CIT0017
CIT0039
Zhang L. (CIT0049) 2020; 3405
CIT0019
CIT0041
CIT0021
CIT0020
CIT0042
CIT0001
CIT0023
CIT8120858
CIT0045
CIT0022
Trott O. (CIT0044) 2010; 31
CIT0003
CIT0047
CIT0002
Gupta M. K. (CIT0016) 2020
CIT0024
CIT0046
CIT0005
CIT0027
CIT0004
CIT0026
CIT0048
CIT0029
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0034
  doi: 10.1080/07391102.2020.1752802
– start-page: 1
  year: 2020
  ident: CIT0016
  publication-title: Journal of Biomolecular Structure and Dynamics
  contributor:
    fullname: Gupta M. K.
– ident: CIT0031
  doi: 10.1016/j.antiviral.2020.104714
– ident: CIT0028
  doi: 10.1248/cpb.50.1607
– volume: 579
  start-page: 482
  year: 2020
  ident: CIT0013
  publication-title: Nature
  doi: 10.1038/d41586-020-00758-2
  contributor:
    fullname: Fry H.
– ident: CIT0039
  doi: 10.1080/07391102.2020.1753580
– ident: CIT0020
  doi: 10.1016/j.cell.2020.02.052
– ident: CIT0033
  doi: 10.1002/jcc.21256
– ident: CIT0019
  doi: 10.1099/0022-1317-83-3-595
– ident: CIT0047
  doi: 10.1016/j.phrs.2017.11.016
– volume: 7498
  start-page: 1
  year: 2020
  ident: CIT0014
  publication-title: Science
  contributor:
    fullname: Gao Y.
– start-page: 1
  year: 2020
  ident: CIT0040
  publication-title: Nature
  contributor:
    fullname: Shang J.
– volume: 6
  start-page: 1
  issue: 1
  year: 2016
  ident: CIT0030
  publication-title: Scientific Reports
  doi: 10.1038/s41598-016-0001-8
  contributor:
    fullname: Li C.
– volume: 77
  start-page: 1
  issue: 9
  year: 2020
  ident: CIT0038
  publication-title: Pathogens and Disease
  contributor:
    fullname: Salata C.
– ident: CIT0008
  doi: 10.1038/srep42717
– ident: CIT0010
  doi: 10.5582/ddt.2020.01012
– ident: CIT0017
  doi: 10.1073/pnas.0908978107
– ident: CIT0005
  doi: 10.1016/S0140-6736(20)30673-5
– ident: CIT0037
  doi: 10.1371/journal.pone.0081184
– ident: CIT0046
  doi: 10.1016/j.apsb.2020.02.008
– volume: 3405
  start-page: 1
  year: 2020
  ident: CIT0049
  publication-title: Science (New York, N.Y.)
  contributor:
    fullname: Zhang L.
– ident: CIT8120858
  doi: 10.1038/s41594-017-0019-z
– ident: CIT0026
  doi: 10.1093/nar/gky1033
– ident: CIT0036
  doi: 10.1002/jcc.20084
– ident: CIT0048
  doi: 10.1016/j.bmcl.2012.04.081
– ident: CIT0021
  doi: 10.1093/nar/gkq366
– ident: CIT0035
  doi: 10.1186/s12981-017-0183-6
– ident: CIT0004
  doi: 10.1021/jf034385r
– ident: CIT0006
  doi: 10.1016/j.jep.2004.06.031
– ident: CIT0002
  doi: 10.1126/science.1085658
– ident: CIT0001
  doi: 10.1016/j.onehlt.2020.100128
– ident: CIT0003
  doi: 10.1038/s41591-020-0820-9
– ident: CIT0024
  doi: 10.1016/j.bcp.2012.08.012
– start-page: 1
  year: 2020
  ident: CIT0025
  publication-title: Journal of Biomolecular Structure and Dynamics
  contributor:
    fullname: Khan R. J.
– ident: CIT0027
  doi: 10.1007/s00018-004-4242-5
– ident: CIT0050
  doi: 10.1038/s41421-020-0153-3
– start-page: 1
  year: 2020
  ident: CIT0007
  publication-title: The New England Journal of Medicine
  contributor:
    fullname: Cao B.
– ident: CIT0009
  doi: 10.1021/acs.biochem.8b00892
– ident: CIT0029
  doi: 10.3390/v11100890
– ident: CIT0018
  doi: 10.1080/07391102.2020.1754293
– ident: CIT0042
  doi: 10.1093/molbev/mst197
– ident: CIT0022
  doi: 10.1038/sj.emboj.7601368
– ident: CIT0011
  doi: 10.1016/S0031-9422(03)00238-3
– volume: 31
  start-page: NA
  issue: 2
  year: 2010
  ident: CIT0044
  publication-title: Journal of Computational Chemistry
  doi: 10.1002/jcc.21334
  contributor:
    fullname: Trott O.
– ident: CIT0041
  doi: 10.1128/AAC.00399-12
– ident: CIT0045
  doi: 10.1021/jf050122g
– ident: CIT0023
  doi: 10.1093/nar/gkt332
– ident: CIT0015
  doi: 10.3390/nu6010391
SSID ssj0021171
Score 2.686898
Snippet Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in the current COVID-19 pandemic. Worldwide this disease has infected over...
SourceID pubmedcentral
proquest
crossref
pubmed
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 3099
SubjectTerms Coronavirus
COVID-19
hACE-2
Humans
Ligands
MPro
multi-target-directed ligand
Pandemics
Peptide Hydrolases
Pharmaceutical Preparations
Phylogeny
protease inhibitor
Protease Inhibitors - pharmacology
RdRp
SARS-CoV-2
SARS-CoV-2 virus
Title Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease
URI https://www.tandfonline.com/doi/abs/10.1080/07391102.2020.1760137
https://www.ncbi.nlm.nih.gov/pubmed/32329408
https://www.proquest.com/docview/2394885924
https://pubmed.ncbi.nlm.nih.gov/PMC7212545
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELWgEhIX9qVsMhJXQxJncY9VF_XEgZblFiVeoFJJKtoi5cSvMxM3VYtAHOAax5Zjj_088Zs3hFzB8tGR8gTTYeiAg9LgLNGhYUmqdASQ6MsGBif3-tHtk2h3UCanWcXCIK0SfWhjhSLKvRoXd5JOKkbcDV4uAWphGJUHj5DVwTGeHDW3waIH3ceFy-W6pcuFNRhWqWJ4fmplBZ1WtEu_O4F-JVIuIVN3-x--aYdszY-ltGntaJes6WyPbNhElcU--WgPJxLJngXNDR3nU-QYwfslHZFZNjmz6KgVHQ2fMYCYpgW1RQCPFKNJGMZ1IjeJ9pt3fdbKH5hHrYItqn-MCiqR3P32Do28JsOMlioSgLMH5L7bGbR6bJ66gUk_FFPmpgD7UmmtQ4d7Sroi8QPDU6OVY0Qo3VQrDlurH3hSOX7qS89VmieChzLgjuGHpJblmT4mlBtwymCfEJGKfIAJwY2GHVw6UQoAH4o6ua6mLB5bhY7YrYRP56Ma46jG81Gtk8byxMbT8teIsXlMYv5L3cvKCmJYh3i5kmQ6n01iTDEvRADubJ0cWatYdIfDsbXhO9DVaMVeFi-gxvdqSTZ8KbW-wUEHFz44-UOfT8mmh0QcTLjEz0gNZlWfk_WJml2Ui-UTADUUQw
link.rule.ids 230,315,782,786,887,1455,1509,27934,27935,58023,59736,60525
linkProvider Taylor & Francis
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7xECoXoLTA8qor9eo2ifPwHhGwWsTj0F1ob1biB6wECWIXpD3x15mJNyu2ouLQXpPYcuyxP4_9zTcA33D62MxEkts0DdBBaQue29TxvDA2Q0iMdZuCk7u97OK3PDommZxpLAzRKsmHdl4ool6raXLTYXRDiftBt0sIWxRHFeEjonWIbB4WcXMsyMr7nV9TpysMa6eLinAq00Tx_K2aGXyaUS99aw_6J5XyFTZ1Vv_HX63BymRnyg68KX2EOVuuw5LPVTn-BM9Hg6EmvueYVY7dVyOiGeH3NSORe0I59wBpDbsdXFMMMSvGzL9ChGQUUMIptJPoSax38LPHD6srHjEvYksCILdjponf_fCEldzlg5LVQhIItZ_hsnPcP-zySfYGruNUjnhYIPJrY61NAxEZHco8TpwonDWBk6kOC2sErq5xEmkTxEWso9BYkUuR6kQETmzAQlmVdguYcOiX4VIhM5PFiBRSOIuLuA6yAjE-lS343oyZuvciHSpstE8nvaqoV9WkV1vQfj2yalSfjjifykSJd8p-bcxA4VSk-5W8tNXjUFGWeSkT9GhbsOnNYtocgTvXdhxgU7MZg5l-QDLfs2_KwU0t940-OnrxyfY_tPkLfOj2z8_U2cnF6Q4sR8TLofxLYhcWcITtHswPzeN-PXNeAF0lGGk
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bT9swFD4Cpk17gbELK5fNk3j1lsSJ4z5WlAq0CaGVXd6sxBdWqSTVWib1ib_OOXFTUcTEw_Yax5ZjH_vzib_zHYBDXD4ut4niTsoIHZSu4IWTnheldTlCYmq6FJx8MszPfqr-Mcnk9NpYGKJVkg_tg1BEs1fT4p5Y3zLiPtHlEqIWhVEl-IhYHSJfhyeScrKhSV8Mfix9rjhufC6qwqlOG8Tzt2ZW4GlFvPShI-h9JuUdaBps_YePegGbi3Mp6wVD2oY1V72EpyFT5fwV3PRHU0NszzmrPZvUMyIZ4fsNH5EHOjkP8OgsG48uKYKYlXMWihAfGYWTcArsJHISG_a-DvlR_Z0nLEjYkvzHeM4Msbt__8FGropRxRoZCQTa1_BtcHxxdMIXuRu4SaWa8bhE3DfWOScjkVgTqyLNvCi9s5FX0sSlswL31jRLjI3SMjVJbJ0olJAmE5EXb2Cjqiv3Fpjw6JXhRqFym6eIE0p4h1u4ifISEV6qDnxsp0xPgkSHjlvl08WoahpVvRjVDnTvTqyeNf9GfEhkosUjdT-0VqBxIdLtSlG5-nqqKce8Uhn6sx3YCVax7I7Ac2s3jbCr-Yq9LF8gke_Vkmr0qxH7Rg8dffhs9x_6_B6enfcH-svp2ec9eJ4QKYeSL4l92MAJdgewPrXX75p1cwvYBhcN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discovery+of+potential+multi-target-directed+ligands+by+targeting+host-specific+SARS-CoV-2+structurally+conserved+main+protease&rft.jtitle=Journal+of+biomolecular+structure+%26+dynamics&rft.au=Joshi%2C+Rakesh+S.&rft.au=Jagdale%2C+Shounak+S.&rft.au=Bansode%2C+Sneha+B.&rft.au=Shankar%2C+S.+Shiva&rft.date=2021-06-13&rft.pub=Taylor+%26+Francis&rft.issn=0739-1102&rft.eissn=1538-0254&rft.volume=39&rft.issue=9&rft.spage=3099&rft.epage=3114&rft_id=info:doi/10.1080%2F07391102.2020.1760137&rft.externalDocID=1760137
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0739-1102&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0739-1102&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0739-1102&client=summon