A Rapid Interference between Glucocorticoids and cAMP-Activated Signalling in Hypothalamic Neurones Prevents Binding of Phosphorylated cAMP Response Element Binding Protein and Glucocorticoid Receptor at the CRE-Like and Composite GRE Sites of Thyrotrophin-Releasing Hormone Gene Promoter

Glucocorticoids or cAMP increase, within minutes, thyrotrophin‐releasing hormone (TRH) transcription in hypothalamic primary cultures, although this effect is prevented if cells are simultaneously incubated with both drugs. Rat TRH promoter contains a CRE site at −101/−94 bp and a composite GRE elem...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neuroendocrinology Vol. 22; no. 4; pp. 282 - 293
Main Authors: Díaz-Gallardo, M. Y., Cote-Vélez, A., Charli, J. L., Joseph-Bravo, P.
Format: Journal Article
Language:English
Published: Oxford, UK Blackwell Publishing Ltd 01-04-2010
Blackwell
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Glucocorticoids or cAMP increase, within minutes, thyrotrophin‐releasing hormone (TRH) transcription in hypothalamic primary cultures, although this effect is prevented if cells are simultaneously incubated with both drugs. Rat TRH promoter contains a CRE site at −101/−94 bp and a composite GRE element (cGRE) at −218/−197 bp. Nuclear extracts of hypothalamic cells incubated with 8Br‐cAMP or dexamethasone, and not their combination, bind to oligonucleotides containing the CRE or cGRE sequences. Adjacent to CRE are Sp/Krüppel response elements, and flanking the GRE half site, two AP1 binding sites. The present study aimed to identify the hypothalamic transcription factors that bind to these sites. We verified that the effects of glucocorticoid were not mimicked by corticosterone‐bovine serum albumin. Footprinting and chromatin immunoprecipitation (ChIP) assays were used to examine the interaction of cAMP‐ and glucocorticoid‐mediated regulation of TRH transcription at the CRE and cGRE regions of the TRH promoter. Nuclear extracts from hypothalamic cells incubated for 1 h with cAMP or glucocorticoids protected CRE. The GRE half site was recognised by nuclear proteins from cells stimulated with glucocorticoids and, for the adjacent AP‐1 sites, by nuclear proteins from cells stimulated with cAMP or phorbol esters. Protection of CRE or cGRE was lost if cells were coincubated with dexamethasone and 8Br‐cAMP. ChIP assays revealed phospho‐CREB, c‐Jun, Sp1, c‐Fos and GR antibodies bound the TRH promoter of cells treated with cAMP or glucocorticoids; anti:RNA‐polymerase II immunoprecipitated TRH promoter in a similar proportion as anti:pCREB or anti:GR. Recruitment of pCREB, SP1 or GR was lost when cells were exposed simultaneously to 8Br‐cAMP and glucocorticoids. The data show that while pCREB and Sp1 bind to CRE‐2, or GR to cGRE of the TRH promoter, the mutual antagonism between cAMP and glucocorticoid signalling, which prevent their binding to TRH promoter, could serve as a mechanism by which glucocorticoids rapidly suppress cAMP and noradrenaline‐stimulated TRH transcription.
AbstractList Glucocorticoids or cAMP increase, within minutes, thyrotrophin‐releasing hormone (TRH) transcription in hypothalamic primary cultures, although this effect is prevented if cells are simultaneously incubated with both drugs. Rat TRH promoter contains a CRE site at −101/−94 bp and a composite GRE element (cGRE) at −218/−197 bp. Nuclear extracts of hypothalamic cells incubated with 8Br‐cAMP or dexamethasone, and not their combination, bind to oligonucleotides containing the CRE or cGRE sequences. Adjacent to CRE are Sp/Krüppel response elements, and flanking the GRE half site, two AP1 binding sites. The present study aimed to identify the hypothalamic transcription factors that bind to these sites. We verified that the effects of glucocorticoid were not mimicked by corticosterone‐bovine serum albumin. Footprinting and chromatin immunoprecipitation (ChIP) assays were used to examine the interaction of cAMP‐ and glucocorticoid‐mediated regulation of TRH transcription at the CRE and cGRE regions of the TRH promoter. Nuclear extracts from hypothalamic cells incubated for 1 h with cAMP or glucocorticoids protected CRE. The GRE half site was recognised by nuclear proteins from cells stimulated with glucocorticoids and, for the adjacent AP‐1 sites, by nuclear proteins from cells stimulated with cAMP or phorbol esters. Protection of CRE or cGRE was lost if cells were coincubated with dexamethasone and 8Br‐cAMP. ChIP assays revealed phospho‐CREB, c‐Jun, Sp1, c‐Fos and GR antibodies bound the TRH promoter of cells treated with cAMP or glucocorticoids; anti:RNA‐polymerase II immunoprecipitated TRH promoter in a similar proportion as anti:pCREB or anti:GR. Recruitment of pCREB, SP1 or GR was lost when cells were exposed simultaneously to 8Br‐cAMP and glucocorticoids. The data show that while pCREB and Sp1 bind to CRE‐2, or GR to cGRE of the TRH promoter, the mutual antagonism between cAMP and glucocorticoid signalling, which prevent their binding to TRH promoter, could serve as a mechanism by which glucocorticoids rapidly suppress cAMP and noradrenaline‐stimulated TRH transcription.
Glucocorticoids or cAMP increase, within minutes, thyrotrophin-releasing hormone (TRH) transcription in hypothalamic primary cultures, although this effect is prevented if cells are simultaneously incubated with both drugs. Rat TRH promoter contains a CRE site at -101/-94 bp and a composite GRE element (cGRE) at -218/-197 bp. Nuclear extracts of hypothalamic cells incubated with 8Br-cAMP or dexamethasone, and not their combination, bind to oligonucleotides containing the CRE or cGRE sequences. Adjacent to CRE are Sp/Krüppel response elements, and flanking the GRE half site, two AP1 binding sites. The present study aimed to identify the hypothalamic transcription factors that bind to these sites. We verified that the effects of glucocorticoid were not mimicked by corticosterone-bovine serum albumin. Footprinting and chromatin immunoprecipitation (ChIP) assays were used to examine the interaction of cAMP- and glucocorticoid-mediated regulation of TRH transcription at the CRE and cGRE regions of the TRH promoter. Nuclear extracts from hypothalamic cells incubated for 1 h with cAMP or glucocorticoids protected CRE. The GRE half site was recognised by nuclear proteins from cells stimulated with glucocorticoids and, for the adjacent AP-1 sites, by nuclear proteins from cells stimulated with cAMP or phorbol esters. Protection of CRE or cGRE was lost if cells were coincubated with dexamethasone and 8Br-cAMP. ChIP assays revealed phospho-CREB, c-Jun, Sp1, c-Fos and GR antibodies bound the TRH promoter of cells treated with cAMP or glucocorticoids; anti:RNA-polymerase II immunoprecipitated TRH promoter in a similar proportion as anti:pCREB or anti:GR. Recruitment of pCREB, SP1 or GR was lost when cells were exposed simultaneously to 8Br-cAMP and glucocorticoids. The data show that while pCREB and Sp1 bind to CRE-2, or GR to cGRE of the TRH promoter, the mutual antagonism between cAMP and glucocorticoid signalling, which prevent their binding to TRH promoter, could serve as a mechanism by which glucocorticoids rapidly suppress cAMP and noradrenaline-stimulated TRH transcription.
Glucocorticoids or cAMP increase, within minutes, thyrotrophin-releasing hormone (TRH) transcription in hypothalamic primary cultures, although this effect is prevented if cells are simultaneously incubated with both drugs. Rat TRH promoter contains a CRE site at -101--94 bp and a composite GRE element (cGRE) at -218--197 bp. Nuclear extracts of hypothalamic cells incubated with 8Br-cAMP or dexamethasone, and not their combination, bind to oligonucleotides containing the CRE or cGRE sequences. Adjacent to CRE are Sp-Krueppel response elements, and flanking the GRE half site, two AP1 binding sites. The present study aimed to identify the hypothalamic transcription factors that bind to these sites. We verified that the effects of glucocorticoid were not mimicked by corticosterone-bovine serum albumin. Footprinting and chromatin immunoprecipitation (ChIP) assays were used to examine the interaction of cAMP- and glucocorticoid-mediated regulation of TRH transcription at the CRE and cGRE regions of the TRH promoter. Nuclear extracts from hypothalamic cells incubated for 1 h with cAMP or glucocorticoids protected CRE. The GRE half site was recognised by nuclear proteins from cells stimulated with glucocorticoids and, for the adjacent AP-1 sites, by nuclear proteins from cells stimulated with cAMP or phorbol esters. Protection of CRE or cGRE was lost if cells were coincubated with dexamethasone and 8Br-cAMP. ChIP assays revealed phospho-CREB, c-Jun, Sp1, c-Fos and GR antibodies bound the TRH promoter of cells treated with cAMP or glucocorticoids; anti:RNA-polymerase II immunoprecipitated TRH promoter in a similar proportion as anti:pCREB or anti:GR. Recruitment of pCREB, SP1 or GR was lost when cells were exposed simultaneously to 8Br-cAMP and glucocorticoids. The data show that while pCREB and Sp1 bind to CRE-2, or GR to cGRE of the TRH promoter, the mutual antagonism between cAMP and glucocorticoid signalling, which prevent their binding to TRH promoter, could serve as a mechanism by which glucocorticoids rapidly suppress cAMP and noradrenaline-stimulated TRH transcription.
Author Díaz-Gallardo, M. Y.
Joseph-Bravo, P.
Cote-Vélez, A.
Charli, J. L.
Author_xml – sequence: 1
  givenname: M. Y.
  surname: Díaz-Gallardo
  fullname: Díaz-Gallardo, M. Y.
  organization: Departamento de Genética y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
– sequence: 2
  givenname: A.
  surname: Cote-Vélez
  fullname: Cote-Vélez, A.
  organization: Departamento de Genética y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
– sequence: 3
  givenname: J. L.
  surname: Charli
  fullname: Charli, J. L.
  organization: Departamento de Genética y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
– sequence: 4
  givenname: P.
  surname: Joseph-Bravo
  fullname: Joseph-Bravo, P.
  organization: Departamento de Genética y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22496318$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20136691$$D View this record in MEDLINE/PubMed
BookMark eNqNkk9v0zAYxgMaYt3gKyBfEKcUO26d-MChq0o6VEZVJsHNcp03q7fEzmx3W789zlqKOEEOSZT8nj-JnrPkxFgDSYIIHpJ4fLwdEsrGaVZkbJjh-BQTztjw6WUyOL44SQaYj2laED46Tc68v8WY5GOKXyenUUMZ42TwAk3QSna6QpcmgKvBgVGA1hAeAQwqm62yyrqgldWVR9JUSE2-LtOJCvpBBqjQd31jZNNoc4O0QfNdZ8NGNrLVCl3B1sXeHi0dPIAJHl1oU_WkrdFyY323sW7XPNv0rmgFvrPGA5o10EbBkV86GyDa9_l_d4oaBV2wDsmAwgbQdDVLF_oOntmpbTvrdQBUrmaxaohlYvb1ZhcNne022qQraED6PmVuXRv7ohLiKUa2MdS9SV7VsvHw9nA9T64_z66n83TxrbycThapGrGCpTwvioJSzqqC1zmQmivIpVzXsIZx_OkYc56tM1ZIVmQkVxlek5GkpBgToqqanicf9rads_db8EG02itoGmnAbr3IRyzDOCP03ySldMQz3pPFnlTOeu-gFp3TrXQ7QbDodyRuRT8X0c9F9DsSzzsST1H67hCyXbdQHYW_hxOB9wdAeiWb2kmjtP_DZSPO4tdF7tOee9QN7P67gPhyNevvoj7d67UP8HTUS3cnWE7zsfhxVYpVnpU_-fJCFPQXd6f47g
CitedBy_id crossref_primary_10_1016_j_mce_2010_12_020
crossref_primary_10_3892_mmr_2017_6375
crossref_primary_10_3389_fendo_2019_00418
crossref_primary_10_1016_j_mce_2012_12_014
crossref_primary_10_1016_j_ynstr_2023_100530
crossref_primary_10_1134_S2079059712030070
crossref_primary_10_1007_s12020_016_1223_z
crossref_primary_10_1111_jne_12224
crossref_primary_10_1016_j_mce_2016_03_021
crossref_primary_10_1038_srep24905
crossref_primary_10_1080_10937404_2011_578561
crossref_primary_10_1016_j_mce_2012_09_006
crossref_primary_10_1530_JOE_14_0593
crossref_primary_10_1007_s11010_024_05001_4
crossref_primary_10_1016_j_regpep_2012_08_010
crossref_primary_10_1155_2013_217853
crossref_primary_10_1016_j_bbagrm_2011_01_005
crossref_primary_10_1016_j_psyneuen_2018_08_034
crossref_primary_10_1016_j_mce_2014_10_021
crossref_primary_10_1530_JOE_15_0124
crossref_primary_10_1007_s11154_016_9375_y
crossref_primary_10_1016_j_bbagrm_2014_08_010
crossref_primary_10_1016_j_brainres_2012_02_071
crossref_primary_10_1111_bph_13628
Cites_doi 10.1677/jme.1.01634
10.1016/j.mce.2007.07.003
10.1080/10253890701391192
10.1159/000228833
10.1159/000093129
10.1038/sj.onc.1204385
10.1073/pnas.220413297
10.1016/0960-0760(91)90172-2
10.1159/000054707
10.1111/j.1471-4159.2006.04128.x
10.1159/000126523
10.3904/kjim.1996.11.2.138
10.1016/j.mce.2006.11.001
10.1016/j.ygcen.2007.01.046
10.1016/S1385-299X(01)00140-4
10.1210/endo.139.1.5684
10.1006/abbi.1998.1044
10.1016/S0303-7207(01)00609-8
10.1172/JCI10741
10.1210/me.7.4.570
10.1007/s11064-008-9698-5
10.1016/j.neuint.2006.09.009
10.1016/j.brainres.2007.08.026
10.1016/0304-3940(95)12125-N
10.1210/en.2007-1234
10.1159/000127150
10.1016/j.cellsig.2008.02.022
10.1002/j.1460-2075.1992.tb05412.x
10.1016/S0079-6123(06)53012-2
10.1186/gb-2003-4-2-206
10.1210/endo.139.1.5703
10.1016/j.yfrne.2007.10.004
10.1128/IAI.72.5.2628-2634.2004
10.1371/journal.pone.0004327
10.1210/endo.136.7.7789304
10.1159/000054383
10.1016/j.psyneuen.2007.11.002
10.1152/ajprenal.00178.2006
10.1210/me.6.9.1451
10.1046/j.0953-816x.2001.01657.x
10.1016/S0021-9258(18)37433-7
10.1038/nrn1683
10.1074/jbc.272.34.21137
10.1074/jbc.M414144200
10.1210/me.9.5.540
ContentType Journal Article
Copyright 2010 The Authors. Journal Compilation © 2010 Blackwell Publishing Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2010 The Authors. Journal Compilation © 2010 Blackwell Publishing Ltd
– notice: 2015 INIST-CNRS
DBID BSCLL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7TK
DOI 10.1111/j.1365-2826.2010.01966.x
DatabaseName Istex
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList
MEDLINE
CrossRef
Neurosciences Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1365-2826
EndPage 293
ExternalDocumentID 10_1111_j_1365_2826_2010_01966_x
20136691
22496318
JNE1966
ark_67375_WNG_R72GX9PB_8
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29L
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIVO
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCUC
ACCZN
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FYBCS
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
YFH
ZGI
ZXP
ZZTAW
~IA
~WT
AETEA
AAVGM
ABHUG
ABPTK
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
7X8
7TK
ID FETCH-LOGICAL-c4686-978883396d89f7e1f9ce7aabfebe553000992b268a68217c20b14a318511cdf3
IEDL.DBID 33P
ISSN 0953-8194
IngestDate Sat Aug 17 02:19:07 EDT 2024
Fri Aug 16 05:03:34 EDT 2024
Thu Nov 21 23:30:51 EST 2024
Sat Sep 28 08:01:25 EDT 2024
Sun Oct 22 16:07:01 EDT 2023
Sat Aug 24 00:50:32 EDT 2024
Wed Oct 30 09:48:12 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Phosphorylation
Steroid hormone
Corticosterone
Transcription promoter
Central nervous system
corticosterone-BSA
Cyclic AMP
Thyroid stimulating hormone
Hypothalamus
Glucocorticoid
Encephalon
Hypothalamic hormone
Thyrotropin releasing hormone
CREB
Adenohypophyseal hormone
Adrenal hormone
Glucocorticoid receptor
composite-GRE
Hormone releasing factor
Transcription factor CREB
Thyrotrophin
pro-TRH
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4686-978883396d89f7e1f9ce7aabfebe553000992b268a68217c20b14a318511cdf3
Notes istex:AAAC1965DC8C508D92BBBE92A59B8B0E0032DAA4
ark:/67375/WNG-R72GX9PB-8
ArticleID:JNE1966
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 20136691
PQID 733349293
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_746200213
proquest_miscellaneous_733349293
crossref_primary_10_1111_j_1365_2826_2010_01966_x
pubmed_primary_20136691
pascalfrancis_primary_22496318
wiley_primary_10_1111_j_1365_2826_2010_01966_x_JNE1966
istex_primary_ark_67375_WNG_R72GX9PB_8
PublicationCentury 2000
PublicationDate April 2010
PublicationDateYYYYMMDD 2010-04-01
PublicationDate_xml – month: 04
  year: 2010
  text: April 2010
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: United States
PublicationTitle Journal of neuroendocrinology
PublicationTitleAlternate J Neuroendocrinol
PublicationYear 2010
Publisher Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
References Ren Y, Satoh T, Yamada M, Hashimoto K, Konaka S, Iwasaki T, Mori M. Stimulation of the preprothyrotropin-releasing hormone gene by epidermal growth factor. Endocrinology 1998; 139: 195-203.
Ubieta R, Uribe RM, González JA, García-Vázquez A, Pérez-Monter C, Pérez-Martínez L, Joseph-Bravo P, Charli JL. BDNF upregulates pre-proTRH mRNA in the foetal/neonatal paraventricular nucleus of the hypothalamus. Properties of the transduction pathway. Brain Res 2007; 1174: 28-38.
Lechan RM, Fekete C. The TRH neuron: a hypothalamic integrator of energy metabolism. Prog Brain Res 2006; 153: 209-235.
Marinovic AC, Zheng B, Match WE, Price SR. Tissue-specific regulation of ubiquitin (UbC) transcription by glucocorticoids: in vivo and in vitro analyses. Am J Physiol Renal Physiol 2007; 292: F660-F666.
Uribe RM, Redondo JL, Charli JL, Joseph-Bravo P. Suckling and cold stress rapidly and transiently increase TRH mRNA in the paraventricular nucleus. Neuroendocrinology 1993; 58: 140-145.
Hollenberg AN, Monden T, Flynn TR, Borres ME, Cohen O, Wondisford FE. The human thyrotropin-releasing hormone gene is regulated by thyroid-hormone through 2 distinct classes of negative thyroid-hormone response elements. Mol Endocrinol 1995; 9: 540-550.
Aguilera G, Kiss A, Liu Y, Kamitakahara A. Negative regulation of corticotropin releasing factor expression and limitation of stress response. Stress 2007; 10: 153-161.
Cote-Vélez A, Pérez-Martínez L, Charli JL, Joseph-Bravo P. The PKC and ERK/MAPK pathways regulate glucocorticoid action on TRH transcription. Neurochem Res 2008; 33: 1582-1591.
Cintra A, Fuxe K, Solfrini V, Agnati LF, Tinner B, Wikström AC, Staines W, Okret S, Gustafsson JA. Central peptidergic neurons as targets of glucocorticoid action. Evidence for the presence of glucocorticoid receptor immunoreactivity in various types of classes of peptidergic neurons. J Steroid Biochem Mol Biol 1991; 40: 93-103.
Maroder M, Farina AR, Vacca A, Felli MP, Meco D, Screpanti I, Frati L, Gulino A. Cell-specific bifunctional role of Jun oncogene family members on glucocorticoid receptor-dependent transcription. Mol Endocrinol 1993; 7: 570-784.
Díaz-Gallardo M, Cote-Vélez A, Carreón-Rodríguez A, Charli JL, Joseph-Bravo P. Phosphorylated cyclic-AMP- and thyroid hormone receptor have independent response elements in the rat thyrotropin-releasing hormone promoter; an analysis in hypothalamic cells. Neuroendocrinology 2010; 91: 64-76.
Yamamori E, Iwasaki Y, Taguchi T, Nishiyama M, Yoshida M, Asai M, Oiso Y, Itoi K, Kambayashi M, Hashimoto K. Molecular mechanisms for corticotropin-releasing hormone gene repression by glucocorticoid in BE(2)C neuronal cell line. Mol Cell Endocrinol 2007; 264: 142-148.
Kakucska I, Qi Y, Lechan RM. Changes in adrenal status affect hypothalamic thyrotropin-releasing hormone gene expression in parallel with corticotropin-releasing hormone. Endocrinology 1995; 136: 2795-2802.
Yao M, Denver RJ. Regulation of vertebrate corticotrophin-releasing factor genes. Gen Comp Endocrinol 2007; 153: 200-216.
Van Der Laan S, De Kloet ER, Meijer OC. Timing is critical for effective glucocorticoid receptor mediated repression of the cAMP-induced CRH gene. PLoS ONE 2009; 4: e4327.
Pérez-Martínez L, Carréon-Rodríguez A, González-Alzati ME, Morales C, Charli JL, Joseph-Bravo P. Dexamethasone rapidly regulates TRH mRNA levels in hypothalamic cell cultures: interaction with the cAMP pathway. Neuroendocrinology 1998; 68: 345-354.
Kaczynski J, Cook T, Urrutia R. Sp1-and Kruppel-like transcription factors. Genome Biol 2003; 4: 206.
Gutiérrez-Mariscal M, De Gortari P, López-Rubalcava C, Martínez A, Joseph-Bravo P. Analysis of the anxiolytic-like effect of TRH and the response of amygdalar TRHergic neurons in anxiety. Psychoneuroendocrinology 2008; 33: 198-213.
Guerra-Crespo M, Ubieta R, Joseph-Bravo P, Charli JL, Pérez-Martínez L. BDNF increases the early expression of TRH mRNA in fetal TrkB+ hypothalamic neurons in primary culture. Eur J Neurosci 2001; 14: 483-494.
Sánchez E, Uribe RM, Corkidi G, Zoeller RT, Cisneros M, Zacarias M, Morales-Chapa C, Charli JL, Joseph-Bravo P. Differential responses of thyrotropin-releasing hormone (TRH) neurons to cold exposure or suckling indicate functional heterogeneity of the TRH system in the paraventricular nucleus of the rat hypothalamus. Neuroendocrinology 2001; 74: 407-422.
Bonecini-Almeida MG, Ho JL, Boechat N, Huard RC, Chitale S, Doo H, Geng J, Rego L, Lazzarini LCO, Kritski AL, Jonson WD Jr, McCaffrey TA, Silva JRL. Down-modulation of lung immune responses by interleukin-10 and transforming growth factor beta (TGF-beta) and analysis of TGF-beta receptors I and II in active tuberculosis. Infect Immun 2004; 72: 2628-2634.
Aguilar-Valles A, Sanchez E, De Gortari P, Balderas I, Ramirez-Amaya V, Bermudez-Rattoni F, Joseph-Bravo P. Analysis of the stress response in rats trained in the water-maze: differential expression of corticotropin-releasing hormone, CRH-R1, glucocorticoid receptors and brain-derived neurotrophic factor in limbic regions. Neuroendocrinology 2005; 82: 306-319.
Harris M, Aschkenasi C, Elias CF, Chandrankunnel A, Nillni EA, Bjorbaek C, Elmquist JK, Flier JS, Hollenberg AN. Transcriptional regulation of the thyrotropin-releasing hormone gene by leptin and melanocortin signaling. J Clin Invest 2001; 107: 111-120.
De Kloet ER, Joels M, Holsboer F. Stress and the brain: from adaptation to disease. Nat Rev Neurosci 2005; 6: 463-475.
Lee GC, Yang IM, Kim BJ, Woo JT, Kim SW, Kim JW, Kim YS, Choi YK. Identification of glucocorticoid response element of the rat TRH gene. Korean J Intern Med 1996; 11: 138-144.
Jaimes-Hoy L, Joseph-Bravo P, De Gortari P. Differential response of the TRHergic neurons of the hypothalamic paraventricular nucleus (PVN) in animals submitted to food-restriction or dehydration-induced anorexia and cold exposure. Horm Behav 2007; 56: 366-377.
Nichols M, Weih F, Wolfgang S, DeVack C, Kowenz-Leutz E, Kuckow B, Boshart M, GünTHer Schütz. Phosphorylation of CREB affects its binding to high and low affinity sites: implications for cAMP induced gene transcription. EMBO J 1992; 11: 3337-3346.
Rohlff C, Ahmad S, Borellini F, Lei J, Glazer RI. Modulation of transcription factor Sp1 by cAMP-dependent protein kinase. J Biol Chem 1997; 272: 21137-21141.
Mayr BM, Guzmán E, Montminy M. Glutamine rich and basic region/leucine zipper (bZip) domains stabilize cAMP-response element-bincing protein (CREB) binding to chromatin. J Biol Chem 2005; 15: 15103-15110.
Mahapatra NR, Mahata M, Ghosh S, Gayen JR, O′Connor DT, Mahata SK. Molecular basis of neuroendocrine cell type-specific expression of the chromogranin B gene: crucial role of the transcription factors CREB, AP-2, Egr-1 and Sp1. J Neurochem 2006; 99: 119-133.
Haller J, Mikics E, Makara GB. The effects of non-genomic glucocorticoid mechanisms on bodily functions and the central nervous system. A critical evaluation of findings. J Neuroendocrinol 2008; 29: 273-291.
Balkan W, Tavianini MA, Gkonos PJ, Roos BA. Expression of rat thyrotropin-releasing hormone (TRH) gene in TRH-producing tissues of transgenic mice requires sequences located in Exon 1. Endocrinology 1998; 139: 252-259.
Chinemov Y, Kerppola TK. Close encounters of many kinds: Fos-Jun interactions that mediate transcription regulatory specificity. Oncogene 2001; 20: 2438-2452.
Rangarajan RN, Umesono K, Evans RM. Modulation of glucocorticoid receptor function by protein kinase A. Mol Endocrinol 1992; 6: 1451-1457.
Joseph-Bravo P, Pérez-Martínez L, Lezama L, Morales-Chapa C, Charli JL. An improved method for the expression of TRH in serum-supplemented primary cultures of foetal hypothalamic cells. Brain Res Brain Res Protoc 2002; 9: 93-104.
Schöfl C, Waring M, Bergwitz C, Arseniev L, Von Zur Mühlen A, Bravant G. Cyclic-adenosine 3′,5′monophosphate-stimulated c-fos gene transcription involves distinct calcium pathways in single β-cells. Mol Cell Endocrinol 2002; 186: 121-131.
Cizza G, Brady LS, Esclapes M, Blackman MR, Gold PW, Chrousos GP. Age and gender influence basal and stress-modulated hypothalamic-pituitary-thyroidal function in Fischer 344/N rats. Neuroendocrinology 1996; 64: 440-448.
Cote-Vélez A, Pérez-Martínez L, Díaz-Gallardo MY, Pérez-Monter C, Carréon-Rodríguez A, Charli JL, Joseph-Bravo P. Dexamethasone represses cAMP rapid upregulation of TRH gene transcription: identification of a composite glucocorticoid response element and a cAMP response element in TRH promoter. J Mol Endocrinol 2005; 34: 177-197.
Haas MJ, Pitot HC. Glucocorticoids stimulate CREB binding to a cyclic-AMP response element in the rat serine dehydratase gene. Arch Biochem Biophys 1999; 362: 317-324.
Uribe RM, Pérez-Martínez L, Covarrubias ML, Gómez OB, Covarrubias L, Charli JL, Joseph-Bravo P. Phorbol ester or cAMP enhance thyrotropin releasing hormone mRNA in primary cultures of hypothalamic cells. Neurosci Lett 1995; 201: 41-44.
Doucas V, Shi Y, Miyamoto S, West A, Verma I, Evans RM. Cytoplasmic catalytic subunit of protein kinase A mediates cross-repression by NF-kappa B and the glucocorticoid receptor. Proc Natl Acad Sci USA 2000; 97: 11893-11898.
Gerits N, Kostenko S, Shiryaev A, Johannessen M, Moens U. Relations between the mitogen-activated protein kinase and the cAMP-dependent protein kinase pathways: comradeship and hostility. Cell Signal 2008; 20: 1592-1607.
Van Der Laan S, Lachize SB, Vreugendhil E, De Kloet ER, Meijer OC. Nuclear receptor coregulators differentially modulate CREB-mediated induction and glucocorticoid receptor mediated repression of the CRH gene. Endocrinology 2008; 149: 725-732.
Lee SL, Stewart K, Goodman RH. Structure of the gene encoding rat thyrotropin releasing hormone. J Biol Chem 1988; 263: 16604-16609.
Kassel O, Herrlich P. Crosstalk between the glucocorticoid receptor and other transcription factors: molecular aspects. Mol Cell Endocrinol 2007; 275: 13-29.
Aguilar-Valles A, Sanchez E, De Gortari P, Garcia-Vazquez AI, Ramirez-Amaya V, Bermudez-Rattoni F, Joseph-Bravo P. The expression of TRH, its receptors and d
1993; 7
1995; 9
2002; 9
1997; 272
2006; 99
2007; 264
1999; 362
2006; 153
2006
2008; 149
1995; 136
2007; 50
2008; 33
1988; 263
2005; 82
1998; 139
2007; 10
2001; 107
1992; 11
2007; 56
2001; 20
1998; 68
1996; 11
1992; 6
1993; 58
2004; 72
2007; 1174
2002; 186
2007; 292
2008; 29
2007; 275
2007; 153
2000; 97
1991; 40
2003; 4
2005; 6
1995; 201
2008; 20
2009; 4
2005; 15
2010; 91
2001; 14
2001; 74
1996; 64
2005; 34
e_1_2_6_31_2
e_1_2_6_30_2
e_1_2_6_18_2
e_1_2_6_19_2
e_1_2_6_12_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_17_2
Schöfl C (e_1_2_6_28_2) 2002; 186
e_1_2_6_38_2
e_1_2_6_14_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_42_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_40_2
Kakucska I (e_1_2_6_8_2) 1995; 136
Haller J (e_1_2_6_23_2) 2008; 29
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_29_2
e_1_2_6_4_2
Chinemov Y (e_1_2_6_37_2) 2001; 20
e_1_2_6_3_2
Jaimes‐Hoy L (e_1_2_6_48_2) 2007; 56
e_1_2_6_6_2
e_1_2_6_5_2
Mayr BM (e_1_2_6_35_2) 2005; 15
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_2_2
e_1_2_6_22_2
Joseph‐Bravo P (e_1_2_6_46_2) 2006
e_1_2_6_43_2
Lee GC (e_1_2_6_21_2) 1996; 11
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_25_2
References_xml – volume: 9
  start-page: 540
  year: 1995
  end-page: 550
  article-title: The human thyrotropin‐releasing hormone gene is regulated by thyroid‐hormone through 2 distinct classes of negative thyroid‐hormone response elements
  publication-title: Mol Endocrinol
– volume: 29
  start-page: 273
  year: 2008
  end-page: 291
  article-title: The effects of non‐genomic glucocorticoid mechanisms on bodily functions and the central nervous system. A critical evaluation of findings
  publication-title: J Neuroendocrinol
– volume: 1174
  start-page: 28
  year: 2007
  end-page: 38
  article-title: BDNF upregulates pre‐proTRH mRNA in the foetal/neonatal paraventricular nucleus of the hypothalamus. Properties of the transduction pathway
  publication-title: Brain Res
– volume: 9
  start-page: 93
  year: 2002
  end-page: 104
  article-title: An improved method for the expression of TRH in serum‐supplemented primary cultures of foetal hypothalamic cells
  publication-title: Brain Res Brain Res Protoc
– volume: 6
  start-page: 1451
  year: 1992
  end-page: 1457
  article-title: Modulation of glucocorticoid receptor function by protein kinase A
  publication-title: Mol Endocrinol
– volume: 275
  start-page: 13
  year: 2007
  end-page: 29
  article-title: Crosstalk between the glucocorticoid receptor and other transcription factors: molecular aspects
  publication-title: Mol Cell Endocrinol
– volume: 40
  start-page: 93
  year: 1991
  end-page: 103
  article-title: Central peptidergic neurons as targets of glucocorticoid action. Evidence for the presence of glucocorticoid receptor immunoreactivity in various types of classes of peptidergic neurons
  publication-title: J Steroid Biochem Mol Biol
– volume: 64
  start-page: 440
  year: 1996
  end-page: 448
  article-title: Age and gender influence basal and stress‐modulated hypothalamic‐pituitary‐thyroidal function in Fischer 344/N rats
  publication-title: Neuroendocrinology
– volume: 82
  start-page: 306
  year: 2005
  end-page: 319
  article-title: Analysis of the stress response in rats trained in the water‐maze: differential expression of corticotropin‐releasing hormone, CRH‐R1, glucocorticoid receptors and brain‐derived neurotrophic factor in limbic regions
  publication-title: Neuroendocrinology
– volume: 139
  start-page: 252
  year: 1998
  end-page: 259
  article-title: Expression of rat thyrotropin‐releasing hormone (TRH) gene in TRH‐producing tissues of transgenic mice requires sequences located in Exon 1
  publication-title: Endocrinology
– volume: 15
  start-page: 15103
  year: 2005
  end-page: 15110
  article-title: Glutamine rich and basic region/leucine zipper (bZip) domains stabilize cAMP‐response element‐bincing protein (CREB) binding to chromatin
  publication-title: J Biol Chem
– volume: 201
  start-page: 41
  year: 1995
  end-page: 44
  article-title: Phorbol ester or cAMP enhance thyrotropin releasing hormone mRNA in primary cultures of hypothalamic cells
  publication-title: Neurosci Lett
– volume: 149
  start-page: 725
  year: 2008
  end-page: 732
  article-title: Nuclear receptor coregulators differentially modulate CREB‐mediated induction and glucocorticoid receptor mediated repression of the CRH gene
  publication-title: Endocrinology
– volume: 72
  start-page: 2628
  year: 2004
  end-page: 2634
  article-title: Down‐modulation of lung immune responses by interleukin‐10 and transforming growth factor beta (TGF‐beta) and analysis of TGF‐beta receptors I and II in active tuberculosis
  publication-title: Infect Immun
– volume: 10
  start-page: 153
  year: 2007
  end-page: 161
  article-title: Negative regulation of corticotropin releasing factor expression and limitation of stress response
  publication-title: Stress
– volume: 14
  start-page: 483
  year: 2001
  end-page: 494
  article-title: BDNF increases the early expression of TRH mRNA in fetal TrkB hypothalamic neurons in primary culture
  publication-title: Eur J Neurosci
– volume: 362
  start-page: 317
  year: 1999
  end-page: 324
  article-title: Glucocorticoids stimulate CREB binding to a cyclic‐AMP response element in the rat serine dehydratase gene
  publication-title: Arch Biochem Biophys
– volume: 50
  start-page: 404
  year: 2007
  end-page: 417
  article-title: The expression of TRH, its receptors and degrading enzyme is differentially modulated in the rat limbic system during training in the Morris water maze
  publication-title: Neurochem Int
– volume: 11
  start-page: 3337
  year: 1992
  end-page: 3346
  article-title: Phosphorylation of CREB affects its binding to high and low affinity sites: implications for cAMP induced gene transcription
  publication-title: EMBO J
– volume: 34
  start-page: 177
  year: 2005
  end-page: 197
  article-title: Dexamethasone represses cAMP rapid upregulation of TRH gene transcription: identification of a composite glucocorticoid response element and a cAMP response element in TRH promoter
  publication-title: J Mol Endocrinol
– volume: 263
  start-page: 16604
  year: 1988
  end-page: 16609
  article-title: Structure of the gene encoding rat thyrotropin releasing hormone
  publication-title: J Biol Chem
– volume: 153
  start-page: 200
  year: 2007
  end-page: 216
  article-title: Regulation of vertebrate corticotrophin‐releasing factor genes
  publication-title: Gen Comp Endocrinol
– volume: 33
  start-page: 1582
  year: 2008
  end-page: 1591
  article-title: The PKC and ERK/MAPK pathways regulate glucocorticoid action on TRH transcription
  publication-title: Neurochem Res
– volume: 186
  start-page: 121
  year: 2002
  end-page: 131
  article-title: Cyclic‐adenosine 3′,5′monophosphate‐stimulated c‐fos gene transcription involves distinct calcium pathways in single β‐cells
  publication-title: Mol Cell Endocrinol
– volume: 136
  start-page: 2795
  year: 1995
  end-page: 2802
  article-title: Changes in adrenal status affect hypothalamic thyrotropin‐releasing hormone gene expression in parallel with corticotropin‐releasing hormone
  publication-title: Endocrinology
– volume: 11
  start-page: 138
  year: 1996
  end-page: 144
  article-title: Identification of glucocorticoid response element of the rat TRH gene
  publication-title: Korean J Intern Med
– volume: 68
  start-page: 345
  year: 1998
  end-page: 354
  article-title: Dexamethasone rapidly regulates TRH mRNA levels in hypothalamic cell cultures: interaction with the cAMP pathway
  publication-title: Neuroendocrinology
– volume: 56
  start-page: 366
  year: 2007
  end-page: 377
  article-title: Differential response of the TRHergic neurons of the hypothalamic paraventricular nucleus (PVN) in animals submitted to food‐restriction or dehydration‐induced anorexia and cold exposure
  publication-title: Horm Behav
– volume: 7
  start-page: 570
  year: 1993
  end-page: 784
  article-title: Cell‐specific bifunctional role of Jun oncogene family members on glucocorticoid receptor‐dependent transcription
  publication-title: Mol Endocrinol
– volume: 139
  start-page: 195
  year: 1998
  end-page: 203
  article-title: Stimulation of the preprothyrotropin‐releasing hormone gene by epidermal growth factor
  publication-title: Endocrinology
– volume: 74
  start-page: 407
  year: 2001
  end-page: 422
  article-title: Differential responses of thyrotropin‐releasing hormone (TRH) neurons to cold exposure or suckling indicate functional heterogeneity of the TRH system in the paraventricular nucleus of the rat hypothalamus
  publication-title: Neuroendocrinology
– volume: 33
  start-page: 198
  year: 2008
  end-page: 213
  article-title: Analysis of the anxiolytic‐like effect of TRH and the response of amygdalar TRHergic neurons in anxiety
  publication-title: Psychoneuroendocrinology
– volume: 264
  start-page: 142
  year: 2007
  end-page: 148
  article-title: Molecular mechanisms for corticotropin‐releasing hormone gene repression by glucocorticoid in BE(2)C neuronal cell line
  publication-title: Mol Cell Endocrinol
– volume: 6
  start-page: 463
  year: 2005
  end-page: 475
  article-title: Stress and the brain: from adaptation to disease
  publication-title: Nat Rev Neurosci
– volume: 99
  start-page: 119
  year: 2006
  end-page: 133
  article-title: Molecular basis of neuroendocrine cell type‐specific expression of the chromogranin B gene: crucial role of the transcription factors CREB, AP‐2, Egr‐1 and Sp1
  publication-title: J Neurochem
– volume: 20
  start-page: 2438
  year: 2001
  end-page: 2452
  article-title: Close encounters of many kinds: Fos‐Jun interactions that mediate transcription regulatory specificity
  publication-title: Oncogene
– volume: 107
  start-page: 111
  year: 2001
  end-page: 120
  article-title: Transcriptional regulation of the thyrotropin‐releasing hormone gene by leptin and melanocortin signaling
  publication-title: J Clin Invest
– volume: 4
  start-page: 206
  year: 2003
  article-title: Sp1‐and Kruppel‐like transcription factors
  publication-title: Genome Biol
– volume: 20
  start-page: 1592
  year: 2008
  end-page: 1607
  article-title: Relations between the mitogen‐activated protein kinase and the cAMP‐dependent protein kinase pathways: comradeship and hostility
  publication-title: Cell Signal
– volume: 97
  start-page: 11893
  year: 2000
  end-page: 11898
  article-title: Cytoplasmic catalytic subunit of protein kinase A mediates cross‐repression by NF‐kappa B and the glucocorticoid receptor
  publication-title: Proc Natl Acad Sci USA
– volume: 58
  start-page: 140
  year: 1993
  end-page: 145
  article-title: Suckling and cold stress rapidly and transiently increase TRH mRNA in the paraventricular nucleus
  publication-title: Neuroendocrinology
– volume: 153
  start-page: 209
  year: 2006
  end-page: 235
  article-title: The TRH neuron: a hypothalamic integrator of energy metabolism
  publication-title: Prog Brain Res
– volume: 91
  start-page: 64
  year: 2010
  end-page: 76
  article-title: Phosphorylated cyclic‐AMP‐ and thyroid hormone receptor have independent response elements in the rat thyrotropin‐releasing hormone promoter; an analysis in hypothalamic cells
  publication-title: Neuroendocrinology
– volume: 4
  start-page: e4327
  year: 2009
  article-title: Timing is critical for effective glucocorticoid receptor mediated repression of the cAMP‐induced CRH gene
  publication-title: PLoS ONE
– start-page: 1
  year: 2006
  end-page: 24
– volume: 272
  start-page: 21137
  year: 1997
  end-page: 21141
  article-title: Modulation of transcription factor Sp1 by cAMP‐dependent protein kinase
  publication-title: J Biol Chem
– volume: 292
  start-page: F660
  year: 2007
  end-page: F666
  article-title: Tissue‐specific regulation of ubiquitin (UbC) transcription by glucocorticoids: in vivo and in vitro analyses
  publication-title: Am J Physiol Renal Physiol
– ident: e_1_2_6_13_2
  doi: 10.1677/jme.1.01634
– volume: 56
  start-page: 366
  year: 2007
  ident: e_1_2_6_48_2
  article-title: Differential response of the TRHergic neurons of the hypothalamic paraventricular nucleus (PVN) in animals submitted to food‐restriction or dehydration‐induced anorexia and cold exposure
  publication-title: Horm Behav
  contributor:
    fullname: Jaimes‐Hoy L
– ident: e_1_2_6_39_2
  doi: 10.1016/j.mce.2007.07.003
– ident: e_1_2_6_4_2
  doi: 10.1080/10253890701391192
– ident: e_1_2_6_18_2
  doi: 10.1159/000228833
– ident: e_1_2_6_9_2
  doi: 10.1159/000093129
– volume: 20
  start-page: 2438
  year: 2001
  ident: e_1_2_6_37_2
  article-title: Close encounters of many kinds: Fos‐Jun interactions that mediate transcription regulatory specificity
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1204385
  contributor:
    fullname: Chinemov Y
– ident: e_1_2_6_43_2
  doi: 10.1073/pnas.220413297
– ident: e_1_2_6_45_2
  doi: 10.1016/0960-0760(91)90172-2
– ident: e_1_2_6_6_2
  doi: 10.1159/000054707
– ident: e_1_2_6_36_2
  doi: 10.1111/j.1471-4159.2006.04128.x
– ident: e_1_2_6_5_2
  doi: 10.1159/000126523
– volume: 11
  start-page: 138
  year: 1996
  ident: e_1_2_6_21_2
  article-title: Identification of glucocorticoid response element of the rat TRH gene
  publication-title: Korean J Intern Med
  doi: 10.3904/kjim.1996.11.2.138
  contributor:
    fullname: Lee GC
– ident: e_1_2_6_42_2
  doi: 10.1016/j.mce.2006.11.001
– ident: e_1_2_6_41_2
  doi: 10.1016/j.ygcen.2007.01.046
– ident: e_1_2_6_24_2
  doi: 10.1016/S1385-299X(01)00140-4
– ident: e_1_2_6_26_2
  doi: 10.1210/endo.139.1.5684
– ident: e_1_2_6_32_2
  doi: 10.1006/abbi.1998.1044
– volume: 186
  start-page: 121
  year: 2002
  ident: e_1_2_6_28_2
  article-title: Cyclic‐adenosine 3′,5′monophosphate‐stimulated c‐fos gene transcription involves distinct calcium pathways in single β‐cells
  publication-title: Mol Cell Endocrinol
  doi: 10.1016/S0303-7207(01)00609-8
  contributor:
    fullname: Schöfl C
– ident: e_1_2_6_17_2
  doi: 10.1172/JCI10741
– ident: e_1_2_6_15_2
  doi: 10.1210/me.7.4.570
– ident: e_1_2_6_22_2
  doi: 10.1007/s11064-008-9698-5
– ident: e_1_2_6_10_2
  doi: 10.1016/j.neuint.2006.09.009
– start-page: 1
  volume-title: Molecular Endocrinology
  year: 2006
  ident: e_1_2_6_46_2
  contributor:
    fullname: Joseph‐Bravo P
– ident: e_1_2_6_34_2
  doi: 10.1016/j.brainres.2007.08.026
– ident: e_1_2_6_14_2
  doi: 10.1016/0304-3940(95)12125-N
– ident: e_1_2_6_44_2
  doi: 10.1210/en.2007-1234
– ident: e_1_2_6_7_2
  doi: 10.1159/000127150
– ident: e_1_2_6_40_2
  doi: 10.1016/j.cellsig.2008.02.022
– ident: e_1_2_6_30_2
  doi: 10.1002/j.1460-2075.1992.tb05412.x
– ident: e_1_2_6_3_2
  doi: 10.1016/S0079-6123(06)53012-2
– ident: e_1_2_6_19_2
  doi: 10.1186/gb-2003-4-2-206
– ident: e_1_2_6_29_2
  doi: 10.1210/endo.139.1.5703
– volume: 29
  start-page: 273
  year: 2008
  ident: e_1_2_6_23_2
  article-title: The effects of non‐genomic glucocorticoid mechanisms on bodily functions and the central nervous system. A critical evaluation of findings
  publication-title: J Neuroendocrinol
  doi: 10.1016/j.yfrne.2007.10.004
  contributor:
    fullname: Haller J
– ident: e_1_2_6_27_2
  doi: 10.1128/IAI.72.5.2628-2634.2004
– ident: e_1_2_6_47_2
  doi: 10.1371/journal.pone.0004327
– volume: 136
  start-page: 2795
  year: 1995
  ident: e_1_2_6_8_2
  article-title: Changes in adrenal status affect hypothalamic thyrotropin‐releasing hormone gene expression in parallel with corticotropin‐releasing hormone
  publication-title: Endocrinology
  doi: 10.1210/endo.136.7.7789304
  contributor:
    fullname: Kakucska I
– ident: e_1_2_6_12_2
  doi: 10.1159/000054383
– ident: e_1_2_6_11_2
  doi: 10.1016/j.psyneuen.2007.11.002
– ident: e_1_2_6_33_2
  doi: 10.1152/ajprenal.00178.2006
– ident: e_1_2_6_38_2
  doi: 10.1210/me.6.9.1451
– ident: e_1_2_6_25_2
  doi: 10.1046/j.0953-816x.2001.01657.x
– ident: e_1_2_6_16_2
  doi: 10.1016/S0021-9258(18)37433-7
– ident: e_1_2_6_2_2
  doi: 10.1038/nrn1683
– ident: e_1_2_6_31_2
  doi: 10.1074/jbc.272.34.21137
– volume: 15
  start-page: 15103
  year: 2005
  ident: e_1_2_6_35_2
  article-title: Glutamine rich and basic region/leucine zipper (bZip) domains stabilize cAMP‐response element‐bincing protein (CREB) binding to chromatin
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M414144200
  contributor:
    fullname: Mayr BM
– ident: e_1_2_6_20_2
  doi: 10.1210/me.9.5.540
SSID ssj0017530
Score 2.10357
Snippet Glucocorticoids or cAMP increase, within minutes, thyrotrophin‐releasing hormone (TRH) transcription in hypothalamic primary cultures, although this effect is...
Glucocorticoids or cAMP increase, within minutes, thyrotrophin-releasing hormone (TRH) transcription in hypothalamic primary cultures, although this effect is...
SourceID proquest
crossref
pubmed
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 282
SubjectTerms Animals
Biological and medical sciences
Cells, Cultured
composite-GRE
corticosterone-BSA
CREB
Cyclic AMP - antagonists & inhibitors
Cyclic AMP - pharmacology
Cyclic AMP Response Element-Binding Protein - metabolism
Drug Antagonism
Female
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation - drug effects
Glucocorticoids - antagonists & inhibitors
Glucocorticoids - pharmacology
hypothalamus
Hypothalamus - drug effects
Hypothalamus - metabolism
Neurons - drug effects
Neurons - metabolism
Phosphorylation
Pregnancy
pro-TRH
Promoter Regions, Genetic - drug effects
Protein Binding - drug effects
Rats
Rats, Wistar
Receptors, Glucocorticoid - metabolism
Response Elements - drug effects
Signal Transduction - drug effects
Thyrotropin-Releasing Hormone - genetics
Time Factors
Vertebrates: endocrinology
Title A Rapid Interference between Glucocorticoids and cAMP-Activated Signalling in Hypothalamic Neurones Prevents Binding of Phosphorylated cAMP Response Element Binding Protein and Glucocorticoid Receptor at the CRE-Like and Composite GRE Sites of Thyrotrophin-Releasing Hormone Gene Promoter
URI https://api.istex.fr/ark:/67375/WNG-R72GX9PB-8/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2826.2010.01966.x
https://www.ncbi.nlm.nih.gov/pubmed/20136691
https://search.proquest.com/docview/733349293
https://search.proquest.com/docview/746200213
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JbtswEGXb9NJLuqSLuwRzKHxTYS3RcnRSxUbQGoZioLkRpEjGQlrJkGIgvuUT-o39ks5QslsBQVEUvfkwHFLy4_CRejNk7L1KtKtHSeREsVIOMnDjSKmN40qBfE5GoRGUjTw9j2YX8ceUyuScbXNh2voQuwM3mhk2XtMEF7LpT3Kr0EJ-3Cm0EEzhB-KTuGmw2Rz-fPdBAVn5qC275zu4CAZ9Uc-djnor1UN66TeknBQNvjzT3npxFy3ts1y7TJ0-_p8P-ITtd2QVxi26nrL7unzGDsYlbtS_bWAIVj5qz-UP7g3HkIlVocCeMXZZhNDJwGBCynjc6KKjqlANiFJBPv48_3H7fZzbG9a0gvPiEruj_HgoSphuVogigYgtcrA1RDAqQ1dyqoHjwubjQGVwGFWzWlb15qt1Q34ha7W_GtJWH7-zn1NhCnRPI-iPCtuQxqeqQVwD8mI4yVIc36fiSltrCp0kcdMwyVIcLJJ06n2x3KDLulotixLNM1zHBR3AwBS3AzhmoMre1C1OCl0_Z4vTdHEydbpLKJw8COPQSeiMwPeTUMWJibRrklxHQkiD6Kcrl4hie9ILYxHGuL3LvZF0A0E56a6bK-O_YHsl9vWKgXENcl0TyESKIDqS-Gd6UnnIAGOKnPmAuVu88VVbaoT_tkVDLHDCAicscIsFfjNgQwvMXQNRX5FULzriX2YTnkXe5CKZH_N4wA57yN01QAqHMdhFA9hCmWOEoc9GotTVuuGR71MJy8T_g0kQWrEPmrxsZ8Ev_1QUMEzcAQst2P_60fjZLKVfr_-14Rv2qJV6kMzqLdu7rtf6HXvQqPWhjQ0_Ad9VZ_o
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6gPcCFV3mER5kDys0ofnRtH9PiJtA0itxI9LZa27vEamtHdiM1N34Cv5FfwszaCViqEELcctidXTvfzn47_maWsfdZqGw1CH3LD7LMQgaurSRR2rITiXwu8bmWlI08PvOn58HHiMrknGxyYZr6ENuAG60M469pgVNAurvKjUQLCXIr0UI08Q9IKHc9jrikfA53tv2kgLx80BTecy3cBr2urOdWS529apde-w1pJ2WNr083917cRky7PNdsVMeP_usjPmYPW74KwwZgT9hdVTxle8MCz-pXa-iDUZCa0Pzenf4QYrnMMzBhxjaREFolGIxIHI9nXTRU5lkNssggHZ7Ofnz7PkzNJWsqg7P8Kw5HKfKQFzBeLxFIEkGbp2DKiKBjhrbqVA2HuUnJgVLjNMp6uSir9aUxQ3YhbuS_CqJGIr9tP6PaFGieZtCdFfYhmU9ZgbwGpMZwFEc4v0l-oUxr8p6kclMwiiOcLPJ0Gn2-WKPJqlwu8gKbx7iVS4rBwBhPBDhnoOLeNCyuC1U9Y_PjaH40ttp7KKzU4wG3QgoTuG7IsyDUvrJ1mCpfykTjAqBbl4hlO4nDA8kDPOGlziCxPUlp6badZtp9znYKHOslA21rpLvaS8JEev5Bgn-mk2QOksCAnGfaY_YGcGLZVBsRv53SEAuCsCAIC8JgQdz0WN8gc9tBVhek1vMPxJfpSMS-MzoPZ4ci6LH9DnS3HZDFoRu2sQFssCzQydCXI1moclUL33WpimXo_qGJx43eB5u8aJbBL_tUF5CHdo9xg_a_fjTxeRrRr1f_2vEduz-en07E5NP05DV70Cg_SHX1hu1cVyv1lt2rs9W-cRQ_AWalbCI
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6glRAXXuURHmUOKDej-lE_jmnrJJQSRW4kelutvbvEKtiW3UjNjZ_Ab-SXMLN2ApYqhBC3HGZn1863s9-uv5ll7K2MlK0OosAKQiktZODaSlOlLTsVyOfSwNeCspGn58HsIjyJqUzO6SYXpq0PsT1wo5lh4jVN8Erq_iQ3Ci3kx51CC8Hkv0M-ueshK6c6-q47335RQFp-0Nbdcy1cBb2-qudGT72lapfe-jVJJ0WDb0-3117cxEv7NNesU-MH__MJH7L7HVuFUQuvR-y2Kh6zvVGBO_WvaxiC0Y-ag_m9W8MRJKLKJZhDxi6NEDodGExIGo87XXRU5rIBUUjIRh_nP759H2XmijUl4Tz_jN1RgjzkBUzXFcJIIGTzDEwREQzL0NWcauAoNwk5UGocRtlUy7JefzFuyC8krfhXQdwK5Lf2c6pMge5pBP1RYRsS-ZQ1iCtAYgzHSYzjO8svlbGm2EkaNwWTJMbBIkun3hfLNbqsy2qZF2ie4EIu6AQGprgfwDEDlfambnFWqPoJW4zjxfHU6m6hsDLPD30rokMC1418GUY6ULaOMhUIkWqEP925RBzbSR0_FH6I-7vMOUhtT1BSum1nUrtP2U6BfT1noG2NZFd7aZQKLzhM8c90UukgBQwpdGYDZm_wxqu21gj_bY-GWOCEBU5Y4AYL_HrAhgaY2waiviStXnDIP80mPAmcyUU0P-LhgO33kLttgBwOg7CNBrCBMscQQ9-NRKHKVcMD16UalpH7BxPPN2ofNHnWzoJf_qkqoB_ZA-YbsP_1o_HTWUy_Xvxrwzfs7vxkzM_ezz68ZPda2QdJrl6xnat6pV6zO41c7Zsw8ROf4mrI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Rapid+Interference+between+Glucocorticoids+and+cAMP%E2%80%90Activated+Signalling+in+Hypothalamic+Neurones+Prevents+Binding+of+Phosphorylated+cAMP+Response+Element+Binding+Protein+and+Glucocorticoid+Receptor+at+the+CRE%E2%80%90Like+and+Composite+GRE+Sites+of+Thyrotrophin%E2%80%90Releasing+Hormone+Gene+Promoter&rft.jtitle=Journal+of+neuroendocrinology&rft.au=D%C3%ADaz%E2%80%90Gallardo%2C+M.+Y.&rft.au=Cote%E2%80%90V%C3%A9lez%2C+A.&rft.au=Charli%2C+J.+L.&rft.au=Joseph%E2%80%90Bravo%2C+P.&rft.date=2010-04-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0953-8194&rft.eissn=1365-2826&rft.volume=22&rft.issue=4&rft.spage=282&rft.epage=293&rft_id=info:doi/10.1111%2Fj.1365-2826.2010.01966.x&rft.externalDBID=10.1111%252Fj.1365-2826.2010.01966.x&rft.externalDocID=JNE1966
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-8194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-8194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-8194&client=summon