Predicting Dyslexia and Reading Speed in Adolescents from Eye Movements in Reading and Non-Reading Tasks: A Machine Learning Approach
There is evidence that abnormalities in eye movements exist during reading in dyslexic individuals. A few recent studies applied Machine Learning (ML) classifiers to such eye movement data to predict dyslexia. A general problem with these studies is that eye movement data sets are limited to reading...
Saved in:
Published in: | Brain sciences Vol. 11; no. 10; p. 1337 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
11-10-2021
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | There is evidence that abnormalities in eye movements exist during reading in dyslexic individuals. A few recent studies applied Machine Learning (ML) classifiers to such eye movement data to predict dyslexia. A general problem with these studies is that eye movement data sets are limited to reading saccades and fixations that are confounded by reading difficulty, e.g., it is unclear whether abnormalities are the consequence or the cause of reading difficulty. Recently, Ward and Kapoula used LED targets (with the REMOBI & AIDEAL method) to demonstrate abnormalities of large saccades and vergence eye movements in depth demonstrating intrinsic eye movement problems independent from reading in dyslexia. In another study, binocular eye movements were studied while reading two texts: one using the “Alouette” text, which has no meaning and requires word decoding, the other using a meaningful text. It was found the Alouette text exacerbates eye movement abnormalities in dyslexics. In this paper, we more precisely quantify the quality of such eye movement descriptors for dyslexia detection. We use the descriptors produced in the four different setups as input to multiple classifiers and compare their generalization performances. Our results demonstrate that eye movement data from the Alouette test predicts dyslexia with an accuracy of 81.25%; similarly, we were able to predict dyslexia with an accuracy of 81.25% when using data from saccades to LED targets on the Remobi device and 77.3% when using vergence movements to LED targets. Noticeably, eye movement data from the meaningful text produced the lowest accuracy (70.2%). In a subsequent analysis, ML algorithms were applied to predict reading speed based on eye movement descriptors extracted from the meaningful reading, then from Remobi saccade and vergence tests. Remobi vergence eye movement descriptors can predict reading speed even better than eye movement descriptors from the meaningful reading test. |
---|---|
AbstractList | There is evidence that abnormalities in eye movements exist during reading in dyslexic individuals. A few recent studies applied Machine Learning (ML) classifiers to such eye movement data to predict dyslexia. A general problem with these studies is that eye movement data sets are limited to reading saccades and fixations that are confounded by reading difficulty, e.g., it is unclear whether abnormalities are the consequence or the cause of reading difficulty. Recently, Ward and Kapoula used LED targets (with the REMOBI & AIDEAL method) to demonstrate abnormalities of large saccades and vergence eye movements in depth demonstrating intrinsic eye movement problems independent from reading in dyslexia. In another study, binocular eye movements were studied while reading two texts: one using the “Alouette” text, which has no meaning and requires word decoding, the other using a meaningful text. It was found the Alouette text exacerbates eye movement abnormalities in dyslexics. In this paper, we more precisely quantify the quality of such eye movement descriptors for dyslexia detection. We use the descriptors produced in the four different setups as input to multiple classifiers and compare their generalization performances. Our results demonstrate that eye movement data from the Alouette test predicts dyslexia with an accuracy of 81.25%; similarly, we were able to predict dyslexia with an accuracy of 81.25% when using data from saccades to LED targets on the Remobi device and 77.3% when using vergence movements to LED targets. Noticeably, eye movement data from the meaningful text produced the lowest accuracy (70.2%). In a subsequent analysis, ML algorithms were applied to predict reading speed based on eye movement descriptors extracted from the meaningful reading, then from Remobi saccade and vergence tests. Remobi vergence eye movement descriptors can predict reading speed even better than eye movement descriptors from the meaningful reading test. |
Author | Palpanas, Themis Kapoula, Zoï El Hmimdi, Alae Eddine Ward, Lindsey M |
AuthorAffiliation | 1 Orasis Eye Analytics & Rehabilitation, CNRS Spinoff up, 12 Rue Lacretelle, 75015 Paris, France; alae-eddine.el-hmimdi@etu.u-paris.fr 2 LIPADE, French University Institute (IUF) Laboratoire d’Informatique Paris Descartes, Université de Paris, 45 Rue Des Saints-Peres, 75006 Paris, France; themis@mi.parisdescartes.fr 3 IRIS Lab, Neurophysiology of Binocular Motor Control and Vision, CNRS UAR 2022 Neurosciences, UFR Biomedical, University of Paris, 45 Rue des Saints Pères, 75006 Paris, France; lward@mednet.ucla.edu |
AuthorAffiliation_xml | – name: 1 Orasis Eye Analytics & Rehabilitation, CNRS Spinoff up, 12 Rue Lacretelle, 75015 Paris, France; alae-eddine.el-hmimdi@etu.u-paris.fr – name: 3 IRIS Lab, Neurophysiology of Binocular Motor Control and Vision, CNRS UAR 2022 Neurosciences, UFR Biomedical, University of Paris, 45 Rue des Saints Pères, 75006 Paris, France; lward@mednet.ucla.edu – name: 2 LIPADE, French University Institute (IUF) Laboratoire d’Informatique Paris Descartes, Université de Paris, 45 Rue Des Saints-Peres, 75006 Paris, France; themis@mi.parisdescartes.fr |
Author_xml | – sequence: 1 givenname: Alae Eddine surname: El Hmimdi fullname: El Hmimdi, Alae Eddine – sequence: 2 givenname: Lindsey M orcidid: 0000-0001-5358-3535 surname: Ward fullname: Ward, Lindsey M – sequence: 3 givenname: Themis surname: Palpanas fullname: Palpanas, Themis – sequence: 4 givenname: Zoï surname: Kapoula fullname: Kapoula, Zoï |
BookMark | eNpdkk1vEzEQhleoiH7QO0dLXLgsjO31fnBAikqBSikgKGfLa49Th429tTcV-QH93zhJi2h9sf3OO49Gr-a4OPDBY1G8ovCW8w7e9VE5n7SjlALlvHlWHDFo6pJXTBz89z4sTlNaQj4tABfwojjkVd10FcBRcfc9onF6cn5BPm7SgH-cIsob8gOV2Yo_R0RDnCczEwZMGv2UiI1hRc43SC7DLa52UnY8tGzbvwZfPvyvVPqd3pMZuVT62nkkc1TRbyuzcYwhiy-L51YNCU_v75Pi16fzq7Mv5fzb54uz2bzUeeCp1Eix17QVbWMZQmO1tQC6rxqtsKqVgLqzhiHrtW0Zaw0TAF3VdRqFqCnlJ8XFnmuCWsoxupWKGxmUkzshxIVUcXJ6QFlpZmpqmNGiynzdo2iAW0MtR8qVyqwPe9a47ldotsFENTyCPq54dy0X4Va2gldQNxnw5h4Qw80a0yRXLuc7DMpjWCfJRFs1Tdd2PFtfP7Euwzr6HNXOxSl0VGQX7F06hpQi2n_DUJDblZFPV4b_Bdgzt08 |
CitedBy_id | crossref_primary_10_1371_journal_pone_0292047 crossref_primary_10_3390_brainsci13030405 crossref_primary_10_1007_s11145_024_10563_2 crossref_primary_10_3390_s22134900 crossref_primary_10_17759_cpse_2023120301 crossref_primary_10_1016_j_rfo_2023_12_001 crossref_primary_10_1109_ACCESS_2023_3234438 crossref_primary_10_3390_biomedinformatics4010029 crossref_primary_10_3390_brainsci13101478 crossref_primary_10_1109_COMST_2023_3256323 crossref_primary_10_3390_brainsci12081031 |
Cites_doi | 10.55782/ane-2008-1674 10.1037/0033-2909.124.3.372 10.1371/journal.pone.0182597 10.20944/preprints201801.0109.v1 10.1016/0028-3932(87)90041-8 10.1016/j.neucom.2015.12.114 10.3389/fpsyg.2020.02171 10.1007/s00417-007-0723-1 10.1177/0022219417704637 10.3390/brainsci11080990 10.1007/BF00401801 10.1167/tvst.5.2.8 10.1080/23273798.2017.1325509 10.1016/0010-0277(93)90003-E 10.1111/j.1467-9752.2008.00653.x 10.1038/s41598-020-79089-1 10.1111/j.1467-9817.1993.tb00033.x 10.1136/bjo.72.3.162 10.1007/978-3-642-39062-3_63 10.1145/2745555.2746644 10.1167/iovs.16-19837 10.1016/0042-6989(94)90209-7 10.1214/09-SS054 10.1088/1742-6596/1427/1/012012 10.3389/fnint.2016.00033 10.1016/j.cognition.2007.09.004 10.1371/journal.pone.0165508 10.1371/journal.pone.0018694 10.1007/s00417-006-0490-4 10.3389/fnint.2014.00085 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 3V. 7TK 7XB 8FE 8FH 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ GUQSH HCIFZ LK8 M2O M7P MBDVC PIMPY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3390/brainsci11101337 |
DatabaseName | CrossRef ProQuest Central (Corporate) Neurosciences Abstracts ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep SciTech Premium Collection Biological Sciences Research Library Biological Science Database Research Library (Corporate) Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest Biological Science Collection ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Research Library ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2076-3425 |
ExternalDocumentID | oai_doaj_org_article_4c2d61d2dc5447ccbe5703fd1f3e13aa 10_3390_brainsci11101337 |
GroupedDBID | 3V. 53G 5VS 8FE 8FH 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION DWQXO EBD ESX GNUQQ GROUPED_DOAJ GUQSH HCIFZ HYE IAO IHR ITC KQ8 LK8 M2O M48 M7P MODMG M~E OK1 PGMZT PIMPY PQQKQ PROAC RPM 7TK 7XB 8FK MBDVC PQEST PQUKI PRINS Q9U 7X8 5PM AFPKN |
ID | FETCH-LOGICAL-c467t-ce1ebc18587f2e07fcff00cb47cae46a5069fd2e2bcf8228d25009499ce556113 |
IEDL.DBID | RPM |
ISSN | 2076-3425 |
IngestDate | Tue Oct 22 15:10:57 EDT 2024 Tue Sep 17 21:28:17 EDT 2024 Fri Oct 25 06:56:33 EDT 2024 Thu Oct 10 18:38:36 EDT 2024 Fri Nov 22 02:53:03 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c467t-ce1ebc18587f2e07fcff00cb47cae46a5069fd2e2bcf8228d25009499ce556113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5358-3535 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8534067/ |
PMID | 34679400 |
PQID | 2584310915 |
PQPubID | 2032423 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4c2d61d2dc5447ccbe5703fd1f3e13aa pubmedcentral_primary_oai_pubmedcentral_nih_gov_8534067 proquest_miscellaneous_2584779893 proquest_journals_2584310915 crossref_primary_10_3390_brainsci11101337 |
PublicationCentury | 2000 |
PublicationDate | 20211011 |
PublicationDateYYYYMMDD | 2021-10-11 |
PublicationDate_xml | – month: 10 year: 2021 text: 20211011 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Brain sciences |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Stein (ref_33) 2018; 33 Arlot (ref_21) 2010; 4 Elliott (ref_35) 2008; 42 ref_14 ref_13 ref_12 ref_34 Bucci (ref_11) 2007; 246 Eden (ref_4) 1994; 34 Cavalli (ref_22) 2018; 51 Kapoula (ref_6) 2006; 245 ref_18 ref_17 Morize (ref_25) 2017; 57 ref_16 Ziegler (ref_31) 2008; 107 Seassau (ref_10) 2014; 8 ref_15 Chakraborty (ref_23) 2020; 1427 Stein (ref_2) 1988; 72 Stein (ref_3) 1993; 16 Golden (ref_19) 2016; 192 Kapoula (ref_26) 2016; 5 ref_20 ref_1 Ward (ref_5) 2020; 10 ref_28 Rayner (ref_8) 1998; 124 ref_9 Heim (ref_29) 2008; 68 Martos (ref_7) 1990; 2 Daniel (ref_27) 2016; 10 (ref_32) 2010; 107 Rizzolatti (ref_24) 1987; 25 Castles (ref_30) 1993; 47 |
References_xml | – volume: 68 start-page: 73 year: 2008 ident: ref_29 article-title: Cognitive subtypes of dyslexia publication-title: Acta Neurobiol. Exp. doi: 10.55782/ane-2008-1674 contributor: fullname: Heim – volume: 124 start-page: 372 year: 1998 ident: ref_8 article-title: Eye movements in reading and information processing: 20 years of research publication-title: Psychol. Bull. doi: 10.1037/0033-2909.124.3.372 contributor: fullname: Rayner – volume: 107 start-page: 718 year: 2010 ident: ref_32 article-title: The Prevention, Diagnosis, and Treatment of Dyslexia publication-title: Dtsch. Aerzteblatt Online – ident: ref_15 doi: 10.1371/journal.pone.0182597 – ident: ref_34 doi: 10.20944/preprints201801.0109.v1 – volume: 25 start-page: 31 year: 1987 ident: ref_24 article-title: Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention publication-title: Neuropsychologia doi: 10.1016/0028-3932(87)90041-8 contributor: fullname: Rizzolatti – volume: 192 start-page: 38 year: 2016 ident: ref_19 article-title: Mean Absolute Percentage Error for regression models publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.12.114 contributor: fullname: Golden – ident: ref_28 doi: 10.3389/fpsyg.2020.02171 – volume: 246 start-page: 417 year: 2007 ident: ref_11 article-title: Poor binocular coordination of saccades in dyslexic children publication-title: Graefe’s Arch. Clin. Exp. Ophthalmol. doi: 10.1007/s00417-007-0723-1 contributor: fullname: Bucci – volume: 51 start-page: 268 year: 2018 ident: ref_22 article-title: Screening for Dyslexia in French-Speaking University Students: An Evaluation of the Detection Accuracy of the Alouette Test publication-title: J. Learn. Disabil. doi: 10.1177/0022219417704637 contributor: fullname: Cavalli – ident: ref_1 doi: 10.3390/brainsci11080990 – volume: 2 start-page: 175 year: 1990 ident: ref_7 article-title: Differences in eye movements control among dyslexic, retarded and normal readers in the Spanish population publication-title: Read. Writ. doi: 10.1007/BF00401801 contributor: fullname: Martos – ident: ref_16 – volume: 5 start-page: 8 year: 2016 ident: ref_26 article-title: Objective Evaluation of Vergence Disorders and a Research-Based Novel Method for Vergence Rehabilitation publication-title: Transl. Vis. Sci. Technol. doi: 10.1167/tvst.5.2.8 contributor: fullname: Kapoula – volume: 33 start-page: 313 year: 2018 ident: ref_33 article-title: Does dyslexia exist? publication-title: Lang. Cogn. Neurosci. doi: 10.1080/23273798.2017.1325509 contributor: fullname: Stein – volume: 47 start-page: 149 year: 1993 ident: ref_30 article-title: Varieties of developmental dyslexia publication-title: Cognition doi: 10.1016/0010-0277(93)90003-E contributor: fullname: Castles – volume: 42 start-page: 475 year: 2008 ident: ref_35 article-title: Does Dyslexia Exist? publication-title: J. Philos. Educ. doi: 10.1111/j.1467-9752.2008.00653.x contributor: fullname: Elliott – ident: ref_18 – volume: 10 start-page: 1 year: 2020 ident: ref_5 article-title: Differential diagnosis of vergence and saccade disorders in dyslexia publication-title: Sci. Rep. doi: 10.1038/s41598-020-79089-1 contributor: fullname: Ward – volume: 16 start-page: 30 year: 1993 ident: ref_3 article-title: Unstable binocular control in dyslexic children publication-title: J. Res. Read. doi: 10.1111/j.1467-9817.1993.tb00033.x contributor: fullname: Stein – volume: 72 start-page: 162 year: 1988 ident: ref_2 article-title: Disordered vergence control in dyslexic children publication-title: Br. J. Ophthalmol. doi: 10.1136/bjo.72.3.162 contributor: fullname: Stein – ident: ref_14 doi: 10.1007/978-3-642-39062-3_63 – ident: ref_12 doi: 10.1145/2745555.2746644 – volume: 57 start-page: 329 year: 2017 ident: ref_25 article-title: Effects of Pure Vergence Training on Initiation and Binocular Coordination of Saccades publication-title: Investig. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.16-19837 contributor: fullname: Morize – volume: 34 start-page: 1345 year: 1994 ident: ref_4 article-title: Differences in eye movements and reading problems in dyslexic and normal children publication-title: Vis. Res. doi: 10.1016/0042-6989(94)90209-7 contributor: fullname: Eden – volume: 4 start-page: 40 year: 2010 ident: ref_21 article-title: A survey of cross-validation procedures for model selection publication-title: Stat. Surv. doi: 10.1214/09-SS054 contributor: fullname: Arlot – volume: 1427 start-page: 012012 year: 2020 ident: ref_23 article-title: Machine learning algorithms for prediction of dyslexia using eye movement publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1427/1/012012 contributor: fullname: Chakraborty – volume: 10 start-page: 33 year: 2016 ident: ref_27 article-title: Benefits from Vergence Rehabilitation: Evidence for Improvement of Reading Saccades and Fixations publication-title: Front. Integr. Neurosci. doi: 10.3389/fnint.2016.00033 contributor: fullname: Daniel – volume: 107 start-page: 151 year: 2008 ident: ref_31 article-title: Developmental dyslexia and the dual route model of reading: Simulating individual differences and subtypes publication-title: Cognition doi: 10.1016/j.cognition.2007.09.004 contributor: fullname: Ziegler – ident: ref_13 doi: 10.1371/journal.pone.0165508 – ident: ref_9 doi: 10.1371/journal.pone.0018694 – ident: ref_17 – volume: 245 start-page: 931 year: 2006 ident: ref_6 article-title: Evidence for frequent divergence impairment in French dyslexic children: Deficit of convergence relaxation or of divergence per se? publication-title: Graefe’s Arch. Clin. Exp. Ophthalmol. doi: 10.1007/s00417-006-0490-4 contributor: fullname: Kapoula – ident: ref_20 – volume: 8 start-page: 85 year: 2014 ident: ref_10 article-title: Binocular saccade coordination in reading and visual search: A developmental study in typical reader and dyslexic children publication-title: Front. Integr. Neurosci. doi: 10.3389/fnint.2014.00085 contributor: fullname: Seassau |
SSID | ssj0000800350 |
Score | 2.285399 |
Snippet | There is evidence that abnormalities in eye movements exist during reading in dyslexic individuals. A few recent studies applied Machine Learning (ML)... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database |
StartPage | 1337 |
SubjectTerms | Accuracy Binocular vision Datasets Dyslexia Eye movements Feature selection Learning algorithms Machine Learning Reading reading eye movements reading speed saccades Saccadic eye movements Support vector machines Teenagers Velocity vergence Vergence eye movements |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELZaTr2gUopIeWgqVUg9ROTtDbdQFnEBIUGl3iI_xpRWeBFhD_sD-r8742SXDZdeeowfkuOZyXwTj78R4kuJlUl1peLCkZEXuqpjndaGolaJJSYTZ8J1sYsbefVjcjZlmpxVqS_OCevpgfuNOy5MZqvUZtaURSGN0cicUc6mLsc0Vz00Sqq1YOrXgIPyMunPJXOK6481V1wgr0K2TaiHy56v-aFA1z_CmOMMyTWXc_5ebA5YEZp-jVviDfoPYrvxFCc_LOAIQvZm-C2-Lf5cP_GRCycxw9miY5pLBcpbGLLk4eaR_BTce2heOJyAL5fAdIFwOQu84dREI5ZTePrVzMfL51vV_e5OoIHLkIGJMJCz3kEzMJN_FN_Pp7ffLuKhxEJs6Av5HBtMURvy2RPpMkykM84lidG00wqLSpVJVTubYaaNIygxsYSYEuazMch1NdN8R2z4mcddAYQsa4uFzdnto6oVQTFtdFXWhqIei5H4utzw9rFn0mgpAmHhtK-FE4lTlshqHHNghwbSjHbQjPZfmhGJ_aU828EwuzYjwBXIUMtIfF51k0nxOYnyOJv3Y6SsCclFQo70YLSgcY-__xnIuQn-EEaSn_7HG-yJdxmn0HACTbovNp6f5ngg3nZ2fhjU_S9fbQnZ priority: 102 providerName: Directory of Open Access Journals |
Title | Predicting Dyslexia and Reading Speed in Adolescents from Eye Movements in Reading and Non-Reading Tasks: A Machine Learning Approach |
URI | https://www.proquest.com/docview/2584310915 https://search.proquest.com/docview/2584779893 https://pubmed.ncbi.nlm.nih.gov/PMC8534067 https://doaj.org/article/4c2d61d2dc5447ccbe5703fd1f3e13aa |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbYnrggoCACpTISQuKQbt7ecAvtVr1sValF4hb5MS5LWWe16R72B_C_mfE6peHIMX5Ilj3OfGN__oaxjyVUOlWVjAuLm7xQVR2rtNYYtQooIZlZ7Z-LXVyLy--zsznJ5JTDWxhP2tdqeeJ-rU7c8ofnVq5XejrwxKZXi1N0MeiHxHTCJogNH4XoPwMEystkfyWZY0g_VZRsAR0KbmsEPDnl3cvx_0ApwUfeyIv2j5DmmCf5yPGcP2fPAmLkzX5kL9gTcC_ZYeMwWl7t-CfuOZz-cPyQ_b7a0MULUZn52a4nsUvJpTM8cOX59Rq9FV863vxVcuL0xITPd8AXnVcPxyJsMXSh7pedi4fvG9nf9V94wxeehwk8SLTe8ibok79i387nN6cXcUi0EGuch_tYQwpKo-eeCZtBIqy2Nkm0KoSWUFSyTKramgwypS0CiplB3JSQqo0Gyq6Z5q_ZgescvGEc8WVtoDA5OX-QtURAprSqylpj7GMgYp-HCW_Xez2NFuMQWqf233WK2FdakYd2pITtC7rNbRvsoS10ZqrUZEaXBY5XKyBNMWtSm0OaSxmxo2E927A9-zZD2OUlUcuIfXioxo1FtyXSQbfdtxGiRjwXMTGyg9GAxjVosV6iO1jo2__u-Y49zYg9Q9yZ9Igd3G-28J5NerM99scGx97o_wD6jQo5 |
link.rule.ids | 230,315,729,782,786,866,887,2106,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB7RcoALFAqqoZRFQkgc3PjtmJvbpgqiiSo1SNysfcyWAFlHcXPID-B_M7ux25pjj96HtPLseL7xfvsNwMcUMxmKjPuJJidPRFb4IiwkZa05phgMtXTXxcZX-fTH8GxkZXLS7i6MI-1LMT82fxbHZv7TcSuXCznoeGKDy8kphRiKQ_lgBx6TvwbBvST9VwuC4jTYHkrGlNQPhC23QCGFHJsgT2wr78X0hbBFwXvxyMn297Bmnyl5L_ScP3_govfgWYs1WbntfgGP0LyE_dJQnr3YsE_MsT_db_V9-Hu5skc2lgTNzjaNlcnkjBvFWpY9u1pSnGNzw8o7DShmL6ew0QbZpHa649REI7opdvq0Nn73POPN7-YLK9nEMTiRteKu16xslc1fwffz0ex07LclGnxJ7-_GlxiikBTzh7mOMMi11DoIpEhyyTHJeBpkhVYRRkJqgiJDRYgrsHo4Em1dzjB-DbumNngAjJBpoTBRsYUNyAtOUE5IkaWFpKxJoQefO0NVy60SR0UZjLVv9b99PTixlrwdZzW0XUO9uq5ao1SJjFQWqkjJNKH1SoFWjUyrUMcYxpx7cNjtg6p17KaKCLA5MdXUgw-33eSS9pyFG6zX2zF5XhAS9CDv7Z_egvo9tG2cuHe7Td48eOZ7eDKeTS6qi6_Tb2_haWQ5OJaBEx7C7s1qje9gp1HrI-cy_wAwQx7N |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RIiEu5VEQhgKLhJA4uPHbMTfTJCqCRJFaJG7WPmZLoFlHcXPID-B_M7uxQ80Rjt6HtPLseL7xfvsNwNsUMxmKjPuJJidPRFb4IiwkZa05phgMtXTXxc4v8tm34WhsZXL2pb4caV-Kxam5Xp6axXfHrVwt5aDjiQ3m0zMKMRSH8sFK6cEB3CWfDaJbifqPFgjFabA7mIwpsR8IW3KBwgo5N8Ge2Fbfi-krYQuD92KSk-7v4c0-W_JW-Jk8-I-FP4SjFnOycjfkEdxB8xiOS0P59nLL3jHHAnW_14_h13xtj24sGZqNto2Vy-SMG8Vatj27WFG8YwvDyj9aUMxeUmHjLbJp7fTHqYlGdFPs9Flt_O75kjc_mw-sZFPH5ETWirxesbJVOH8CXyfjy7Nzvy3V4Et6hze-xBCFpNg_zHWEQa6l1kEgRZJLjknG0yArtIowElITJBkqQl6B1cWRaOtzhvFTODS1wWfACKEWChMVW_iAvOAE6YQUWVpIyp4UevC-M1a12ilyVJTJWBtXf9vYg4_WmvtxVkvbNdTrq6o1TJXISGWhipRME1qvFGhVybQKdYxhzLkHJ91eqFoHb6qIgJsTVU09eLPvJte05y3cYL3ZjcnzghChB3lvD_UW1O-hreNEvtut8vyfZ76Ge_PRpPryafb5BdyPLBXHEnHCEzi8WW_wJRw0avPKec1vFEwhTQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Dyslexia+and+Reading+Speed+in+Adolescents+from+Eye+Movements+in+Reading+and+Non-Reading+Tasks%3A+A+Machine+Learning+Approach&rft.jtitle=Brain+sciences&rft.au=Alae+Eddine+El+Hmimdi&rft.au=Ward%2C+Lindsey+M&rft.au=Palpanas%2C+Themis&rft.au=Kapoula%2C+Zo%C3%AF&rft.date=2021-10-11&rft.pub=MDPI+AG&rft.eissn=2076-3425&rft.volume=11&rft.issue=10&rft.spage=1337&rft_id=info:doi/10.3390%2Fbrainsci11101337&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3425&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3425&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3425&client=summon |