Microstructural Evolution of an Ion Irradiated Ni–Mo–Cr–Fe Alloy at Elevated Temperatures

The irradiation behavior of a Ni–Mo–Cr–Fe alloy, of the type currently being considered for use in future molten salt cooled reactors, has been investigated in situ using 1 MeV Kr ions at temperatures of 723 and 973 K. When irradiated to 5 dpa, experimental observations reveal the instantaneous form...

Full description

Saved in:
Bibliographic Details
Published in:MATERIALS TRANSACTIONS Vol. 55; no. 3; pp. 428 - 433
Main Authors: Reyes, Massey de los, Edwards, Lyndon, Kirk, Marquis A., Bhattacharyya, Dhriti, Lu, Kim T., Lumpkin, Gregory R.
Format: Journal Article
Language:English
Published: Sendai The Japan Institute of Metals and Materials 01-03-2014
Japan Science and Technology Agency
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The irradiation behavior of a Ni–Mo–Cr–Fe alloy, of the type currently being considered for use in future molten salt cooled reactors, has been investigated in situ using 1 MeV Kr ions at temperatures of 723 and 973 K. When irradiated to 5 dpa, experimental observations reveal the instantaneous formation and annihilation of point defect clusters, with such processes attributed to the long range elastic interactions that occur between defects through multiple intra-cascade overlap. Corresponding differences in the defect cluster density and size distribution suggest that changes to the microstructure were dependent upon temperature and dose, affecting the growth, accumulation and mobility of irradiation-induced defect clusters under these conditions.
AbstractList The irradiation behavior of a Ni–Mo–Cr–Fe alloy, of the type currently being considered for use in future molten salt cooled reactors, has been investigated in situ using 1 MeV Kr ions at temperatures of 723 and 973 K. When irradiated to 5 dpa, experimental observations reveal the instantaneous formation and annihilation of point defect clusters, with such processes attributed to the long range elastic interactions that occur between defects through multiple intra-cascade overlap. Corresponding differences in the defect cluster density and size distribution suggest that changes to the microstructure were dependent upon temperature and dose, affecting the growth, accumulation and mobility of irradiation-induced defect clusters under these conditions.
Author Bhattacharyya, Dhriti
Kirk, Marquis A.
Reyes, Massey de los
Lu, Kim T.
Edwards, Lyndon
Lumpkin, Gregory R.
Author_xml – sequence: 1
  fullname: Reyes, Massey de los
  organization: Institute of Materials Engineering, Australian Nuclear Science and Technology Organization (ANSTO)
– sequence: 2
  fullname: Edwards, Lyndon
  organization: Institute of Materials Engineering, Australian Nuclear Science and Technology Organization (ANSTO)
– sequence: 3
  fullname: Kirk, Marquis A.
  organization: Materials Science Division, Argonne National Laboratory
– sequence: 4
  fullname: Bhattacharyya, Dhriti
  organization: Institute of Materials Engineering, Australian Nuclear Science and Technology Organization (ANSTO)
– sequence: 5
  fullname: Lu, Kim T.
  organization: Institute of Materials Engineering, Australian Nuclear Science and Technology Organization (ANSTO)
– sequence: 6
  fullname: Lumpkin, Gregory R.
  organization: Institute of Materials Engineering, Australian Nuclear Science and Technology Organization (ANSTO)
BookMark eNpNkMFOAjEQhhuDiYA-gZcmnhfbbbvLHgmCbgJ6wXNTtrO6ZNli2yXh5jv4hj6JBQQ99O8k838zmb-HOo1pAKFbSgYxi8n9Wnmw3qrGDeYPMaGM0gvUpYynkQj9zqEWUZakwyvUc25FCEtFHHeRnFeFNc7btvCtVTWebE3d-so02JRYNTgPVW6t0lXYofFz9f35NTdBxjbIFPCors0OK48nNWwPngWsN2BVmAfuGl2WqnZw8_v30et0shg_RbOXx3w8mkUFT1IfJUxQzdIhL0XGNS8yAQUoniSpjtN0SbmAUmeJoHFBliWPOSeMg1pyRTQVTLM-ujvO3Vjz0YLzcmVa24SVkgrCGWVJeH3Ejq79zc5CKTe2Wiu7k5TIfZLyL0l5SjJQ-ZFaOa_e4Mwo66uihv-MEJLt5cSePcW7shIa9gOqW4kt
CitedBy_id crossref_primary_10_1016_j_jnucmat_2020_152557
crossref_primary_10_1016_j_msea_2016_07_032
crossref_primary_10_1016_j_jnucmat_2017_12_006
crossref_primary_10_1080_14786435_2020_1804636
crossref_primary_10_1088_1742_6596_1925_1_012002
crossref_primary_10_22349_1994_6716_2023_113_1_150_173
crossref_primary_10_1016_j_jnucmat_2017_06_005
Cites_doi 10.1016/j.jnucmat.2004.04.016
10.1016/j.nimb.2009.09.014
10.1016/j.jnucmat.2013.03.035
10.1103/PhysRevB.53.14773
10.1002/(SICI)1097-0029(19980915)42:4<255::AID-JEMT4>3.0.CO;2-P
10.1557/PROC-439-277
10.1016/j.jnucmat.2011.02.001
10.1080/14786437708237062
10.1080/14786430500513783
10.1016/j.pnucene.2006.07.005
10.1007/978-1-4020-8422-5_27
10.1016/S1001-0742(11)61067-X
10.1016/j.actamat.2011.11.020
10.1016/0022-3115(74)90267-0
10.1103/PhysRevB.30.3073
10.1016/j.jnucmat.2008.02.064
10.1038/nmat2266
10.5006/1.3294394
10.1016/j.jnucmat.2008.11.026
10.1016/j.ultramic.2007.02.029
10.1179/174892407X266635
10.1080/14786430412331293531
10.1080/01418618108239507
10.1016/S0022-3115(98)00493-0
10.1016/j.matchar.2012.06.010
10.1016/j.scriptamat.2012.09.011
10.1016/0022-3115(92)90340-Q
10.1016/S1369-7021(10)70222-4
10.1063/1.4748980
10.1134/S0031918X06040107
10.1557/JMR.2005.0242
10.1016/B978-0-08-056033-5.00090-2
10.1016/j.jnucmat.2006.08.017
10.1007/s11661-008-9746-4
ContentType Journal Article
Copyright 2014 The Japan Institute of Metals and Materials
Copyright Japan Science and Technology Agency 2014
Copyright_xml – notice: 2014 The Japan Institute of Metals and Materials
– notice: Copyright Japan Science and Technology Agency 2014
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.2320/matertrans.MD201311
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1347-5320
EndPage 433
ExternalDocumentID 3237263341
10_2320_matertrans_MD201311
article_matertrans_55_3_55_MD201311_article_char_en
GroupedDBID -~X
.L7
.LE
08R
5GY
6XO
93D
ACGFS
ACIWK
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
JSI
JSP
RJT
RZJ
SJN
AAYXX
ABJNI
CITATION
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c467t-6351d3784f594d4c95ecea4667d277b145efd96512c0bf4244034eab4a0d153d3
ISSN 1345-9678
IngestDate Thu Oct 10 18:29:32 EDT 2024
Fri Aug 23 02:42:50 EDT 2024
Wed Apr 05 14:26:09 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c467t-6351d3784f594d4c95ecea4667d277b145efd96512c0bf4244034eab4a0d153d3
OpenAccessLink https://www.jstage.jst.go.jp/article/matertrans/55/3/55_MD201311/_article/-char/en
PQID 1504313631
PQPubID 1976393
PageCount 6
ParticipantIDs proquest_journals_1504313631
crossref_primary_10_2320_matertrans_MD201311
jstage_primary_article_matertrans_55_3_55_MD201311_article_char_en
PublicationCentury 2000
PublicationDate 2014-03-01
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Sendai
PublicationPlace_xml – name: Sendai
PublicationTitle MATERIALS TRANSACTIONS
PublicationTitleAlternate Mater. Trans.
PublicationYear 2014
Publisher The Japan Institute of Metals and Materials
Japan Science and Technology Agency
Publisher_xml – name: The Japan Institute of Metals and Materials
– name: Japan Science and Technology Agency
References 7) C. Le Brun: J. Nucl. Mater. 360 (2007) 1–5.
19) J. A. Hinks: Nucl. Instrum. Methods B 267 (2009) 3652–3662.
13) A. Boyne, C. Shen, R. Najafabadi and Y. Wang: J. Nucl. Mater. 438 (2013) 209–217.
30) A. Tenenbaum and N. V. Doan: Philos. Mag. 35 (1977) 379–403.
9) S. Delpech, C. Cabet, C. Slim and G. S. Picard: Mater. Today 13 (2010) 34–41.
31) V. Naundorf, M. P. Macht and H. Wollenberger: J. Nucl. Mater. 186 (1992) 227–236.
4) L. K. Mansur, A. F. Rowcliffe, R. K. Nanstad, S. J. Zinkel, W. R. Corwin and R. E. Stoller: J. Nucl. Mater. 329–333 (2004) 166–172.
32) M. Beranger, P. Thevenard, R. Brenier, B. Canut and S. M. M. Ramos: Phys. Rev. B 53 (1996) 14773–14781.
22) S. Mahajan: Scr. Mater. 68 (2013) 95–99.
35) K. Yamakawa and Y. Shimomura: J. Nucl. Mater. 264 (1999) 319–326.
20) J. R. Davis (ed.): Nickel, Cobalt, and Their Alloys, (ASM Specialty Handbook, ASM International, Ohio, 2000) pp. 68–91.
24) D. Tytko, P. Choi, J. Klower, A. Kostka, G. Inden and D. Raabe: Acta Mater. 60 (2012) 1731–1740.
11) A. Arsenlis, B. D. Wirth and M. Rhee: Philos. Mag. 84 (2004) 3617–3635.
36) Y. N. Osetsky, D. Rodney and D. J. Bacon: Philos. Mag. 86 (2006) 2295–2313.
2) L. Mathieu, D. Heuer, R. Brissot, C. Le Brun, E. Liatard, J. M. Loiseaux, O. Meplan, E. Merle-Lucotte, A. Nuttin, J. Wilson, C. Garzenne, D. Lecarpentier and E. Walle: Prog. Nucl. Energy 48 (2006) 664–679.
8) A. S. Bakai: NATO Science for Peace and Security Series B, (Physics and Biophysics, Netherlands, 2008) pp. 537–557.
10) R. W. Grimes, R. M. Konings and L. Edwards: Nat. Mater. 7 (2008) 683–685.
25) D. Xu, B. D. Wirth, M. Li and M. A. Kirk: Appl. Phys. Lett. 101 (2012) 101905.
27) T. M. Robinson and M. L. Jenkins: Philos. Mag. 43 (1981) 999–1015.
18) R. C. Birtcher, M. A. Kirk, K. Furuya, G. Lumpkin and M. O. Ruault: J. Mater. Res. 20 (2005) 1654–1683.
5) L. Heikinheimo, P. Aaltonen and A. Toivonen: Energy Mater. Mater. Sci. Eng. Energy Syst. 2 (2007) 72–77.
29) L. E. Rehn, P. R. Okamoto and R. S. Averback: Phys. Rev. B 30 (1984) 3073–3080.
16) S. Jin, X. He, T. Li, S. Ma, R. Tang and L. Guo: Mater. Charact. 72 (2012) 8–14.
17) C. W. Allen and E. A. Ryan: Microsc. Res. Tech. 42 (1998) 255–259.
14) A. P. Druzhkov, V. P. Kolotushkin, V. L. Arbuzov, S. E. Danilov and D. A. Perminov: Phys. Met. Met. 101 (2006) 369–378.
6) P. Shi, A. Engstrom and B. Sundman: J. Environ. Sci. 23 (2011) S1–S7.
33) J. S. Vetrano, I. M. Robertson, R. S. Averback and M. A. Kirk: Effects of Radiation on Materials, 15th International Symposium, ASTM STP 1125, Philadelphia, (1992) pp. 375–384.
37) Y. V. Konobeev, S. I. Porollo, A. A. Ivanov, S. V. Shulepin, N. I. Budylkin, E. G. Mironova and F. A. Garner: J. Nucl. Mater. 412 (2011) 30–34.
28) P. R. Okamoto and H. Wiedersich: J. Nucl. Mater. 53 (1974) 336–345.
12) C. Deo, C. Tome, R. Lebensohn and S. Maloy: J. Nucl. Mater. 377 (2008) 136–140.
3) P. Kritzer, N. Boukis and E. Dinjus: Corrosion 56 (2000) 1093–1104.
23) C. Y. Cui, Y. F. Gu, D. H. Ping and H. Harada: Metall. Mater. Trans. A 40 (2009) 282–291.
21) C. W. Allen and E. A. Ryan: MRS Proc. 439 (1996) 277.
1) P. Yvon and F. Carre: J. Nucl. Mater. 385 (2009) 217–222.
34) S. L. King, M. L. Jenkins, M. A. Kirk and C. A. English: Effects of Radiation on Materials, 15th International Symposium, ASTM STP 1125, Philadelphia, (1992) pp. 448–462.
15) N. Wanderka, A. Bakai, C. Abromeit, D. Isheim and D. N. Seidman: Ultramicroscopy 107 (2007) 786–790.
26) R. M. Boothby: Comprehensive Nuclear Materials, (2012) pp. 123–150.
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – ident: 4
  doi: 10.1016/j.jnucmat.2004.04.016
– ident: 19
  doi: 10.1016/j.nimb.2009.09.014
– ident: 13
  doi: 10.1016/j.jnucmat.2013.03.035
– ident: 32
  doi: 10.1103/PhysRevB.53.14773
– ident: 17
  doi: 10.1002/(SICI)1097-0029(19980915)42:4<255::AID-JEMT4>3.0.CO;2-P
– ident: 21
  doi: 10.1557/PROC-439-277
– ident: 33
– ident: 37
  doi: 10.1016/j.jnucmat.2011.02.001
– ident: 30
  doi: 10.1080/14786437708237062
– ident: 36
  doi: 10.1080/14786430500513783
– ident: 2
  doi: 10.1016/j.pnucene.2006.07.005
– ident: 8
  doi: 10.1007/978-1-4020-8422-5_27
– ident: 6
  doi: 10.1016/S1001-0742(11)61067-X
– ident: 20
– ident: 24
  doi: 10.1016/j.actamat.2011.11.020
– ident: 28
  doi: 10.1016/0022-3115(74)90267-0
– ident: 29
  doi: 10.1103/PhysRevB.30.3073
– ident: 12
  doi: 10.1016/j.jnucmat.2008.02.064
– ident: 10
  doi: 10.1038/nmat2266
– ident: 3
  doi: 10.5006/1.3294394
– ident: 1
  doi: 10.1016/j.jnucmat.2008.11.026
– ident: 34
– ident: 15
  doi: 10.1016/j.ultramic.2007.02.029
– ident: 5
  doi: 10.1179/174892407X266635
– ident: 11
  doi: 10.1080/14786430412331293531
– ident: 27
  doi: 10.1080/01418618108239507
– ident: 35
  doi: 10.1016/S0022-3115(98)00493-0
– ident: 16
  doi: 10.1016/j.matchar.2012.06.010
– ident: 22
  doi: 10.1016/j.scriptamat.2012.09.011
– ident: 31
  doi: 10.1016/0022-3115(92)90340-Q
– ident: 9
  doi: 10.1016/S1369-7021(10)70222-4
– ident: 25
  doi: 10.1063/1.4748980
– ident: 14
  doi: 10.1134/S0031918X06040107
– ident: 18
  doi: 10.1557/JMR.2005.0242
– ident: 26
  doi: 10.1016/B978-0-08-056033-5.00090-2
– ident: 7
  doi: 10.1016/j.jnucmat.2006.08.017
– ident: 23
  doi: 10.1007/s11661-008-9746-4
SSID ssj0037522
Score 2.1461196
Snippet The irradiation behavior of a Ni–Mo–Cr–Fe alloy, of the type currently being considered for use in future molten salt cooled reactors, has been investigated in...
The irradiation behavior of a Ni-Mo-Cr-Fe alloy, of the type currently being considered for use in future molten salt cooled reactors, has been investigated in...
SourceID proquest
crossref
jstage
SourceType Aggregation Database
Publisher
StartPage 428
SubjectTerms defect evolution
ion irradiation effects
microstructure
molten salt nuclear reactors
nickel-based alloys
TEM in situ ion irradiation
Title Microstructural Evolution of an Ion Irradiated Ni–Mo–Cr–Fe Alloy at Elevated Temperatures
URI https://www.jstage.jst.go.jp/article/matertrans/55/3/55_MD201311/_article/-char/en
https://www.proquest.com/docview/1504313631
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX MATERIALS TRANSACTIONS, 2014/03/01, Vol.55(3), pp.428-433
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfK4AAHxKcoDOQDt-LS2M7XsWypNmjKYZ00TpETO6yoa7a2m9T_nvfifG0gBAcuUWSnTfveL88_x36_R8j73AmCNJUpC2QIE5RMGKa08pmXCuMqT4XawWzkoxN_dhYcRjLq9WqpxLbtv3oa2sDXmDn7D95uvhQa4Bx8DkfwOhz_yu8x7rCzqrClokZ0U92uXPFfDY7h7Hi9RkkCJJuzBYsLdrBmEzMYL5fFDrMbo6W5KXvnBli1VV3edGlsrLb2v2CJibreeMPOtRksC8w_2dkYFANBN82re1smuuyY7rCWSIO54eDLwu7cjtX66nrRvsE_V9utwgSx3c6uT52jFlP3jYUj2y1bdjQBFtCGLlweaFcRBuMy47QTkIV0WejZMj9DU7f5DAtadKO4Ffut0Co6IVna5PO7QwUwSdxbeYH2Kk01vNC8FB9qR8Z6N8DsazI5nU6TeXQ2v91riQAXPveEQP2E-xwCHsbbk8-zmhEI36rWN__Fql_hL_j4m_vfYkgPfsAk4fuvTKGkP_Mn5HE1b6FjC7inpGdWz8ijjprlc_LtDvRoAz1a5FStKECPttCjHejREnpUbWkNPdqF3gtyOonmB0esqtzBMhh4twxYrKOFH8jcDaWWWeiazCjpeb7mvp860jW5Dj0gm9kozTHXciSkUalUIw1DsBYvyd6qWJlXhHIJns70yIEeyQ0MN2nqyVzw0ONBynmffKitlVxagZYEJrZo3KQ1bhIfWuP2ySdr0ebi6kntXuy6icBD_aHmGgQ6BJk-2a-9kVSP_iZxUAvQEZ5wXv-5-w152D4V-2QP3GLeknsbff2uhM1PaiOrQg
link.rule.ids 315,782,786,27933,27934
linkProvider Multiple Vendors
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microstructural+Evolution+of+an+Ion+Irradiated+Ni-Mo-Cr-Fe+Alloy+at+Elevated+Temperatures&rft.jtitle=Materials+transactions&rft.au=de+los+Reyes%2C+Massey&rft.au=Edwards%2C+Lyndon&rft.au=A.+Kirk%2C+Marquis&rft.au=Bhattacharyya%2C+Dhriti&rft.date=2014-03-01&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=1345-9678&rft.eissn=1347-5320&rft.volume=55&rft.issue=3&rft.spage=428&rft_id=info:doi/10.2320%2Fmatertrans.md201311&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3237263341
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1345-9678&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1345-9678&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1345-9678&client=summon