Microstructural Evolution of an Ion Irradiated Ni–Mo–Cr–Fe Alloy at Elevated Temperatures
The irradiation behavior of a Ni–Mo–Cr–Fe alloy, of the type currently being considered for use in future molten salt cooled reactors, has been investigated in situ using 1 MeV Kr ions at temperatures of 723 and 973 K. When irradiated to 5 dpa, experimental observations reveal the instantaneous form...
Saved in:
Published in: | MATERIALS TRANSACTIONS Vol. 55; no. 3; pp. 428 - 433 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Sendai
The Japan Institute of Metals and Materials
01-03-2014
Japan Science and Technology Agency |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The irradiation behavior of a Ni–Mo–Cr–Fe alloy, of the type currently being considered for use in future molten salt cooled reactors, has been investigated in situ using 1 MeV Kr ions at temperatures of 723 and 973 K. When irradiated to 5 dpa, experimental observations reveal the instantaneous formation and annihilation of point defect clusters, with such processes attributed to the long range elastic interactions that occur between defects through multiple intra-cascade overlap. Corresponding differences in the defect cluster density and size distribution suggest that changes to the microstructure were dependent upon temperature and dose, affecting the growth, accumulation and mobility of irradiation-induced defect clusters under these conditions. |
---|---|
AbstractList | The irradiation behavior of a Ni–Mo–Cr–Fe alloy, of the type currently being considered for use in future molten salt cooled reactors, has been investigated in situ using 1 MeV Kr ions at temperatures of 723 and 973 K. When irradiated to 5 dpa, experimental observations reveal the instantaneous formation and annihilation of point defect clusters, with such processes attributed to the long range elastic interactions that occur between defects through multiple intra-cascade overlap. Corresponding differences in the defect cluster density and size distribution suggest that changes to the microstructure were dependent upon temperature and dose, affecting the growth, accumulation and mobility of irradiation-induced defect clusters under these conditions. |
Author | Bhattacharyya, Dhriti Kirk, Marquis A. Reyes, Massey de los Lu, Kim T. Edwards, Lyndon Lumpkin, Gregory R. |
Author_xml | – sequence: 1 fullname: Reyes, Massey de los organization: Institute of Materials Engineering, Australian Nuclear Science and Technology Organization (ANSTO) – sequence: 2 fullname: Edwards, Lyndon organization: Institute of Materials Engineering, Australian Nuclear Science and Technology Organization (ANSTO) – sequence: 3 fullname: Kirk, Marquis A. organization: Materials Science Division, Argonne National Laboratory – sequence: 4 fullname: Bhattacharyya, Dhriti organization: Institute of Materials Engineering, Australian Nuclear Science and Technology Organization (ANSTO) – sequence: 5 fullname: Lu, Kim T. organization: Institute of Materials Engineering, Australian Nuclear Science and Technology Organization (ANSTO) – sequence: 6 fullname: Lumpkin, Gregory R. organization: Institute of Materials Engineering, Australian Nuclear Science and Technology Organization (ANSTO) |
BookMark | eNpNkMFOAjEQhhuDiYA-gZcmnhfbbbvLHgmCbgJ6wXNTtrO6ZNli2yXh5jv4hj6JBQQ99O8k838zmb-HOo1pAKFbSgYxi8n9Wnmw3qrGDeYPMaGM0gvUpYynkQj9zqEWUZakwyvUc25FCEtFHHeRnFeFNc7btvCtVTWebE3d-so02JRYNTgPVW6t0lXYofFz9f35NTdBxjbIFPCors0OK48nNWwPngWsN2BVmAfuGl2WqnZw8_v30et0shg_RbOXx3w8mkUFT1IfJUxQzdIhL0XGNS8yAQUoniSpjtN0SbmAUmeJoHFBliWPOSeMg1pyRTQVTLM-ujvO3Vjz0YLzcmVa24SVkgrCGWVJeH3Ejq79zc5CKTe2Wiu7k5TIfZLyL0l5SjJQ-ZFaOa_e4Mwo66uihv-MEJLt5cSePcW7shIa9gOqW4kt |
CitedBy_id | crossref_primary_10_1016_j_jnucmat_2020_152557 crossref_primary_10_1016_j_msea_2016_07_032 crossref_primary_10_1016_j_jnucmat_2017_12_006 crossref_primary_10_1080_14786435_2020_1804636 crossref_primary_10_1088_1742_6596_1925_1_012002 crossref_primary_10_22349_1994_6716_2023_113_1_150_173 crossref_primary_10_1016_j_jnucmat_2017_06_005 |
Cites_doi | 10.1016/j.jnucmat.2004.04.016 10.1016/j.nimb.2009.09.014 10.1016/j.jnucmat.2013.03.035 10.1103/PhysRevB.53.14773 10.1002/(SICI)1097-0029(19980915)42:4<255::AID-JEMT4>3.0.CO;2-P 10.1557/PROC-439-277 10.1016/j.jnucmat.2011.02.001 10.1080/14786437708237062 10.1080/14786430500513783 10.1016/j.pnucene.2006.07.005 10.1007/978-1-4020-8422-5_27 10.1016/S1001-0742(11)61067-X 10.1016/j.actamat.2011.11.020 10.1016/0022-3115(74)90267-0 10.1103/PhysRevB.30.3073 10.1016/j.jnucmat.2008.02.064 10.1038/nmat2266 10.5006/1.3294394 10.1016/j.jnucmat.2008.11.026 10.1016/j.ultramic.2007.02.029 10.1179/174892407X266635 10.1080/14786430412331293531 10.1080/01418618108239507 10.1016/S0022-3115(98)00493-0 10.1016/j.matchar.2012.06.010 10.1016/j.scriptamat.2012.09.011 10.1016/0022-3115(92)90340-Q 10.1016/S1369-7021(10)70222-4 10.1063/1.4748980 10.1134/S0031918X06040107 10.1557/JMR.2005.0242 10.1016/B978-0-08-056033-5.00090-2 10.1016/j.jnucmat.2006.08.017 10.1007/s11661-008-9746-4 |
ContentType | Journal Article |
Copyright | 2014 The Japan Institute of Metals and Materials Copyright Japan Science and Technology Agency 2014 |
Copyright_xml | – notice: 2014 The Japan Institute of Metals and Materials – notice: Copyright Japan Science and Technology Agency 2014 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.2320/matertrans.MD201311 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1347-5320 |
EndPage | 433 |
ExternalDocumentID | 3237263341 10_2320_matertrans_MD201311 article_matertrans_55_3_55_MD201311_article_char_en |
GroupedDBID | -~X .L7 .LE 08R 5GY 6XO 93D ACGFS ACIWK AENEX ALMA_UNASSIGNED_HOLDINGS CS3 DU5 JSI JSP RJT RZJ SJN AAYXX ABJNI CITATION 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c467t-6351d3784f594d4c95ecea4667d277b145efd96512c0bf4244034eab4a0d153d3 |
ISSN | 1345-9678 |
IngestDate | Thu Oct 10 18:29:32 EDT 2024 Fri Aug 23 02:42:50 EDT 2024 Wed Apr 05 14:26:09 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c467t-6351d3784f594d4c95ecea4667d277b145efd96512c0bf4244034eab4a0d153d3 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/matertrans/55/3/55_MD201311/_article/-char/en |
PQID | 1504313631 |
PQPubID | 1976393 |
PageCount | 6 |
ParticipantIDs | proquest_journals_1504313631 crossref_primary_10_2320_matertrans_MD201311 jstage_primary_article_matertrans_55_3_55_MD201311_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2014-03-01 |
PublicationDateYYYYMMDD | 2014-03-01 |
PublicationDate_xml | – month: 03 year: 2014 text: 2014-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Sendai |
PublicationPlace_xml | – name: Sendai |
PublicationTitle | MATERIALS TRANSACTIONS |
PublicationTitleAlternate | Mater. Trans. |
PublicationYear | 2014 |
Publisher | The Japan Institute of Metals and Materials Japan Science and Technology Agency |
Publisher_xml | – name: The Japan Institute of Metals and Materials – name: Japan Science and Technology Agency |
References | 7) C. Le Brun: J. Nucl. Mater. 360 (2007) 1–5. 19) J. A. Hinks: Nucl. Instrum. Methods B 267 (2009) 3652–3662. 13) A. Boyne, C. Shen, R. Najafabadi and Y. Wang: J. Nucl. Mater. 438 (2013) 209–217. 30) A. Tenenbaum and N. V. Doan: Philos. Mag. 35 (1977) 379–403. 9) S. Delpech, C. Cabet, C. Slim and G. S. Picard: Mater. Today 13 (2010) 34–41. 31) V. Naundorf, M. P. Macht and H. Wollenberger: J. Nucl. Mater. 186 (1992) 227–236. 4) L. K. Mansur, A. F. Rowcliffe, R. K. Nanstad, S. J. Zinkel, W. R. Corwin and R. E. Stoller: J. Nucl. Mater. 329–333 (2004) 166–172. 32) M. Beranger, P. Thevenard, R. Brenier, B. Canut and S. M. M. Ramos: Phys. Rev. B 53 (1996) 14773–14781. 22) S. Mahajan: Scr. Mater. 68 (2013) 95–99. 35) K. Yamakawa and Y. Shimomura: J. Nucl. Mater. 264 (1999) 319–326. 20) J. R. Davis (ed.): Nickel, Cobalt, and Their Alloys, (ASM Specialty Handbook, ASM International, Ohio, 2000) pp. 68–91. 24) D. Tytko, P. Choi, J. Klower, A. Kostka, G. Inden and D. Raabe: Acta Mater. 60 (2012) 1731–1740. 11) A. Arsenlis, B. D. Wirth and M. Rhee: Philos. Mag. 84 (2004) 3617–3635. 36) Y. N. Osetsky, D. Rodney and D. J. Bacon: Philos. Mag. 86 (2006) 2295–2313. 2) L. Mathieu, D. Heuer, R. Brissot, C. Le Brun, E. Liatard, J. M. Loiseaux, O. Meplan, E. Merle-Lucotte, A. Nuttin, J. Wilson, C. Garzenne, D. Lecarpentier and E. Walle: Prog. Nucl. Energy 48 (2006) 664–679. 8) A. S. Bakai: NATO Science for Peace and Security Series B, (Physics and Biophysics, Netherlands, 2008) pp. 537–557. 10) R. W. Grimes, R. M. Konings and L. Edwards: Nat. Mater. 7 (2008) 683–685. 25) D. Xu, B. D. Wirth, M. Li and M. A. Kirk: Appl. Phys. Lett. 101 (2012) 101905. 27) T. M. Robinson and M. L. Jenkins: Philos. Mag. 43 (1981) 999–1015. 18) R. C. Birtcher, M. A. Kirk, K. Furuya, G. Lumpkin and M. O. Ruault: J. Mater. Res. 20 (2005) 1654–1683. 5) L. Heikinheimo, P. Aaltonen and A. Toivonen: Energy Mater. Mater. Sci. Eng. Energy Syst. 2 (2007) 72–77. 29) L. E. Rehn, P. R. Okamoto and R. S. Averback: Phys. Rev. B 30 (1984) 3073–3080. 16) S. Jin, X. He, T. Li, S. Ma, R. Tang and L. Guo: Mater. Charact. 72 (2012) 8–14. 17) C. W. Allen and E. A. Ryan: Microsc. Res. Tech. 42 (1998) 255–259. 14) A. P. Druzhkov, V. P. Kolotushkin, V. L. Arbuzov, S. E. Danilov and D. A. Perminov: Phys. Met. Met. 101 (2006) 369–378. 6) P. Shi, A. Engstrom and B. Sundman: J. Environ. Sci. 23 (2011) S1–S7. 33) J. S. Vetrano, I. M. Robertson, R. S. Averback and M. A. Kirk: Effects of Radiation on Materials, 15th International Symposium, ASTM STP 1125, Philadelphia, (1992) pp. 375–384. 37) Y. V. Konobeev, S. I. Porollo, A. A. Ivanov, S. V. Shulepin, N. I. Budylkin, E. G. Mironova and F. A. Garner: J. Nucl. Mater. 412 (2011) 30–34. 28) P. R. Okamoto and H. Wiedersich: J. Nucl. Mater. 53 (1974) 336–345. 12) C. Deo, C. Tome, R. Lebensohn and S. Maloy: J. Nucl. Mater. 377 (2008) 136–140. 3) P. Kritzer, N. Boukis and E. Dinjus: Corrosion 56 (2000) 1093–1104. 23) C. Y. Cui, Y. F. Gu, D. H. Ping and H. Harada: Metall. Mater. Trans. A 40 (2009) 282–291. 21) C. W. Allen and E. A. Ryan: MRS Proc. 439 (1996) 277. 1) P. Yvon and F. Carre: J. Nucl. Mater. 385 (2009) 217–222. 34) S. L. King, M. L. Jenkins, M. A. Kirk and C. A. English: Effects of Radiation on Materials, 15th International Symposium, ASTM STP 1125, Philadelphia, (1992) pp. 448–462. 15) N. Wanderka, A. Bakai, C. Abromeit, D. Isheim and D. N. Seidman: Ultramicroscopy 107 (2007) 786–790. 26) R. M. Boothby: Comprehensive Nuclear Materials, (2012) pp. 123–150. 22 23 24 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – ident: 4 doi: 10.1016/j.jnucmat.2004.04.016 – ident: 19 doi: 10.1016/j.nimb.2009.09.014 – ident: 13 doi: 10.1016/j.jnucmat.2013.03.035 – ident: 32 doi: 10.1103/PhysRevB.53.14773 – ident: 17 doi: 10.1002/(SICI)1097-0029(19980915)42:4<255::AID-JEMT4>3.0.CO;2-P – ident: 21 doi: 10.1557/PROC-439-277 – ident: 33 – ident: 37 doi: 10.1016/j.jnucmat.2011.02.001 – ident: 30 doi: 10.1080/14786437708237062 – ident: 36 doi: 10.1080/14786430500513783 – ident: 2 doi: 10.1016/j.pnucene.2006.07.005 – ident: 8 doi: 10.1007/978-1-4020-8422-5_27 – ident: 6 doi: 10.1016/S1001-0742(11)61067-X – ident: 20 – ident: 24 doi: 10.1016/j.actamat.2011.11.020 – ident: 28 doi: 10.1016/0022-3115(74)90267-0 – ident: 29 doi: 10.1103/PhysRevB.30.3073 – ident: 12 doi: 10.1016/j.jnucmat.2008.02.064 – ident: 10 doi: 10.1038/nmat2266 – ident: 3 doi: 10.5006/1.3294394 – ident: 1 doi: 10.1016/j.jnucmat.2008.11.026 – ident: 34 – ident: 15 doi: 10.1016/j.ultramic.2007.02.029 – ident: 5 doi: 10.1179/174892407X266635 – ident: 11 doi: 10.1080/14786430412331293531 – ident: 27 doi: 10.1080/01418618108239507 – ident: 35 doi: 10.1016/S0022-3115(98)00493-0 – ident: 16 doi: 10.1016/j.matchar.2012.06.010 – ident: 22 doi: 10.1016/j.scriptamat.2012.09.011 – ident: 31 doi: 10.1016/0022-3115(92)90340-Q – ident: 9 doi: 10.1016/S1369-7021(10)70222-4 – ident: 25 doi: 10.1063/1.4748980 – ident: 14 doi: 10.1134/S0031918X06040107 – ident: 18 doi: 10.1557/JMR.2005.0242 – ident: 26 doi: 10.1016/B978-0-08-056033-5.00090-2 – ident: 7 doi: 10.1016/j.jnucmat.2006.08.017 – ident: 23 doi: 10.1007/s11661-008-9746-4 |
SSID | ssj0037522 |
Score | 2.1461196 |
Snippet | The irradiation behavior of a Ni–Mo–Cr–Fe alloy, of the type currently being considered for use in future molten salt cooled reactors, has been investigated in... The irradiation behavior of a Ni-Mo-Cr-Fe alloy, of the type currently being considered for use in future molten salt cooled reactors, has been investigated in... |
SourceID | proquest crossref jstage |
SourceType | Aggregation Database Publisher |
StartPage | 428 |
SubjectTerms | defect evolution ion irradiation effects microstructure molten salt nuclear reactors nickel-based alloys TEM in situ ion irradiation |
Title | Microstructural Evolution of an Ion Irradiated Ni–Mo–Cr–Fe Alloy at Elevated Temperatures |
URI | https://www.jstage.jst.go.jp/article/matertrans/55/3/55_MD201311/_article/-char/en https://www.proquest.com/docview/1504313631 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | MATERIALS TRANSACTIONS, 2014/03/01, Vol.55(3), pp.428-433 |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfK4AAHxKcoDOQDt-LS2M7XsWypNmjKYZ00TpETO6yoa7a2m9T_nvfifG0gBAcuUWSnTfveL88_x36_R8j73AmCNJUpC2QIE5RMGKa08pmXCuMqT4XawWzkoxN_dhYcRjLq9WqpxLbtv3oa2sDXmDn7D95uvhQa4Bx8DkfwOhz_yu8x7rCzqrClokZ0U92uXPFfDY7h7Hi9RkkCJJuzBYsLdrBmEzMYL5fFDrMbo6W5KXvnBli1VV3edGlsrLb2v2CJibreeMPOtRksC8w_2dkYFANBN82re1smuuyY7rCWSIO54eDLwu7cjtX66nrRvsE_V9utwgSx3c6uT52jFlP3jYUj2y1bdjQBFtCGLlweaFcRBuMy47QTkIV0WejZMj9DU7f5DAtadKO4Ffut0Co6IVna5PO7QwUwSdxbeYH2Kk01vNC8FB9qR8Z6N8DsazI5nU6TeXQ2v91riQAXPveEQP2E-xwCHsbbk8-zmhEI36rWN__Fql_hL_j4m_vfYkgPfsAk4fuvTKGkP_Mn5HE1b6FjC7inpGdWz8ijjprlc_LtDvRoAz1a5FStKECPttCjHejREnpUbWkNPdqF3gtyOonmB0esqtzBMhh4twxYrKOFH8jcDaWWWeiazCjpeb7mvp860jW5Dj0gm9kozTHXciSkUalUIw1DsBYvyd6qWJlXhHIJns70yIEeyQ0MN2nqyVzw0ONBynmffKitlVxagZYEJrZo3KQ1bhIfWuP2ySdr0ebi6kntXuy6icBD_aHmGgQ6BJk-2a-9kVSP_iZxUAvQEZ5wXv-5-w152D4V-2QP3GLeknsbff2uhM1PaiOrQg |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Multiple Vendors |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microstructural+Evolution+of+an+Ion+Irradiated+Ni-Mo-Cr-Fe+Alloy+at+Elevated+Temperatures&rft.jtitle=Materials+transactions&rft.au=de+los+Reyes%2C+Massey&rft.au=Edwards%2C+Lyndon&rft.au=A.+Kirk%2C+Marquis&rft.au=Bhattacharyya%2C+Dhriti&rft.date=2014-03-01&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=1345-9678&rft.eissn=1347-5320&rft.volume=55&rft.issue=3&rft.spage=428&rft_id=info:doi/10.2320%2Fmatertrans.md201311&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3237263341 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1345-9678&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1345-9678&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1345-9678&client=summon |