Metal ion binding to D-xylose isomerase from Streptomyces violaceoruber
The binding of two activating cations, Co2+ and Mg2+, and of one inhibitory cation, Ca2+, to D-xylose isomerase from Streptomyces violaceoruber was investigated. Equilibrium-dialysis and spectrometric studies revealed that the enzyme binds 2 mol of Co2+/mol of monomer. Difference absorption spectrom...
Saved in:
Published in: | Biochemical journal Vol. 250; no. 1; pp. 285 - 290 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
15-02-1988
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The binding of two activating cations, Co2+ and Mg2+, and of one inhibitory cation, Ca2+, to D-xylose isomerase from Streptomyces violaceoruber was investigated. Equilibrium-dialysis and spectrometric studies revealed that the enzyme binds 2 mol of Co2+/mol of monomer. Difference absorption spectrometry in the u.v. and visible regions indicated that the environment of the first Co2+ ion is markedly different from that of the second Co2+ ion. The first Co2+ appears to have a six-co-ordinate. The conformational change induced by binding of Co2+ to the first site is maximum after the addition of 1 equivalent of Co2+ and yields a binding constant greater than or equal to 3.3 x 10(6) M-1. Binding of Co2+ to the second, weaker-binding, site caused a visible difference spectrum. The association constant estimated from Co2+ titrations at 585 nm agrees satisfactorily with the value of 4 x 10(4) M-1 obtained from equilibrium dialysis. Similarly, the enzyme undergoes a conformational change on binding of Mg2+ or Ca2+, the binding constants being estimated as 1 x 10(5) M-1 and 5 x 10(5) M-1 respectively. Competition between the activating Mg2+ and Co2+ and the inhibitory Ca2+ ion for both sites was further evidenced by equilibrium dialysis and by spectral displacement studies. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0264-6021 1470-8728 |
DOI: | 10.1042/bj2500285 |