Does infection with or vaccination against SARS-CoV-2 lead to lasting immunity?
Many nations are pursuing the rollout of SARS-CoV-2 vaccines as an exit strategy from unprecedented COVID-19-related restrictions. However, the success of this strategy relies critically on the duration of protective immunity resulting from both natural infection and vaccination. SARS-CoV-2 infectio...
Saved in:
Published in: | The lancet respiratory medicine Vol. 9; no. 12; pp. 1450 - 1466 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Elsevier Ltd
01-12-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Many nations are pursuing the rollout of SARS-CoV-2 vaccines as an exit strategy from unprecedented COVID-19-related restrictions. However, the success of this strategy relies critically on the duration of protective immunity resulting from both natural infection and vaccination. SARS-CoV-2 infection elicits an adaptive immune response against a large breadth of viral epitopes, although the duration of the response varies with age and disease severity. Current evidence from case studies and large observational studies suggests that, consistent with research on other common respiratory viruses, a protective immunological response lasts for approximately 5–12 months from primary infection, with reinfection being more likely given an insufficiently robust primary humoral response. Markers of humoral and cell-mediated immune memory can persist over many months, and might help to mitigate against severe disease upon reinfection. Emerging data, including evidence of breakthrough infections, suggest that vaccine effectiveness might be reduced significantly against emerging variants of concern, and hence secondary vaccines will need to be developed to maintain population-level protective immunity. Nonetheless, other interventions will also be required, with further outbreaks likely to occur due to antigenic drift, selective pressures for novel variants, and global population mobility. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ISSN: | 2213-2600 2213-2619 |
DOI: | 10.1016/S2213-2600(21)00407-0 |