Near-infrared fluorescent coatings of medical devices for image-guided surgery
Rapidly expanding field of image-guided surgery needs new materials for near-infrared imaging with deep tissue penetration. Here, we introduce near-infrared coating of equipment (NICE) for image-guided surgery based on a series of lipophilic cyanine-7.5 dyes with bulky hydrophobic counterions and a...
Saved in:
Published in: | Biomaterials Vol. 261; p. 120306 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Netherlands
Elsevier Ltd
01-12-2020
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Rapidly expanding field of image-guided surgery needs new materials for near-infrared imaging with deep tissue penetration. Here, we introduce near-infrared coating of equipment (NICE) for image-guided surgery based on a series of lipophilic cyanine-7.5 dyes with bulky hydrophobic counterions and a biocompatible polymer, poly(methyl methacrylate). The NICE material exhibits superior brightness (15-20-fold higher) and photostability compared to fluorescent coatings based on commonly used indocyanine green (ICG). It can be deposited on different surfaces and devices, such as steel and gold fiducials, silicone and PVC catheters, polymeric surgical sutures and gauzes. Such coated medical devices show excellent stability in air and buffer for ≥150 days. Accelerated ageing revealed their shelf-life of ≥3 years. They are also stable in serum-containing media, whereas ICG-based coating shows rapid dye leakage. NICE is compatible with standard sterilization protocols based on ethylene oxide and vapor. Moreover, our coating material is biocompatible, where cultured cells spread effectively without signs of cytotoxicity. Ex vivo studies suggest that NICE on fiducials can be visualized as deep as 0.5 cm, and NICE on catheters enables their visualization inside ureters and esophagus. Finally, NICE on different medical devices has been validated for image-guided surgery in porcine and human cadaver models. Thus, the developed NIR coating material emerges as a powerful tool for a variety of medical applications.
[Display omitted] |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/j.biomaterials.2020.120306 |