Influence of Tartaric Acid on the Bioadhesion and Mechanical Properties of Hot-Melt Extruded Hydroxypropyl Cellulose Films for the Human Nail

ABSTRACT The objective of this study was to investigate the influence of tartaric acid (TTA) on the bioadhesive, moisture sorption, and mechanical properties of hot-melt-extruded (HME) hydroxypropyl cellulose (HPC) films containing polymer additives. Two Klucel® EF and LF batches (HPC, MW: 80000 and...

Full description

Saved in:
Bibliographic Details
Published in:Drug development and industrial pharmacy Vol. 32; no. 9; pp. 1059 - 1066
Main Authors: Mididoddi, P. K., Prodduturi, S., Repka, M. A.
Format: Journal Article
Language:English
Published: Colchester Informa UK Ltd 01-10-2006
Taylor & Francis
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT The objective of this study was to investigate the influence of tartaric acid (TTA) on the bioadhesive, moisture sorption, and mechanical properties of hot-melt-extruded (HME) hydroxypropyl cellulose (HPC) films containing polymer additives. Two Klucel® EF and LF batches (HPC, MW: 80000 and 95000, respectively) containing the model antifungal drug ketoconazole (one batch of each MW with and without TTA 4%) were prepared into films by HME using a Killion extruder (Model KLB-100). The bioadhesive properties of the HPC films, with and without TTA, were investigated ex vivo on the human nails. The parameters measured were work of adhesion and peak adhesion force (PAF). A statistically significant increase in both the area under the curve (AUC) and PAF was seen for the HME films containing TTA than those without TTA. Moisture content of hot-melt extruded HPC films was determined using thermogravimetric analysis (TGA). TGA data collected at the two-week interval (25°C/60% RH), measured higher moisture content for the TTA-containing films than those without TTA. Tensile strength and percent elongation were determined utilizing a TA.XT2i Texture Analyzer® equipped with a 50-kg load cell, TA-96 grips, and Texture Expert™ software. TTA functioned as an effective plasticizer, increasing percent elongation and decreasing tensile strength of the HPC films. TTA could potentially be a candidate for transnail applications in film devices prepared by hot-melt extrusion technology.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0363-9045
1520-5762
DOI:10.1080/03639040600683410