Combination Antitumor Effect of Sorafenib via Calcium-Dependent Deactivation of Focal Adhesion Kinase Targeting Colorectal Cancer Cells

Sorafenib has been recently used for the treatment of patients with advanced colorectal cancer (CRC) and is recognized for its therapeutic value. However, the continuous use of sorafenib may cause resistance in the treatment of cancer patients. In this study, we investigated whether sorafenib exerts...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Vol. 25; no. 22; p. 5299
Main Authors: Jeong, Keun-Yeong, Park, Minhee, Sim, Jae-Jun, Kim, Hwan Mook
Format: Journal Article
Language:English
Published: Switzerland MDPI 13-11-2020
MDPI AG
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sorafenib has been recently used for the treatment of patients with advanced colorectal cancer (CRC) and is recognized for its therapeutic value. However, the continuous use of sorafenib may cause resistance in the treatment of cancer patients. In this study, we investigated whether sorafenib exerts an enhanced anticancer effect on CRC cells via the calcium-mediated deactivation of the focal adhesion kinase (FAK) signaling pathways. The appropriate dose of sorafenib and lactate calcium salt (CaLa) for a combination treatment were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Then, cell cycle analysis was performed following treatment with 2.5 μM sorafenib and/or 2.5 mM CaLa. CRC cells were found to be in the G1 phase by sorafenib treatment, and they accumulated in the sub-G1 phase with CaLa treatment. Western blots and enzyme-linked immunosorbent assays were performed to analyze the elements of the recombinant activated factor (RAF) and focal adhesion kinase (FAK) signaling cascades. Sorafenib-inhibited RAF-dependent signaling in CRC cells, however, either did not affect the expression of Akt or increased it. As the upstream signaling of FAK was suppressed by CaLa, we observed that the expression of the sub-signaling phospho (p) AKT and p-mammalian target of rapamycin was also suppressed. Treatment with a combination of sorafenib and CaLa enhanced the antitumor activity of CRC cells. The % viability of CRC cells was significantly decreased compared to the single treatment with sorafenib or CaLa, and the accumulation of Sub G1 of CRC cells was clearly confirmed. The migration ability of CRC cells was significantly reduced. The findings of this study indicate that sorafenib will show further improved antitumor efficacy against CRC due to overcoming resistance through the use of CaLa.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules25225299