Numerical Uncoupling of Domains in Dam-Reservoir Problem

Flexibility of dam structure affects the hydrodynamic pressure acting on the dam. Several approaches have been proposed to consider this effect. Most of these approaches are involved with an iterative scheme. Of course solving the total numerical model including the dam and the reservoir is the most...

Full description

Saved in:
Bibliographic Details
Published in:Shock and vibration Vol. 2018; no. 2018; pp. 1 - 11
Main Authors: Golchin, Saba, Vahdani, Shahram, Attarnejad, Reza
Format: Journal Article
Language:English
Published: Cairo, Egypt Hindawi Publishing Corporation 01-01-2018
Hindawi
John Wiley & Sons, Inc
Hindawi Limited
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Flexibility of dam structure affects the hydrodynamic pressure acting on the dam. Several approaches have been proposed to consider this effect. Most of these approaches are involved with an iterative scheme. Of course solving the total numerical model including the dam and the reservoir is the most accurate method, but it has certain deficiencies. Using the frontal solution method of total model, dam structure, and fluid domain and keeping the interface degrees of freedom in the front is proposed in the current study. Having the solution of the interface degrees of freedom, the structure and fluid may be analyzed separately. The main advantage of the method lies in the fact that the accuracy of the results is the same as analysis of the total model, no iteration is necessary, combination of Lagrangian and Eulerian formulations for solid and fluid may be used, and the unknown variables are of the same order. Performing the analysis in time domain extends the method to nonlinear analysis if required.
ISSN:1070-9622
1875-9203
DOI:10.1155/2018/4369240