Prolonged mechanical ventilation with air induces apoptosis and causes failure of alveolar septation and angiogenesis in lungs of newborn mice

Defective lung septation and angiogenesis, quintessential features of neonatal chronic lung disease (CLD), typically result from lengthy exposure of developing lungs to mechanical ventilation (MV) and hyperoxia. Previous studies showed fewer alveoli and microvessels, with reduced VEGF and increased...

Full description

Saved in:
Bibliographic Details
Published in:American journal of physiology. Lung cellular and molecular physiology Vol. 298; no. 1; p. L23
Main Authors: Mokres, Lucia M, Parai, Kakoli, Hilgendorff, Anne, Ertsey, Robert, Alvira, Cristina M, Rabinovitch, Marlene, Bland, Richard D
Format: Journal Article
Language:English
Published: United States 01-01-2010
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Defective lung septation and angiogenesis, quintessential features of neonatal chronic lung disease (CLD), typically result from lengthy exposure of developing lungs to mechanical ventilation (MV) and hyperoxia. Previous studies showed fewer alveoli and microvessels, with reduced VEGF and increased transforming growth factor-beta (TGFbeta) signaling, and excess, scattered elastin in lungs of premature infants and lambs with CLD vs. normal controls. MV of newborn mice with 40% O(2) for 24 h yielded similar lung structural abnormalities linked to impaired VEGF signaling, dysregulated elastin production, and increased apoptosis. These studies could not determine the relative importance of cyclic stretch vs. hyperoxia in causing these lung growth abnormalities. We therefore studied the impact of MV for 24 h with air on alveolar septation (quantitative lung histology), angiogenesis [CD31 quantitative-immunohistochemistry (IHC), immunoblots], apoptosis [TdT-mediated dUTP nick end labeling (TUNEL), active caspase-3 assays], VEGF signaling [VEGF-A, VEGF receptor 1 (VEGF-R1), VEGF-R2 immunoblots], TGFbeta activation [phosphorylated Smad2 (pSmad2) quantitative-IHC], and elastin production (tropoelastin immunoblots, quantitative image analysis of Hart's stained sections) in lungs of 6-day-old mice. Compared with unventilated controls, MV caused a 3-fold increase in alveolar area, approximately 50% reduction in alveolar number and endothelial surface area, >5-fold increase in apoptosis, >50% decrease in lung VEGF-R2 protein, 4-fold increase of pSmad2 protein, and >50% increase in lung elastin, which was distributed throughout alveolar walls rather than at septal tips. This study is the first to show that prolonged MV of developing lungs, without associated hyperoxia, can inhibit alveolar septation and angiogenesis and increase apoptosis and lung elastin, findings that could reflect stretch-induced changes in VEGF and TGFbeta signaling, as reported in CLD.
AbstractList Defective lung septation and angiogenesis, quintessential features of neonatal chronic lung disease (CLD), typically result from lengthy exposure of developing lungs to mechanical ventilation (MV) and hyperoxia. Previous studies showed fewer alveoli and microvessels, with reduced VEGF and increased transforming growth factor-beta (TGFbeta) signaling, and excess, scattered elastin in lungs of premature infants and lambs with CLD vs. normal controls. MV of newborn mice with 40% O(2) for 24 h yielded similar lung structural abnormalities linked to impaired VEGF signaling, dysregulated elastin production, and increased apoptosis. These studies could not determine the relative importance of cyclic stretch vs. hyperoxia in causing these lung growth abnormalities. We therefore studied the impact of MV for 24 h with air on alveolar septation (quantitative lung histology), angiogenesis [CD31 quantitative-immunohistochemistry (IHC), immunoblots], apoptosis [TdT-mediated dUTP nick end labeling (TUNEL), active caspase-3 assays], VEGF signaling [VEGF-A, VEGF receptor 1 (VEGF-R1), VEGF-R2 immunoblots], TGFbeta activation [phosphorylated Smad2 (pSmad2) quantitative-IHC], and elastin production (tropoelastin immunoblots, quantitative image analysis of Hart's stained sections) in lungs of 6-day-old mice. Compared with unventilated controls, MV caused a 3-fold increase in alveolar area, approximately 50% reduction in alveolar number and endothelial surface area, >5-fold increase in apoptosis, >50% decrease in lung VEGF-R2 protein, 4-fold increase of pSmad2 protein, and >50% increase in lung elastin, which was distributed throughout alveolar walls rather than at septal tips. This study is the first to show that prolonged MV of developing lungs, without associated hyperoxia, can inhibit alveolar septation and angiogenesis and increase apoptosis and lung elastin, findings that could reflect stretch-induced changes in VEGF and TGFbeta signaling, as reported in CLD.
Author Alvira, Cristina M
Ertsey, Robert
Mokres, Lucia M
Parai, Kakoli
Hilgendorff, Anne
Rabinovitch, Marlene
Bland, Richard D
Author_xml – sequence: 1
  givenname: Lucia M
  surname: Mokres
  fullname: Mokres, Lucia M
  organization: Stanford Univ. School of Medicine, CCSR Bldg., Rm. 1225, 269 Campus Dr., Stanford, CA 94305-5162, USA
– sequence: 2
  givenname: Kakoli
  surname: Parai
  fullname: Parai, Kakoli
– sequence: 3
  givenname: Anne
  surname: Hilgendorff
  fullname: Hilgendorff, Anne
– sequence: 4
  givenname: Robert
  surname: Ertsey
  fullname: Ertsey, Robert
– sequence: 5
  givenname: Cristina M
  surname: Alvira
  fullname: Alvira, Cristina M
– sequence: 6
  givenname: Marlene
  surname: Rabinovitch
  fullname: Rabinovitch, Marlene
– sequence: 7
  givenname: Richard D
  surname: Bland
  fullname: Bland, Richard D
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19854954$$D View this record in MEDLINE/PubMed
BookMark eNo1kE1OwzAQhS0Eoj9wARbIF0gZu3bSLFHFn1QJFrCuJs4kdeXYUZy04hKcmUaF1RvN--Zp9Gbs0gdPjN0JWAih5QPuWzf4egEgtVhIgPyCTU-GTIQGNWGzGPcAoAHSazYR-UqrXKsp-_noggu-ppI3ZHborUHHD-R767C3wfOj7XccbcetLwdDkWMb2j5Ee5p8yQ0O8bSs0LqhIx4qju5AwWHHI7X9OWME0dc21ORpvLSej-_Gkfd0LELneWMN3bCrCl2k2z-ds6_np8_1a7J5f3lbP24So1LdJzIVGaYaC6oUZlgaWKp0KTUJ0lRIMHlOEooMCXSlVpUWS2FKNKbIM1UpIefs_pzbDkVD5bbtbIPd9_a_GPkL0oFrFQ
CitedBy_id crossref_primary_10_23736_S2724_5276_16_04458_3
crossref_primary_10_1089_jir_2018_0080
crossref_primary_10_1038_jp_2014_16
crossref_primary_10_1152_ajplung_00176_2021
crossref_primary_10_1016_j_semperi_2023_151718
crossref_primary_10_1016_j_resp_2019_06_006
crossref_primary_10_1038_pr_2015_155
crossref_primary_10_1186_s12931_014_0162_6
crossref_primary_10_3389_fmed_2015_00002
crossref_primary_10_1152_ajplung_00159_2014
crossref_primary_10_1186_1465_9921_13_93
crossref_primary_10_1111_1440_1681_12068
crossref_primary_10_1016_j_bbrc_2017_12_055
crossref_primary_10_3389_fmed_2015_00090
crossref_primary_10_1053_j_semperi_2018_09_009
crossref_primary_10_1002_ppul_23148
crossref_primary_10_1007_s00441_014_2035_1
crossref_primary_10_1053_j_semperi_2018_05_006
crossref_primary_10_1165_rcmb_2012_0172OC
crossref_primary_10_4236_health_2024_165033
crossref_primary_10_1002_ppul_22613
crossref_primary_10_1016_j_niox_2024_04_005
crossref_primary_10_1055_s_0041_1722953
crossref_primary_10_1016_j_resp_2013_05_032
crossref_primary_10_1371_journal_pone_0016910
crossref_primary_10_1111_ped_14612
crossref_primary_10_1152_ajplung_00073_2012
crossref_primary_10_1002_dvdy_22379
crossref_primary_10_1007_s00408_017_0007_4
crossref_primary_10_1055_a_2001_9139
crossref_primary_10_3389_fphys_2020_614283
crossref_primary_10_1371_journal_pone_0051945
crossref_primary_10_3389_fphys_2020_00266
crossref_primary_10_1164_rccm_201012_2010OC
crossref_primary_10_1186_s40348_017_0076_8
crossref_primary_10_1186_s40348_016_0051_9
crossref_primary_10_1152_ajplung_00278_2014
crossref_primary_10_1152_ajplung_00294_2011
crossref_primary_10_1152_ajplung_00158_2021
crossref_primary_10_1152_ajplung_00370_2011
crossref_primary_10_1002_ppul_21541
crossref_primary_10_1002_bdra_22869
crossref_primary_10_1016_j_ejphar_2019_172588
crossref_primary_10_1152_ajplung_00306_2015
crossref_primary_10_1152_ajplung_00380_2009
crossref_primary_10_1038_s41390_021_01912_w
crossref_primary_10_1053_j_sempedsurg_2015_01_011
crossref_primary_10_1152_ajplung_00048_2013
crossref_primary_10_1007_s12079_013_0190_x
crossref_primary_10_1159_000443823
crossref_primary_10_1097_MOP_0b013e3283423e6b
crossref_primary_10_3389_fped_2019_00176
crossref_primary_10_1063_1_5111549
crossref_primary_10_3389_fmed_2015_00049
crossref_primary_10_1165_rcmb_2017_0332OC
crossref_primary_10_1002_ppul_21433
crossref_primary_10_1186_s40348_021_00129_5
crossref_primary_10_1038_s41420_024_02073_5
crossref_primary_10_1164_rccm_201803_0583OC
crossref_primary_10_1152_ajplung_00405_2011
crossref_primary_10_1186_s40348_022_00148_w
crossref_primary_10_1152_ajplung_00319_2018
crossref_primary_10_1542_neo_20_4_e189
crossref_primary_10_1186_s40348_016_0052_8
crossref_primary_10_1165_rcmb_2010_0058OC
crossref_primary_10_1002_jcp_26633
crossref_primary_10_1007_s00431_022_04549_x
crossref_primary_10_12677_ACM_2022_121020
crossref_primary_10_1016_j_biocel_2017_08_004
crossref_primary_10_1053_j_semperi_2013_01_006
crossref_primary_10_1159_000497422
crossref_primary_10_1165_rcmb_2013_0014TR
crossref_primary_10_3109_01902148_2012_663454
crossref_primary_10_1152_japplphysiol_01291_2013
crossref_primary_10_4274_atfm_galenos_2021_33254
crossref_primary_10_1111_chd_12691
crossref_primary_10_1152_ajplung_00367_2022
crossref_primary_10_1152_ajplung_00079_2017
crossref_primary_10_3109_14767058_2013_821976
crossref_primary_10_4103_2249_4847_101683
crossref_primary_10_1111_all_13372
crossref_primary_10_3390_ijms231710113
crossref_primary_10_1159_000441051
crossref_primary_10_3390_jcm11030557
crossref_primary_10_1016_j_jpeds_2009_12_015
crossref_primary_10_1186_s40348_023_00158_2
crossref_primary_10_1113_JP275859
crossref_primary_10_1164_rccm_201810_1857ED
crossref_primary_10_1002_bdra_23220
crossref_primary_10_3109_10799893_2013_862270
crossref_primary_10_1016_j_jpeds_2017_08_041
crossref_primary_10_1016_j_pupt_2013_10_002
crossref_primary_10_3390_children7080100
crossref_primary_10_1038_pr_2015_224
crossref_primary_10_1152_ajplung_00106_2021
crossref_primary_10_1002_bdra_23235
crossref_primary_10_1002_bdra_23237
crossref_primary_10_1152_ajplung_00031_2017
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1152/ajplung.00251.2009
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1522-1504
ExternalDocumentID 19854954
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL086631
– fundername: NHLBI NIH HHS
  grantid: HL-086216
– fundername: NHLBI NIH HHS
  grantid: HL-086631
GroupedDBID ---
23M
2WC
39C
4.4
53G
5GY
5VS
8M5
ACPRK
ADBBV
AENEX
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BKOMP
BTFSW
C1A
CGR
CUY
CVF
DIK
E3Z
EBS
ECM
EIF
EJD
EMOBN
F5P
H13
ITBOX
KQ8
NPM
OK1
P2P
PQQKQ
RAP
RHF
RHI
RPL
RPRKH
TR2
W8F
WH7
WOQ
XSW
YSK
ID FETCH-LOGICAL-c465t-2617a65abef4a7adc0346325e1e5eb20c99e20b7ae05f48f5131cdaccb974f412
IngestDate Sat Sep 28 07:49:15 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c465t-2617a65abef4a7adc0346325e1e5eb20c99e20b7ae05f48f5131cdaccb974f412
OpenAccessLink https://www.reanimatology.com/rmt/article/download/1510/961
PMID 19854954
ParticipantIDs pubmed_primary_19854954
PublicationCentury 2000
PublicationDate 2010-01-01
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – month: 01
  year: 2010
  text: 2010-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle American journal of physiology. Lung cellular and molecular physiology
PublicationTitleAlternate Am J Physiol Lung Cell Mol Physiol
PublicationYear 2010
References 17583691 - Dev Biol. 2007 Aug 1;308(1):44-53
14713342 - Antioxid Redox Signal. 2004 Feb;6(1):109-16
15722510 - Am J Respir Cell Mol Biol. 2005 May;32(5):420-7
16230500 - Circulation. 2005 Oct 18;112(16):2477-86
3961298 - Respir Physiol. 1986 Mar;63(3):267-74
11880308 - Am J Physiol Lung Cell Mol Physiol. 2002 Apr;282(4):L811-23
12618425 - Am J Physiol Lung Cell Mol Physiol. 2003 Apr;284(4):L643-9
8626709 - J Biol Chem. 1996 May 10;271(19):11500-5
10781428 - Am J Physiol Lung Cell Mol Physiol. 2000 May;278(5):L974-80
9688942 - Am J Physiol. 1998 Jul;275(1 Pt 1):L110-7
17704187 - Am J Physiol Lung Cell Mol Physiol. 2007 Nov;293(5):L1099-110
5530651 - Mikroskopie. 1970 Jun;26(1):57-60
17630321 - Am J Respir Cell Mol Biol. 2007 Dec;37(6):699-705
18323533 - Am J Respir Cell Mol Biol. 2008 Aug;39(2):163-70
11098056 - J Biol Chem. 2001 Feb 16;276(7):5395-402
10828572 - Biol Neonate. 2000 May;77(4):217-23
1514649 - Am J Physiol. 1992 Aug;263(2 Pt 1):L257-63
10209007 - Circulation. 1999 Apr 20;99(15):2019-26
10400905 - Circ Res. 1999 Jul 9;85(1):5-11
7699543 - J Pediatr. 1995 Apr;126(4):605-10
19270180 - Am J Physiol Lung Cell Mol Physiol. 2009 May;296(5):L825-38
8618178 - J Pediatr. 1996 Apr;128(4):464-9
18552709 - Pediatr Res. 2008 Oct;64(4):387-92
12169575 - Am J Physiol Lung Cell Mol Physiol. 2002 Sep;283(3):L555-62
9670828 - Hum Pathol. 1998 Jul;29(7):710-7
10508826 - Am J Respir Crit Care Med. 1999 Oct;160(4):1333-46
914698 - J Anat. 1977 Sep;124(Pt 1):131-51
3994150 - Am Rev Respir Dis. 1985 Apr;131(4):568-72
17293375 - Am J Physiol Lung Cell Mol Physiol. 2007 Jun;292(6):L1370-84
17400601 - Am J Physiol Lung Cell Mol Physiol. 2007 Jul;293(1):L151-61
10775259 - EMBO J. 2000 Apr 17;19(8):1745-54
17255561 - Am J Respir Crit Care Med. 2007 Apr 15;175(8):805-15
998734 - Am J Pathol. 1976 Dec;85(3):623-50
17934062 - Am J Physiol Lung Cell Mol Physiol. 2008 Jan;294(1):L3-14
11734454 - Am J Respir Crit Care Med. 2001 Nov 15;164(10 Pt 1):1971-80
17967972 - Circulation. 2007 Nov 13;116(20):2288-97
11099603 - Pediatrics. 2000 Dec;106(6):1452-9
10021335 - Development. 1999 Mar;126(6):1149-59
15908474 - Am J Physiol Lung Cell Mol Physiol. 2005 Oct;289(4):L529-35
17088559 - Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17260-5
18420967 - Am J Respir Crit Care Med. 2008 Jul 15;178(2):180-7
10956636 - Am J Physiol Lung Cell Mol Physiol. 2000 Sep;279(3):L600-7
18065656 - Am J Physiol Lung Cell Mol Physiol. 2008 Feb;294(2):L225-32
11985731 - Respirology. 2002 Jun;7(2):103-9
9261849 - Pediatr Pulmonol. 1997 Jul;24(1):22-8
1797116 - Biol Neonate. 1991;60(3-4):152-62
10879802 - Pediatr Res. 2000 Jul;48(1):64-74
11420427 - Pediatr Res. 2001 Jul;50(1):110-4
1990959 - Am Rev Respir Dis. 1991 Feb;143(2):391-400
6855196 - Lab Invest. 1983 Jun;48(6):735-48
11509323 - Am J Respir Cell Mol Biol. 2001 Aug;25(2):150-5
11106053 - Acta Paediatr. 2000 Nov;89(11):1375-80
14633629 - Am J Pathol. 2003 Dec;163(6):2575-84
3608888 - Early Hum Dev. 1987 May;15(3):147-64
9124602 - Am J Physiol. 1997 Mar;272(3 Pt 1):L452-60
15333328 - Am J Respir Cell Mol Biol. 2004 Dec;31(6):650-6
2682493 - Pathology. 1989 Apr;21(2):79-83
18287961 - Pediatr Res. 2008 Mar;63(3):245-50
10051278 - Am J Respir Crit Care Med. 1999 Mar;159(3):945-58
17272782 - Am J Respir Crit Care Med. 2007 May 15;175(10):978-85
12598898 - Nat Genet. 2003 Mar;33(3):407-11
5334613 - N Engl J Med. 1967 Feb 16;276(7):357-68
14764076 - Eur J Clin Invest. 2004 Feb;34(2):129-36
12959945 - Am J Respir Cell Mol Biol. 2004 Mar;30(3):396-402
11792802 - J Cell Sci. 2001 Dec;114(Pt 24):4359-69
14607780 - Am J Physiol Lung Cell Mol Physiol. 2004 Feb;286(2):L411-9
13726619 - Arch Dis Child. 1960 Dec;35:544-7
19242469 - Nature. 2009 Feb 26;457(7233):1103-8
16403941 - Am J Physiol Lung Cell Mol Physiol. 2006 Feb;290(2):L209-21
11839538 - Am J Physiol Lung Cell Mol Physiol. 2002 Mar;282(3):L448-56
11158993 - Am J Physiol Heart Circ Physiol. 2001 Feb;280(2):H909-17
17071723 - Am J Physiol Lung Cell Mol Physiol. 2007 Feb;292(2):L537-49
References_xml
SSID ssj0005006
Score 2.3770056
Snippet Defective lung septation and angiogenesis, quintessential features of neonatal chronic lung disease (CLD), typically result from lengthy exposure of developing...
SourceID pubmed
SourceType Index Database
StartPage L23
SubjectTerms Air
Animals
Animals, Newborn
Apoptosis
Cell Count
Cell Proliferation
Elastin - metabolism
Endothelial Cells - metabolism
Endothelial Cells - pathology
Immunoblotting
Lung - blood supply
Lung - metabolism
Lung - pathology
Mice
Models, Biological
Neovascularization, Pathologic - pathology
Phosphoproteins - metabolism
Pulmonary Alveoli - metabolism
Pulmonary Alveoli - pathology
Respiration, Artificial
Smad2 Protein - metabolism
Surface Properties
Time Factors
Transforming Growth Factor beta - metabolism
Vascular Endothelial Growth Factor A - metabolism
Vascular Endothelial Growth Factor Receptor-1 - metabolism
Vascular Endothelial Growth Factor Receptor-2 - metabolism
Title Prolonged mechanical ventilation with air induces apoptosis and causes failure of alveolar septation and angiogenesis in lungs of newborn mice
URI https://www.ncbi.nlm.nih.gov/pubmed/19854954
Volume 298
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZaEIILgl0ey0s-IC5VljzsNjkupWgPBVVikbitHNupwualtFnEn-A3M34l0VYgOKBKUWRbTpT5OpmZfDOD0GsBb2HflwLcEko8QoTvxQz-7jRkaSwTyQJdt-D88-LT1_j9iqwmE9cTdBj7r5KGMZC1ypz9B2n3m8IAnIPM4QhSh-NfyX3TgjqrtmBHllJl9WohaFKjYb3ZbLZc0dBFp_hYrKmbfa0Kk-gcN9btYDBjuSKsa5pAcS2VAzzbycZyE02F121eb5WqzDWntuhUA1DFC5HfAVjVrLS0ur7Irfs4NKpWoQMrOrJ_Olt3Kv9XFoVmxqpLlK5372hdj5D6qjUqbt0Bvoao7oa1tsU2u6qLfIitF3Czom5tGcpq4BOs2r37fKZ55uNIiCbUuUiItNobPGuwcMlYvYdJfIBjo6zXJtP58CVCVVFa9q1RD-5Ue2E6S3S8GITelBpCQRKDj20qYf959kZhbzc1RVMw05Qlv_w4sJNAG7ocLxq-PbwZXe3WbHDDI9KW0cUDdN-6NPjMYPEhmsjqCB2fVWxflz_wG7zpZXeE7rxzZ3eXrtXgMfrZgxYPoMUj0GIFWgygxRa0uActBqBgA1psQYvrDDvQ4h60euEYtLAX1qBV6y1osQLtI_Tlw-piee7ZRiEeJ3O691RXATanLJUZYQsmuB-ReRRSGUgq09DnSSJDP10w6dOMxBkNooALxnkK3nRGgvAxulXVlXyKMPcpj-cSnBqWkZT7MRciEnTBI0bhF52gJ-ZZXzamGsylk8Kz3848R_cGuL5AtzNQNfIlmu5E90pL_Rep3ar_
link.rule.ids 782
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prolonged+mechanical+ventilation+with+air+induces+apoptosis+and+causes+failure+of+alveolar+septation+and+angiogenesis+in+lungs+of+newborn+mice&rft.jtitle=American+journal+of+physiology.+Lung+cellular+and+molecular+physiology&rft.au=Mokres%2C+Lucia+M&rft.au=Parai%2C+Kakoli&rft.au=Hilgendorff%2C+Anne&rft.au=Ertsey%2C+Robert&rft.date=2010-01-01&rft.eissn=1522-1504&rft.volume=298&rft.issue=1&rft.spage=L23&rft_id=info:doi/10.1152%2Fajplung.00251.2009&rft_id=info%3Apmid%2F19854954&rft_id=info%3Apmid%2F19854954&rft.externalDocID=19854954