Prolonged mechanical ventilation with air induces apoptosis and causes failure of alveolar septation and angiogenesis in lungs of newborn mice
Defective lung septation and angiogenesis, quintessential features of neonatal chronic lung disease (CLD), typically result from lengthy exposure of developing lungs to mechanical ventilation (MV) and hyperoxia. Previous studies showed fewer alveoli and microvessels, with reduced VEGF and increased...
Saved in:
Published in: | American journal of physiology. Lung cellular and molecular physiology Vol. 298; no. 1; p. L23 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
01-01-2010
|
Subjects: | |
Online Access: | Get more information |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Defective lung septation and angiogenesis, quintessential features of neonatal chronic lung disease (CLD), typically result from lengthy exposure of developing lungs to mechanical ventilation (MV) and hyperoxia. Previous studies showed fewer alveoli and microvessels, with reduced VEGF and increased transforming growth factor-beta (TGFbeta) signaling, and excess, scattered elastin in lungs of premature infants and lambs with CLD vs. normal controls. MV of newborn mice with 40% O(2) for 24 h yielded similar lung structural abnormalities linked to impaired VEGF signaling, dysregulated elastin production, and increased apoptosis. These studies could not determine the relative importance of cyclic stretch vs. hyperoxia in causing these lung growth abnormalities. We therefore studied the impact of MV for 24 h with air on alveolar septation (quantitative lung histology), angiogenesis [CD31 quantitative-immunohistochemistry (IHC), immunoblots], apoptosis [TdT-mediated dUTP nick end labeling (TUNEL), active caspase-3 assays], VEGF signaling [VEGF-A, VEGF receptor 1 (VEGF-R1), VEGF-R2 immunoblots], TGFbeta activation [phosphorylated Smad2 (pSmad2) quantitative-IHC], and elastin production (tropoelastin immunoblots, quantitative image analysis of Hart's stained sections) in lungs of 6-day-old mice. Compared with unventilated controls, MV caused a 3-fold increase in alveolar area, approximately 50% reduction in alveolar number and endothelial surface area, >5-fold increase in apoptosis, >50% decrease in lung VEGF-R2 protein, 4-fold increase of pSmad2 protein, and >50% increase in lung elastin, which was distributed throughout alveolar walls rather than at septal tips. This study is the first to show that prolonged MV of developing lungs, without associated hyperoxia, can inhibit alveolar septation and angiogenesis and increase apoptosis and lung elastin, findings that could reflect stretch-induced changes in VEGF and TGFbeta signaling, as reported in CLD. |
---|---|
AbstractList | Defective lung septation and angiogenesis, quintessential features of neonatal chronic lung disease (CLD), typically result from lengthy exposure of developing lungs to mechanical ventilation (MV) and hyperoxia. Previous studies showed fewer alveoli and microvessels, with reduced VEGF and increased transforming growth factor-beta (TGFbeta) signaling, and excess, scattered elastin in lungs of premature infants and lambs with CLD vs. normal controls. MV of newborn mice with 40% O(2) for 24 h yielded similar lung structural abnormalities linked to impaired VEGF signaling, dysregulated elastin production, and increased apoptosis. These studies could not determine the relative importance of cyclic stretch vs. hyperoxia in causing these lung growth abnormalities. We therefore studied the impact of MV for 24 h with air on alveolar septation (quantitative lung histology), angiogenesis [CD31 quantitative-immunohistochemistry (IHC), immunoblots], apoptosis [TdT-mediated dUTP nick end labeling (TUNEL), active caspase-3 assays], VEGF signaling [VEGF-A, VEGF receptor 1 (VEGF-R1), VEGF-R2 immunoblots], TGFbeta activation [phosphorylated Smad2 (pSmad2) quantitative-IHC], and elastin production (tropoelastin immunoblots, quantitative image analysis of Hart's stained sections) in lungs of 6-day-old mice. Compared with unventilated controls, MV caused a 3-fold increase in alveolar area, approximately 50% reduction in alveolar number and endothelial surface area, >5-fold increase in apoptosis, >50% decrease in lung VEGF-R2 protein, 4-fold increase of pSmad2 protein, and >50% increase in lung elastin, which was distributed throughout alveolar walls rather than at septal tips. This study is the first to show that prolonged MV of developing lungs, without associated hyperoxia, can inhibit alveolar septation and angiogenesis and increase apoptosis and lung elastin, findings that could reflect stretch-induced changes in VEGF and TGFbeta signaling, as reported in CLD. |
Author | Alvira, Cristina M Ertsey, Robert Mokres, Lucia M Parai, Kakoli Hilgendorff, Anne Rabinovitch, Marlene Bland, Richard D |
Author_xml | – sequence: 1 givenname: Lucia M surname: Mokres fullname: Mokres, Lucia M organization: Stanford Univ. School of Medicine, CCSR Bldg., Rm. 1225, 269 Campus Dr., Stanford, CA 94305-5162, USA – sequence: 2 givenname: Kakoli surname: Parai fullname: Parai, Kakoli – sequence: 3 givenname: Anne surname: Hilgendorff fullname: Hilgendorff, Anne – sequence: 4 givenname: Robert surname: Ertsey fullname: Ertsey, Robert – sequence: 5 givenname: Cristina M surname: Alvira fullname: Alvira, Cristina M – sequence: 6 givenname: Marlene surname: Rabinovitch fullname: Rabinovitch, Marlene – sequence: 7 givenname: Richard D surname: Bland fullname: Bland, Richard D |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19854954$$D View this record in MEDLINE/PubMed |
BookMark | eNo1kE1OwzAQhS0Eoj9wARbIF0gZu3bSLFHFn1QJFrCuJs4kdeXYUZy04hKcmUaF1RvN--Zp9Gbs0gdPjN0JWAih5QPuWzf4egEgtVhIgPyCTU-GTIQGNWGzGPcAoAHSazYR-UqrXKsp-_noggu-ppI3ZHborUHHD-R767C3wfOj7XccbcetLwdDkWMb2j5Ee5p8yQ0O8bSs0LqhIx4qju5AwWHHI7X9OWME0dc21ORpvLSej-_Gkfd0LELneWMN3bCrCl2k2z-ds6_np8_1a7J5f3lbP24So1LdJzIVGaYaC6oUZlgaWKp0KTUJ0lRIMHlOEooMCXSlVpUWS2FKNKbIM1UpIefs_pzbDkVD5bbtbIPd9_a_GPkL0oFrFQ |
CitedBy_id | crossref_primary_10_23736_S2724_5276_16_04458_3 crossref_primary_10_1089_jir_2018_0080 crossref_primary_10_1038_jp_2014_16 crossref_primary_10_1152_ajplung_00176_2021 crossref_primary_10_1016_j_semperi_2023_151718 crossref_primary_10_1016_j_resp_2019_06_006 crossref_primary_10_1038_pr_2015_155 crossref_primary_10_1186_s12931_014_0162_6 crossref_primary_10_3389_fmed_2015_00002 crossref_primary_10_1152_ajplung_00159_2014 crossref_primary_10_1186_1465_9921_13_93 crossref_primary_10_1111_1440_1681_12068 crossref_primary_10_1016_j_bbrc_2017_12_055 crossref_primary_10_3389_fmed_2015_00090 crossref_primary_10_1053_j_semperi_2018_09_009 crossref_primary_10_1002_ppul_23148 crossref_primary_10_1007_s00441_014_2035_1 crossref_primary_10_1053_j_semperi_2018_05_006 crossref_primary_10_1165_rcmb_2012_0172OC crossref_primary_10_4236_health_2024_165033 crossref_primary_10_1002_ppul_22613 crossref_primary_10_1016_j_niox_2024_04_005 crossref_primary_10_1055_s_0041_1722953 crossref_primary_10_1016_j_resp_2013_05_032 crossref_primary_10_1371_journal_pone_0016910 crossref_primary_10_1111_ped_14612 crossref_primary_10_1152_ajplung_00073_2012 crossref_primary_10_1002_dvdy_22379 crossref_primary_10_1007_s00408_017_0007_4 crossref_primary_10_1055_a_2001_9139 crossref_primary_10_3389_fphys_2020_614283 crossref_primary_10_1371_journal_pone_0051945 crossref_primary_10_3389_fphys_2020_00266 crossref_primary_10_1164_rccm_201012_2010OC crossref_primary_10_1186_s40348_017_0076_8 crossref_primary_10_1186_s40348_016_0051_9 crossref_primary_10_1152_ajplung_00278_2014 crossref_primary_10_1152_ajplung_00294_2011 crossref_primary_10_1152_ajplung_00158_2021 crossref_primary_10_1152_ajplung_00370_2011 crossref_primary_10_1002_ppul_21541 crossref_primary_10_1002_bdra_22869 crossref_primary_10_1016_j_ejphar_2019_172588 crossref_primary_10_1152_ajplung_00306_2015 crossref_primary_10_1152_ajplung_00380_2009 crossref_primary_10_1038_s41390_021_01912_w crossref_primary_10_1053_j_sempedsurg_2015_01_011 crossref_primary_10_1152_ajplung_00048_2013 crossref_primary_10_1007_s12079_013_0190_x crossref_primary_10_1159_000443823 crossref_primary_10_1097_MOP_0b013e3283423e6b crossref_primary_10_3389_fped_2019_00176 crossref_primary_10_1063_1_5111549 crossref_primary_10_3389_fmed_2015_00049 crossref_primary_10_1165_rcmb_2017_0332OC crossref_primary_10_1002_ppul_21433 crossref_primary_10_1186_s40348_021_00129_5 crossref_primary_10_1038_s41420_024_02073_5 crossref_primary_10_1164_rccm_201803_0583OC crossref_primary_10_1152_ajplung_00405_2011 crossref_primary_10_1186_s40348_022_00148_w crossref_primary_10_1152_ajplung_00319_2018 crossref_primary_10_1542_neo_20_4_e189 crossref_primary_10_1186_s40348_016_0052_8 crossref_primary_10_1165_rcmb_2010_0058OC crossref_primary_10_1002_jcp_26633 crossref_primary_10_1007_s00431_022_04549_x crossref_primary_10_12677_ACM_2022_121020 crossref_primary_10_1016_j_biocel_2017_08_004 crossref_primary_10_1053_j_semperi_2013_01_006 crossref_primary_10_1159_000497422 crossref_primary_10_1165_rcmb_2013_0014TR crossref_primary_10_3109_01902148_2012_663454 crossref_primary_10_1152_japplphysiol_01291_2013 crossref_primary_10_4274_atfm_galenos_2021_33254 crossref_primary_10_1111_chd_12691 crossref_primary_10_1152_ajplung_00367_2022 crossref_primary_10_1152_ajplung_00079_2017 crossref_primary_10_3109_14767058_2013_821976 crossref_primary_10_4103_2249_4847_101683 crossref_primary_10_1111_all_13372 crossref_primary_10_3390_ijms231710113 crossref_primary_10_1159_000441051 crossref_primary_10_3390_jcm11030557 crossref_primary_10_1016_j_jpeds_2009_12_015 crossref_primary_10_1186_s40348_023_00158_2 crossref_primary_10_1113_JP275859 crossref_primary_10_1164_rccm_201810_1857ED crossref_primary_10_1002_bdra_23220 crossref_primary_10_3109_10799893_2013_862270 crossref_primary_10_1016_j_jpeds_2017_08_041 crossref_primary_10_1016_j_pupt_2013_10_002 crossref_primary_10_3390_children7080100 crossref_primary_10_1038_pr_2015_224 crossref_primary_10_1152_ajplung_00106_2021 crossref_primary_10_1002_bdra_23235 crossref_primary_10_1002_bdra_23237 crossref_primary_10_1152_ajplung_00031_2017 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1152/ajplung.00251.2009 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1522-1504 |
ExternalDocumentID | 19854954 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL086631 – fundername: NHLBI NIH HHS grantid: HL-086216 – fundername: NHLBI NIH HHS grantid: HL-086631 |
GroupedDBID | --- 23M 2WC 39C 4.4 53G 5GY 5VS 8M5 ACPRK ADBBV AENEX AFFNX AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BKOMP BTFSW C1A CGR CUY CVF DIK E3Z EBS ECM EIF EJD EMOBN F5P H13 ITBOX KQ8 NPM OK1 P2P PQQKQ RAP RHF RHI RPL RPRKH TR2 W8F WH7 WOQ XSW YSK |
ID | FETCH-LOGICAL-c465t-2617a65abef4a7adc0346325e1e5eb20c99e20b7ae05f48f5131cdaccb974f412 |
IngestDate | Sat Sep 28 07:49:15 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c465t-2617a65abef4a7adc0346325e1e5eb20c99e20b7ae05f48f5131cdaccb974f412 |
OpenAccessLink | https://www.reanimatology.com/rmt/article/download/1510/961 |
PMID | 19854954 |
ParticipantIDs | pubmed_primary_19854954 |
PublicationCentury | 2000 |
PublicationDate | 2010-01-01 |
PublicationDateYYYYMMDD | 2010-01-01 |
PublicationDate_xml | – month: 01 year: 2010 text: 2010-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | American journal of physiology. Lung cellular and molecular physiology |
PublicationTitleAlternate | Am J Physiol Lung Cell Mol Physiol |
PublicationYear | 2010 |
References | 17583691 - Dev Biol. 2007 Aug 1;308(1):44-53 14713342 - Antioxid Redox Signal. 2004 Feb;6(1):109-16 15722510 - Am J Respir Cell Mol Biol. 2005 May;32(5):420-7 16230500 - Circulation. 2005 Oct 18;112(16):2477-86 3961298 - Respir Physiol. 1986 Mar;63(3):267-74 11880308 - Am J Physiol Lung Cell Mol Physiol. 2002 Apr;282(4):L811-23 12618425 - Am J Physiol Lung Cell Mol Physiol. 2003 Apr;284(4):L643-9 8626709 - J Biol Chem. 1996 May 10;271(19):11500-5 10781428 - Am J Physiol Lung Cell Mol Physiol. 2000 May;278(5):L974-80 9688942 - Am J Physiol. 1998 Jul;275(1 Pt 1):L110-7 17704187 - Am J Physiol Lung Cell Mol Physiol. 2007 Nov;293(5):L1099-110 5530651 - Mikroskopie. 1970 Jun;26(1):57-60 17630321 - Am J Respir Cell Mol Biol. 2007 Dec;37(6):699-705 18323533 - Am J Respir Cell Mol Biol. 2008 Aug;39(2):163-70 11098056 - J Biol Chem. 2001 Feb 16;276(7):5395-402 10828572 - Biol Neonate. 2000 May;77(4):217-23 1514649 - Am J Physiol. 1992 Aug;263(2 Pt 1):L257-63 10209007 - Circulation. 1999 Apr 20;99(15):2019-26 10400905 - Circ Res. 1999 Jul 9;85(1):5-11 7699543 - J Pediatr. 1995 Apr;126(4):605-10 19270180 - Am J Physiol Lung Cell Mol Physiol. 2009 May;296(5):L825-38 8618178 - J Pediatr. 1996 Apr;128(4):464-9 18552709 - Pediatr Res. 2008 Oct;64(4):387-92 12169575 - Am J Physiol Lung Cell Mol Physiol. 2002 Sep;283(3):L555-62 9670828 - Hum Pathol. 1998 Jul;29(7):710-7 10508826 - Am J Respir Crit Care Med. 1999 Oct;160(4):1333-46 914698 - J Anat. 1977 Sep;124(Pt 1):131-51 3994150 - Am Rev Respir Dis. 1985 Apr;131(4):568-72 17293375 - Am J Physiol Lung Cell Mol Physiol. 2007 Jun;292(6):L1370-84 17400601 - Am J Physiol Lung Cell Mol Physiol. 2007 Jul;293(1):L151-61 10775259 - EMBO J. 2000 Apr 17;19(8):1745-54 17255561 - Am J Respir Crit Care Med. 2007 Apr 15;175(8):805-15 998734 - Am J Pathol. 1976 Dec;85(3):623-50 17934062 - Am J Physiol Lung Cell Mol Physiol. 2008 Jan;294(1):L3-14 11734454 - Am J Respir Crit Care Med. 2001 Nov 15;164(10 Pt 1):1971-80 17967972 - Circulation. 2007 Nov 13;116(20):2288-97 11099603 - Pediatrics. 2000 Dec;106(6):1452-9 10021335 - Development. 1999 Mar;126(6):1149-59 15908474 - Am J Physiol Lung Cell Mol Physiol. 2005 Oct;289(4):L529-35 17088559 - Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17260-5 18420967 - Am J Respir Crit Care Med. 2008 Jul 15;178(2):180-7 10956636 - Am J Physiol Lung Cell Mol Physiol. 2000 Sep;279(3):L600-7 18065656 - Am J Physiol Lung Cell Mol Physiol. 2008 Feb;294(2):L225-32 11985731 - Respirology. 2002 Jun;7(2):103-9 9261849 - Pediatr Pulmonol. 1997 Jul;24(1):22-8 1797116 - Biol Neonate. 1991;60(3-4):152-62 10879802 - Pediatr Res. 2000 Jul;48(1):64-74 11420427 - Pediatr Res. 2001 Jul;50(1):110-4 1990959 - Am Rev Respir Dis. 1991 Feb;143(2):391-400 6855196 - Lab Invest. 1983 Jun;48(6):735-48 11509323 - Am J Respir Cell Mol Biol. 2001 Aug;25(2):150-5 11106053 - Acta Paediatr. 2000 Nov;89(11):1375-80 14633629 - Am J Pathol. 2003 Dec;163(6):2575-84 3608888 - Early Hum Dev. 1987 May;15(3):147-64 9124602 - Am J Physiol. 1997 Mar;272(3 Pt 1):L452-60 15333328 - Am J Respir Cell Mol Biol. 2004 Dec;31(6):650-6 2682493 - Pathology. 1989 Apr;21(2):79-83 18287961 - Pediatr Res. 2008 Mar;63(3):245-50 10051278 - Am J Respir Crit Care Med. 1999 Mar;159(3):945-58 17272782 - Am J Respir Crit Care Med. 2007 May 15;175(10):978-85 12598898 - Nat Genet. 2003 Mar;33(3):407-11 5334613 - N Engl J Med. 1967 Feb 16;276(7):357-68 14764076 - Eur J Clin Invest. 2004 Feb;34(2):129-36 12959945 - Am J Respir Cell Mol Biol. 2004 Mar;30(3):396-402 11792802 - J Cell Sci. 2001 Dec;114(Pt 24):4359-69 14607780 - Am J Physiol Lung Cell Mol Physiol. 2004 Feb;286(2):L411-9 13726619 - Arch Dis Child. 1960 Dec;35:544-7 19242469 - Nature. 2009 Feb 26;457(7233):1103-8 16403941 - Am J Physiol Lung Cell Mol Physiol. 2006 Feb;290(2):L209-21 11839538 - Am J Physiol Lung Cell Mol Physiol. 2002 Mar;282(3):L448-56 11158993 - Am J Physiol Heart Circ Physiol. 2001 Feb;280(2):H909-17 17071723 - Am J Physiol Lung Cell Mol Physiol. 2007 Feb;292(2):L537-49 |
References_xml | |
SSID | ssj0005006 |
Score | 2.3770056 |
Snippet | Defective lung septation and angiogenesis, quintessential features of neonatal chronic lung disease (CLD), typically result from lengthy exposure of developing... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | L23 |
SubjectTerms | Air Animals Animals, Newborn Apoptosis Cell Count Cell Proliferation Elastin - metabolism Endothelial Cells - metabolism Endothelial Cells - pathology Immunoblotting Lung - blood supply Lung - metabolism Lung - pathology Mice Models, Biological Neovascularization, Pathologic - pathology Phosphoproteins - metabolism Pulmonary Alveoli - metabolism Pulmonary Alveoli - pathology Respiration, Artificial Smad2 Protein - metabolism Surface Properties Time Factors Transforming Growth Factor beta - metabolism Vascular Endothelial Growth Factor A - metabolism Vascular Endothelial Growth Factor Receptor-1 - metabolism Vascular Endothelial Growth Factor Receptor-2 - metabolism |
Title | Prolonged mechanical ventilation with air induces apoptosis and causes failure of alveolar septation and angiogenesis in lungs of newborn mice |
URI | https://www.ncbi.nlm.nih.gov/pubmed/19854954 |
Volume | 298 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZaEIILgl0ey0s-IC5VljzsNjkupWgPBVVikbitHNupwualtFnEn-A3M34l0VYgOKBKUWRbTpT5OpmZfDOD0GsBb2HflwLcEko8QoTvxQz-7jRkaSwTyQJdt-D88-LT1_j9iqwmE9cTdBj7r5KGMZC1ypz9B2n3m8IAnIPM4QhSh-NfyX3TgjqrtmBHllJl9WohaFKjYb3ZbLZc0dBFp_hYrKmbfa0Kk-gcN9btYDBjuSKsa5pAcS2VAzzbycZyE02F121eb5WqzDWntuhUA1DFC5HfAVjVrLS0ur7Irfs4NKpWoQMrOrJ_Olt3Kv9XFoVmxqpLlK5372hdj5D6qjUqbt0Bvoao7oa1tsU2u6qLfIitF3Czom5tGcpq4BOs2r37fKZ55uNIiCbUuUiItNobPGuwcMlYvYdJfIBjo6zXJtP58CVCVVFa9q1RD-5Ue2E6S3S8GITelBpCQRKDj20qYf959kZhbzc1RVMw05Qlv_w4sJNAG7ocLxq-PbwZXe3WbHDDI9KW0cUDdN-6NPjMYPEhmsjqCB2fVWxflz_wG7zpZXeE7rxzZ3eXrtXgMfrZgxYPoMUj0GIFWgygxRa0uActBqBgA1psQYvrDDvQ4h60euEYtLAX1qBV6y1osQLtI_Tlw-piee7ZRiEeJ3O691RXATanLJUZYQsmuB-ReRRSGUgq09DnSSJDP10w6dOMxBkNooALxnkK3nRGgvAxulXVlXyKMPcpj-cSnBqWkZT7MRciEnTBI0bhF52gJ-ZZXzamGsylk8Kz3848R_cGuL5AtzNQNfIlmu5E90pL_Rep3ar_ |
link.rule.ids | 782 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prolonged+mechanical+ventilation+with+air+induces+apoptosis+and+causes+failure+of+alveolar+septation+and+angiogenesis+in+lungs+of+newborn+mice&rft.jtitle=American+journal+of+physiology.+Lung+cellular+and+molecular+physiology&rft.au=Mokres%2C+Lucia+M&rft.au=Parai%2C+Kakoli&rft.au=Hilgendorff%2C+Anne&rft.au=Ertsey%2C+Robert&rft.date=2010-01-01&rft.eissn=1522-1504&rft.volume=298&rft.issue=1&rft.spage=L23&rft_id=info:doi/10.1152%2Fajplung.00251.2009&rft_id=info%3Apmid%2F19854954&rft_id=info%3Apmid%2F19854954&rft.externalDocID=19854954 |